
The relational model is dead, SQL is dead,
and I don’t feel so good myself

Paolo Atzeni Christian S. Jensen Giorgio Orsi Sudha Ram
Letizia Tanca Riccardo Torlone

ABSTRACT
We report the opinions expressed by well-known
database researchers on the future of the relational
model and SQL during a panel at the International
Workshop on Non-Conventional Data Access (NoCoDa
2012), held in Florence, Italy in October 2012 in con-
junction with the 31st International Conference on Con-
ceptual Modeling. The panelists include: Paolo Atzeni
(Università Roma Tre, Italy), Umeshwar Dayal (HP
Labs, USA), Christian S. Jensen (Aarhus University,
Denmark), and Sudha Ram (University of Arizona,
USA). Quotations from movies are used as a playful
though effective way to convey the dramatic changes
that database technology and research are currently un-
dergoing.

1. INTRODUCTION
As more and more information becomes available

to a growing multitude of people, the ways to man-
age and access data are rapidly evolving as they
must take into consideration, on one front, the kind
and volume of data available today and, on the
other front, a new and larger population of prospec-
tive users. This need on two opposite fronts has
originated a steadily growing set of proposals for
non-conventional ways to manage and access data,
which fundamentally rethink the concepts, tech-
niques, and tools conceived and developed in the
database field during the last forty years. Recently,
these proposals have produced a new generation of
data management systems, mostly non-relational,
proposed as effective solutions to the needs of an
increasing number of large-scale applications for
which traditional database technology is unsatisfac-
tory.

Today, it is common to include all the non-
relational technologies for data management under
the umbrella term of “NoSQL” databases. Still, it
is appropriate to point out that SQL and relational
DBMSs are not synonymous. The former is a lan-
guage, while the latter is a mechanism for manag-

ing data using the relational model. The debate on
SQL vs. NoSQL is as much a debate on SQL, the
language, as on the relational model and its various
implementations.

Relational database management systems have
been around for more than thirty years. During
this time, several revolutions (such as the Object
Oriented database movement) have erupted, many
of which threatened to doom SQL and relational
databases. These revolutions eventually fizzled out,
and none made even a small dent in the domi-
nance of relational databases. The latest revolu-
tion appears to be from NoSQL databases that are
touted to be non-relational, horizontally scalable,
distributed and, for the most part, open source.

The big interest of academia and industry in the
NoSQL movement gives birth, once more, to a num-
ber of challenging questions on the future of SQL
and of the relational approach to the management
of data. We discussed some of them during a lively
panel at the NoCoDa Workshop, an event held in
Florence, Italy in October 2012 organized by Gior-
gio Orsi (Oxford University), Letizia Tanca (Po-
litecnico di Milano) and Riccardo Torlone (Univer-
sità Roma Tre). We have used a provocative title
(paraphrasing a quote often attributed to Woody
Allen) and quotations from movies to elaborate on
three main issues:

• the possible decline of the relational model and
of SQL as a consequence of the rise of the non-
relational technology,

• the need for logical data models and theoreti-
cal studies in the NoSQL world, and

• the possible consequences of sacrificing the
ACID properties in favor of system perfor-
mance and data availability.

In the following sections we discuss these issues in
turn and close the paper with a final discussion.
Since a consensus was reached on most of the is-
sues addressed in the panel, we synthesize shared

64 SIGMOD Record, June 2013 (Vol. 42, No. 2)



opinions, rather than report contributions to the
discussion by single individuals.

2. THE END OF AN ERA?

2.1 Relational databases

“The ship will sink.” “You’re certain?”
“Yes. In an hour or so, all of this will be
at the bottom of the Atlantic.”

(Titanic. 1997)

According to Stonebraker et al., RDBMS are 25-
year-old legacy code lines that should be retired in
favor of a collection of from-scratch specialized en-
gines [9]. Are we really attending the sinking of the
relational ship?

One needs to distinguish between the relational
model and its dominant query language, SQL, on
the one hand and relational database management
systems on the other.

The relational model and SQL were invented at
a time when data management targeted primarily
administrative applications. The goal was to sup-
port applications exemplified well by banking. The
data is well structured: accounts, customers, loans,
etc. And typical transactions include withdrawals
and deposits that alter account balances. The rela-
tional model and SQL are well suited for managing
this kind of data and supporting workloads made
up from these kinds of transactions.

However, the data management landscape has
evolved, and today’s landscape of data management
applications is much more diverse than it was when
the relational model and SQL were born. Exam-
ples of this diversity abound: semi-structured data,
unstructured data, continuous data, sensor data,
streaming data, uncertain data, graph data, and
complexly structured data. Similar diversities can
be found in the workloads to be supported today.

Thus, while relational database systems were first
proposed as a way to store and manage struc-
tured data, burgeoning NoSQL databases, such as
CouchDB, MongoDB, Cassandra, and Hbase, have
emerged as a way to store unstructured data and
other complex objects such as documents, data
streams, and graphs. With the rise of the real-time
web, NoSQL databases were designed to deal with
very large volumes of data.

Moreover, while relational database systems are
usually scaled up (i.e., moved to larger and more
powerful servers), NoSQL database systems are de-
signed to scale out, i.e, the database is distributed
across multiple hosts as load increases. This is more
in line with real time web traffic as transaction

rates and availability requirements increase and as
data stores move into the cloud. The new breed
of NoSQL systems are designed so they can eas-
ily scale up using low cost commodity processors to
yield economic advantages.

Next, the data management applications have not
just grown to concern more diverse kinds and uses
of data. They have also become more complex. A
single application may involve diverse kinds of data.
This means that it is generally not possible for an
application to use the single model and query lan-
guage that is best for a single kind of data.

There are indeed two different issues here, related
to the model level and to the implementation. In
terms of implementation, it is clear (and it has been
clear for more than a decade) that different appli-
cations have different requirements, especially when
performance is a concern. This has led for exam-
ple to separating OLTP and OLAP applications,
even when the latter makes use of data produced
by the former. Further, different engines with dif-
ferent capabilities have been developed for the two
worlds, with specific support, the ones with more
support for throughput of transactions and the oth-
ers with support for very complex queries. With re-
spect to models, the point is that most applications
do need mainly simple operations over models that
are somehow more complex than the relational one.
NoSQL systems try to respond to these needs: im-
plementations are new and specialized, operations
are very simple, and diverse models (see the dis-
cussion on heterogeneity below) share the idea of
being flexible (semistructured and with little or no
schema).

2.2 SQL

“Whoa, lady, I only speak two languages,
English and bad English.”

(The Fifth Element. 1997)

A variety of data models and access methods
are emerging and SQL is not suitable for any of
them. Are we building the Babel Tower of query
languages?

SQL has several advantages — it is a simple yet
powerful declarative language for set-oriented oper-
ations. SQL captures the essential patterns of data
manipulation, including intersections/joins, filters,
and aggregations or reductions. Programmers who
profess a dislike for SQL appear to have been de-
ceived by its simplicity. The existence of languages
such as SQLDF [4], which allows SQL queries on
R data frames, add SQL functionality for analyt-
ics on Big Data. SQL’s declarative expressions are

SIGMOD Record, June 2013 (Vol. 42, No. 2) 65



frequently more readable and compact than their R
programmatic equivalents. Powerful extensions to
SQL, based on window functions, provide a ”split-
apply” functionality otherwise known as map func-
tion. Combining these with SQL’s GROUP BY op-
eration, which is in reality a reduce function, essen-
tially provides the equivalent of operations such as
those in the Map Reduce framework.

However, in spite of the research and develop-
ment, the relational model and SQL may not be
the best foundation for managing every new kind
of data and workload. The SQL-86 standard was
a small and simple document. Then came SQL-
89, SQL-92, SQL:1999, SQL:2003, SQL:2006, and
SQL:2008. The current standard, SQL:2011, is very
complex, and most data management professionals
will find it challenging to understand. How many
people have read and understood the entire SQL
standard? Few claim that SQL is an elegant lan-
guage characterized by orthogonality. Some call it
an elephant on clay feet. With each addition, its
body grows, and it becomes less stable. SQL stan-
dardization is largely the domain of database ven-
dors, not academic researchers without commercial
interests or users with user interests. Who is that
good for?

Another aspect is that the SQL syntax requires
the use of joins, considered ill-fit for, e.g., prefer-
ences and data structures for complex objects or
completely unstructured data: many programmers
would prefer to not do joins at all, keeping the data
in a physical structure that fits the programming
task as opposed to extracting it from a logical struc-
ture that is relational. Complex objects that con-
tain items and lists do not always map directly to a
single row in a single table, and writing SQL queries
to grab the data spread out across many tables,
when all you want is a record, is inconsistent with
the belief that data should be persisted the way it
is programmed.

On the other hand, the tumultuous developments
we are observing have generated dozens of systems
each with its own modeling features and its own
APIs [2, 8], and this is definitely generating con-
fusion. Indeed, the lack of a standard is a great
concern for companies interested in adopting any
of these systems [7]: applications and data are ex-
pensive to convert and competencies and expertise
acquired on a specific system get wasted in case
of migration. Efforts that support interoperability
and translation are definitely needed [1]. Original
approaches in this direction are needed, given the
simplicity of operations and the almost total ab-
sence of schemas.

3. MODEL, THEORY AND DESIGN

3.1 Logical data models

“Underneath, it’s a hyper-alloy combat
chassis, microprocessor-controlled. But
outside, it’s living human tissue: flesh,
skin, hair, blood.” (Terminator. 1984)

Aren’t NoSQL database models too close to the
physical data structures? What about physical data
independence?

The ANSI SPARC architecture for database sys-
tems was defined in 1975 with the fundamental
goal of setting a standard for data independence
for DBMS vendor implementations. It appears that
current NoSQL systems make no distinction be-
tween the logical and physical schema. Thus, the
fundamental advantages of the ANSI SPARC ar-
chitecture have been voided, which complicates the
maintenance of these databases. Storing objects as
they are programmed essentially negates the data
independence requirement that then remains to be
adequately addressed for NoSQL database systems.
Strong typing of relations also allows definition of
a variety of integrity constraints at the schema
level, a very important consideration for transac-
tion processing systems that support a variety of
read, write, delete, and update transactions.

Relational database systems are criticized for the
strong typing of relational schemas, which makes
it difficult to alter the data model. Even mi-
nor changes to the data model of a relational
database have to be carefully managed and may
require downtime or reduced service levels. NoSQL
databases have far more relaxed — or even nonexis-
tent — data model restrictions. NoSQL Key Value
stores and document databases allow applications
to store virtually any structure it wants in a data
element. Even the more rigidly defined BigTable-
based NoSQL databases (Cassandra, HBase) typ-
ically allow new columns to be created with little
effort. Actually, organizations should carefully eval-
uate the advantages and limitations of each type of
systems (i.e. relational and NoSQL) for Big Data
and then make an informed decision.

A common, high level interface could really be of
use here. However it has to be simple, especially
in terms of operations, as is the case for NoSQL
systems. It is also worth mentioning that developers
of the various systems follow “best practices” that
support efficient execution of operations. An effort
should be made to design a common interface by
using the best practices of each system, with the
goal of re-achieving physical independence.

66 SIGMOD Record, June 2013 (Vol. 42, No. 2)



3.2 Database theory

“I’ve seen things you people wouldn’t be-
lieve. [. . . ] All those moments, will be
lost in time, like tears in rain. Time to
die.” (Blade Runner. 1982)

Do we still need theoretical research in the new
world? Has relational database theory become irrel-
evant?

The introduction of the relational model in 1970
marked a striking difference with respect to all the
previous research on databases. The main reason
for this lies in the strong mathematical foundations
upon which this model is based, which provided
the database research community with the possibil-
ity to approach the problems that were raised dur-
ing the years by means of logical and mathematical
tools, and to ensure the correctness and effective-
ness of the proposed solutions by solid mathemati-
cal proofs.

This approach has caused the blooming of gen-
erations of splendid theoreticians who have set the
foundations of the relational model, but have also
contributed to adapting their experience to de-
vise new methods and techniques for solving the
problems derived from the advent of new chal-
lenges. Consider for instance the introduction
of new paradigms for representing and querying
semi-structured and unstructured data: since the
nineties, invaluable theoretical research has laid the
foundations for dealing with XML and the related
query languages, with HTML Web data, with the
Semantic Web, and with unstructured data like im-
ages and videos. It would be interesting to see what
the work on semi-structured data and XML (mod-
elling and languages) can contribute in the setting
of NoSQL databases, since after all many of the
problems rising from this new data model(s) have
been discussed already within the semi-structured
data research.

The lessons learned from developing the re-
lational database theory have probably laid the
methodological foundations for approaching most
data-related problems, since, however unstructured
and unkempt the datasets at hand, the understand-
ing developed within the community will ever in-
form its research strategies.

3.3 Database design

“They rent out rooms for old people,
kill’em, bury’em in the yard, cash their
social security checks.”

(No Country for Old Men. 2007)

How is database design affected by the recent
paradigm shifts on logical data modeling? Is concep-
tual database design really too old for this country?

The methodological framework consisting of con-
ceptual data modeling followed by the translation
of the ER (or class-diagram) schema into a logical
(relational) one can still be adopted: after all, these
systems have to be accessed by applications. So,
even if there is no schema in the data store, it is
very likely that the data objects belong to classes,
whose definitions appear in the programs, so some
contribution could arise. At the same time, flexibil-
ity is a must, as objects could come from classes in
an inheritance hierarchy, so polymorphism should
be supported. The availability of a high-level rep-
resentation of the data at hand, be it logical or con-
ceptual, remains a fundamental tool for developers
and users, since it makes understanding, managing,
accessing, and integrating information sources much
easier, independently of the technologies used.

4. ACID OR AVAILABLE?

“Ask me a question I would normally lie
to.” (True Lies. 1994)

A relational database is a perfect world where
data is always consistent (even if not true). Are
the ACID properties really less relevant in modern
database applications? Are we ready for a chaotic
world where data is always available but only “even-
tually” consistent?

While preserving ACID properties may not be
as important for databases that typically contain
append only data, they are absolutely essential for
most operational systems and online transaction
processing systems, including retail, banking, and
finance. ACID compliance may not be important
to a search engine that may return different results
to two users simultaneously, or to Amazon when
returning sets of different reviews to two users. In
these applications, speed and performance triumph
the consistency of the results. However, in a bank-
ing application, two users of the same account need
to see the same balance in their account. A utility
company needs to display the same “payment due
amount” to two or more users perusing an account.
The idea of “eventual consistency” for such applica-
tions could lead to chaos in the business world. Is
it by chance that just those applications that need
full consistency are often those that better match
the relational structure? Can we imagine a bank,
a manufacturing or a commercial company which
would rather use a complex-object data model to
represent their data? This is probably why many

SIGMOD Record, June 2013 (Vol. 42, No. 2) 67



people mix up the structure of the relational model
with the ACID properties, which in principle are
completely independent aspects.

A consequence of the choices made in some sys-
tems about weak forms of consistency is that the
burden is passed to applications developers, when
they need to ensure more sophisticated transaction
properties.

An observation that has been recently made
about transaction management (and other imple-
mentation issues) is related to the fact that it can
be easy to omit features, as this simplifies the de-
velopment, but it might be difficult to reintroduce
them later. Mohan [6] points out that there were
experiences in the past with similar simplifications,
and it was later very complex to obtain more gen-
eral and powerful systems— some features needed
to be rewritten from scratch.

5. FINAL COMMENTS

“Look! It’s moving. It’s alive!!”
(Frankenstein. 1931)

In spite of the shortcomings and inadequacies of
the relational model and SQL, these technologies
are, however, still going strong. Why? A key rea-
son is that the systems that implement these are
plentiful and have proven their worth. Perhaps
the most important reason is that enormous in-
vestments are sitting in applications built on top
of such systems. Companies around the globe rely
on these applications and their underlying database
management systems for their day-to-day business.
Actually, relational DBMS provide the most under-
standable format for business application data, and
at the same time guarantee the consistency prop-
erties that are needed in business. In addition, the
skill sets of their current and prospective employ-
ees are targeted at these systems. It is not an easy
decision to throw away relational and SQL technol-
ogy and instead adopt new technology. Rather, it
is much easier to extend the current applications
and systems with no radical changes. Indeed, to
the extent applications involve standard adminis-
trative data and “new” data, relational technology
may even be best suited.

Thus, when is it reasonable for an organization
to bet on a tool that is slightly incompatible with
all the others, may be built by a community in
open source model, does not grant consistency and
concurrency control and is subject to change, ne-
glect, and abandon at any point in time? The point
is that there are killer applications – e.g. storing
huge amounts of (read-only) social-network or sen-

sor data in clusters of commodity hardware – that
may make it worthwhile.

Therefore, we all believe that relational and
NoSQL database systems will continue to coexist.
In the era of large, decentralized, distributed en-
vironments where the amount of devices and data
and their heterogeneity is getting out of control,
billions of sensors and devices collect, communicate
and create data, while the Web and the social net-
works are widening the number of data formats and
providers. NoSQL databases are most often appro-
priate for such applications, which either do not re-
quire ACID properties or need to deal with objects
which are clumsily represented in relational terms.

As a conclusion, NoSQL data storage appears to
be additional equipment that business enterprises
may choose to complete their assortment of storage
services.

With all these questions ahead the contribution
the database community can give is huge. Let us
take a full breath and start anew!

6. REFERENCES
[1] P. Atzeni, F. Bugiotti, and L. Rossi. Uniform

access to non-relational database systems:
The SOS platform. In CAiSE 2012, Springer,
pages 160–174, 2012.

[2] R. Cattell. Scalable SQL and NoSQL data
stores. SIGMOD Record, 39(4):12–27, 2010.

[3] M. Driscoll. SQL is Dead. Long Live SQL!
http://www.dataspora.com/2009/11/

sql-is-dead-long-live-sql/, 2009.
[4] G. Grothendieck. SQLDF: SQL select on R

data frames.
http://code.google.com/p/sqldf/, 2012.

[5] G. Harrison. 10 things you should know about
NoSQL databases. http:
//www.techrepublic.com/blog/10things/

10-things-you-should-know-about-nosql-

databases/1772, 2010.
[6] C. Mohan. History repeats itself: sensible and

NonsenSQL aspects of the NoSQL hoopla. In
EDBT 2013, ACM, pag. 11–16, 2013.

[7] M. Stonebraker. Stonebraker on NoSQL and
enterprises. Commun. ACM, 54:10–11, 2011.

[8] M. Stonebraker and R. Cattell. 10 rules for
scalable performance in ’simple operation’
datastores. Commun. ACM, 54(6):72–80,
2011.

[9] M. Stonebraker, S. Madden, D. J. Abadi, S.
Harizopoulos, N. Hachem, and P. Helland.
The end of an architectural era: (it’s time for
a complete rewrite). In VLDB 2007, VLDB
Endowment, pag. 1150-1160, 2007.

68 SIGMOD Record, June 2013 (Vol. 42, No. 2)


