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Abstract. We propose a database design methodology for NoSQL systems. The
approach is based on NoAM (NoSQL Abstract Model), a novel alisttatza
model for NoSQL databases, which exploits the commonalities of variais N
SQL systems and is used to specify a system-independent represenfatie
application data. This intermediate representation can be then implemented in
target NoSQL databases, taking into account their specific featuresalDvhe
methodology aims at supporting scalability, performance, and consystaa
needed by next-generation web applications.

1 Introduction

NoSQL database systems are today an effective solution hagegarge data sets dis-
tributed over many servers. A primary driver of interest in9QL systems is their
support for next-generation web applications, for whidatienal DBMSs are not well
suited. These are OLTP applications for which (i) data hastwecture that does not fit
well in the rigid structure of relational tables, (ii) acses data is based on simple read-
write operations, (iii) scalability and performance argortant quality requirements,
and (iv) a certain level of consistency is also desirabl@(¥.,

NoSQL technology is characterized by a high heterogen@jt®1], which is prob-
lematic to application developers. Currently, databassgdefor NoSQL systems is
usually based on best practices and guidelines [12], whiebecifically related to the
selected system [19, 10, 17], with no systematic methogo®gveral authors have ob-
served that the development of high-level methodologiekstaols supporting NoSQL
database design are needed [2, 3, 13].

In this paper we aim at filling this gap, by presenting a desiggthodology for
NoSQL databases that has initial activities that are indéget of the specific target
system. The approach is based\wAM (NoSQL Abstract Modgla novel abstract data
model for NoSQL databases, which exploits the observatiahthe various NoSQL
systems share similar modeling features. Given the apjglicdata and the desired data
access patterns, the methodology we propose uses NoAM ¢tifyspe intermediate,
system-independent data representation. The implenmmtiattarget NoSQL systems
is then a final step, with a translation that takes into acttheir peculiarities.

Specifically, our methodology has the goal of designing atfjoepresentation of
these application data in a target NoSQL database, aneigdat! to supposrcalability,
performanceandconsistencyas needed by next-generation web applications. In gen-
eral, different alternatives on the organization of data MoSQL database are possible,
but they are not equivalent in supporting performance afilily, and consistency. A
“wrong” database representation can lead to the inabdityuarantee atomicity of im-
portant operations and to performance that are worse bydar of magnitude.

The design methodology is based on the following main diivi
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— conceptual data modelingo identify the various entities and relationships théreo
needed in an application;

— aggregate desigrio group related entities into aggregates [9, 11];

— aggregate partitioningwhere aggregates are partitioned into smaller data elismen

— high-level NoSQL database desjgmhere aggregates are mapped to the NoAM
intermediate data model, according to the identified panti;

— implementationto map the intermediate data representation to the speuifite|-
ing elements of a target datastore; only this activity delgean the target system.

The remainder of this paper presents our methodology foQNo@atabase design. As
a running example, we consider an application for an ondiogal game. This is a
typical scenario in which the use of a NoSQL database iskdeit&ror space reasons,
many details have been omitted; they can be found in the éuflion of the paper [6].

2 The NoAM Abstract Data Model

In this section we present the NOAM abstract data model fd8Qlo databases. Pre-
liminarily, we briefly sum up the data models used in NoSQlabases.

NoSQL database systems organize their data accordingtedjtierent data mod-
els. They usually provide simple read-write data-accessatjpns, which also differ
from system to system. Despite this heterogeneity, a fewn moaiegories of systems
can be identified according to their modeling features [T, &&y-value stores, extensi-
ble record stores, document stores, plus others that aombekie scope of this paper.

In akey-value storea database is a schemaless collection of key-value patts, w
data access operations on either individual key-valuespailgroups of related pairs
(e.g., sharing part of the key). The key (or part of it, théreontrols data distribution.

In anextensible record stor@ database is a set of tables, each table is a set of rows,
and each row contains a set of attributes (columns), eathawiaime and a value. Rows
in atable are not required to have the same attributes. Raéss operations are usually
over individual rows, which are units of data distributiardaatomic data manipulation.

In adocument storea database is a set of documents, each having a complex struc
ture and value. Documents are organized in collectionsr&dipas usually access indi-
vidual documents, which are units of data distribution atodréc data manipulation.

NoAM (NoSQL Abstract Data Modgis a novel data model for NoSQL databases
that exploits the commonalities of the data modeling eldamawailable in the various
NoSQL systems and introduces abstractions to balancediffeirences and variations.

The NoAM data model is defined as follows.

— A NoAM databases a set ofcollections Each collection has a distinct name.

— A collection is a set oblocks Each block in a collection is identified bytdock
key, which is unique within that collection.

— A block is a non-empty set @ntries Each entry is a paifek, ev), whereek is the
entry key(which is unique within its block) andv is its value (either complex or
scalar), called thentry value

Figure 1 shows a sample NOAM database. In the figure, innezdsixow entries, while
outer boxes denote blocks. Collections are shown as grdupeaks.

In NoAM, a block is a construct that models a data access and distributidn uni
which is a data modeling element available in all NoSQL systeBy “data access
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Fig. 1. A sample database in the abstract data model (abridged)

unit” we mean that the NoSQL system offers operations tosscaad manipulate an
individual unit at a time, in an atomic, efficient, and scégalay. By “distribution unit”
we mean that each unit is entirely stored in a server of treetwhereas different units
are distributed among the various servers. With referemeeajor NoSQL categories,
a block corresponds to: (i) a record/row, in extensible réabores; (ii) a document, in
document stores; or (iii) a group of related key-value pairgey-value stores.

Specifically, a block representsy@aximaldata unit for which atomic, efficient, and
scalable access operations are provided. Indeed, in tieugasystems, the access to
multiple blocks can be quite inefficient. For example, NoS&yktems do not provide
an efficient “join” operation. Moreover, most NoSQL systedwsnot provide atomic
operations over multiple blocks. For example, MongoDB [fpddvides only atomic
operations over individual documents.

In NoAM, an entry models the ability to access and manipulate just a component
of a data access unit (i.e., of a block). An entry is a smal&a dinit that corresponds
to: (i) an attribute, in extensible record stores; (ii) adjeh document stores; or (iii) an
individual key-value pair, in key-value stores. Note thatrg values can be complex.

Finally, a NoAM collectionmodels a collection of data access units. For example,
a table in extensible record stores or a document colleatidocument stores.

In summary, NoAM describes in a uniform way the features ofiyldoSQL sys-
tems. We will use it for an intermediate representation exdbsign process.

3 Conceptual Modeling and Aggregate Design

The methodology starts, as it is usual in database desighuliging a conceptual
representation of the data of interest. See, for exampjel-(Blowing Domain-Driven

Design (DDD [9]), which is a popular object-oriented metblodyy, we assume that
the outcome of this activity is a conceptual UML class diagrdefining the entities,
value objects, and relationships of the application.eftity is a persistent object that
has independent existence and is distinguished by a uidguéfier. A value objecis

a persistent object which is mainly characterized by its@alvithout an own identifier.

For example, our application should manage various typesbjEcts, including
players, games, and rounds. A few representative objezthamwn in Fig. 2. (Consider,
for now, only boxes and arrows, which denote objects and Ibdétween them.)

The methodology proceeds by identifying aggregates [Qitiuely, eachaggre-
gateis a “chunk” of related data, with a complex value and a unideaetifier, intended
to represent a unit of data access and manipulation for alicappn. Aggregates are
also important to support scalability and consistencyheg provide a natural unit for
sharding and atomic manipulation of data in distributedremments [11, 9]. An im-
portant intuition in our approach is that each aggregatebearonveniently mapped to
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a NoAM block (Sect. 2), which is also a unit of data access asttibution. Aggre-
gates and blocks are however distinct concepts, since teyndp, respectively, to the
application level and the database level.

Various approaches to aggregate design are possible. Bompdx, in DDD [9],
entities and value objects are then grouped into aggredadebaggregatehas an entity
as its root, and optionally it contains many value objeattuitively, an entity and a
group of value objects define an aggregate having a compigstste and value.

Aggregate design is mainly driven by data access operatiomagir running exam-
ple, when a player connects to the application, all data eplyer should be retrieved,
including an overview of the games she is currently playirigen, the player can select
to continue a game, and data on the selected game shouldieeaeét When a player
completes a round in a game she is playing, then the gamedsheulpdated. These
operations suggest that the candidate aggregate classgiagers and games. Figure 2
also shows how application objects can be grouped in aggeddhere, a closed curve
denotes the boundary of an aggregate.)

Aggregate design is also driven by consistency needs. fRjadlgi, aggregates should
be designed as the units on which atomicity must be guardrjigd (with eventual
consistency for update operations spanning multiple agdes [18]). Assume that the
application should enforce a rule specifying that a roundlxaadded to a game only
if some condition that involves the other rounds of the gasrsatisfied. A game (com-
prising, as an aggregate, its rounds) can check the abowiioon while an individual
round cannot. Therefore, a round cannot be an aggregatsefbfy it

Let us now illustrate the terminology we use to describe dathe aggregate level.
An application dataseincludes a number adggregate classegach having a distinct
name. The extent of amggregate clas a set ofaggregate objectéor, simply,aggre-
gate3. Each aggregate hascamplex valugl] and a uniquedentifier. In conclusion,
our application has aggregate clasB&s/er andGame

4 Data Representation in NOAM and Aggregate Partitioning

In our approach, we use the NOAM data model as an intermediatie! between appli-
cation datasets of aggregates and NoSQL databases. Sibgiéio application dataset
can be represented by a NoOAM database as follows. We represem aggregate class
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Fig. 3. Data representations (abridged)

by means of a distinct collection, and each aggregate objeateans of a block. We
use the class name to name the collection, and the identiftee@ggregate as block
key. The complex value of each aggregate is represented &lycd entries in the cor-
responding block. For example, the application datasetgpfZcan be represented by
the NoAM database shown in Fig. 1. The representation ofeagges as blocks is mo-
tivated by the fact that both concepts represent a unit ef @etess and distribution, but
at different abstraction levels. Indeed, NoSQL systemsigeoefficient, scalable, and
consistent (i.e., atomic) operations on blocks and, in,ttiis representational choice
propagates such qualities to operations on aggregates.

In general, an application dataset can be represented bjAkIatabase in several
ways. The various data representations for a dataset diffine choice of the entries
used to represent the complex value of each aggregate.

A simple data representation strategy, calladry per Aggregate ObjedEAO),
represents each individual aggregate using a single értigyentry key is empty. The
entry value is the whole complex value of the aggregate. Ht& ik presentation of the
aggregates of Fig. 2 according to the EAO strategy is showign3(a). (For the sake
of space, we show only the data representation for the gagregate object.)

Another strategy, calleBntry per Top-level FieldETF), represents each aggregate
by means of multiple entries, using a distinct entry for etaghlevel field of the com-
plex value of the aggregate. For each top-level fielof an aggregate, it employs an
entry having as value the value of fiefdin the complex value ob (with values that
can be complex themselves), and as key the field nansee Fig. 3(b).

The data representation strategies described above caitée is some cases, but
they are often too rigid and limiting. The main limitationsafch general representations
is that they refer only to the structure of aggregates, andaldake into account the
required data access operations. Therefore, they do naliyisupport the performance
of these operations. This motivates the introduction ofegate partitioning.

In NoAM we represent each aggregate by meanspafréition of its complex value
v, that is, a sef’ of entries that fully cover, without redundancy. Each entry represents
a distinct portion of the complex valuge characterized by a location in its structure
(specified by the entry key) and a value (the entry value). We lalready applied this
intuition in the ETF data representation (shown in Fig. B(Which uses field names as
entry keys and field values as entry values.

Aggregate partitioning can be driven by the following guiides (which are a vari-
ant of guidelines proposed in [5] in the context of logicaladese design):

— If an aggregate is small in size, or all or most of its data aee=ased or modified
together, then it should be represented by a single entry.
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Fig. 5. Implementation in Oracle NoSQL for the sample database of Fig. 1 (albidge

— Conversely, an aggregate should be partitioned in mul8pteies if it is large in
size and there are operations that frequently access ofyrady specific portions
of the aggregate.

— Two or more data elements should belong to the same entrgyfdte frequently
accessed or modified together.

— Two or more data elements should belong to distinct entfitisely are usually
accessed or modified separately.

The application of the above guidelines suggests a parititipof aggregates, which
we will use to guide the representation in the target dagbas example, the data rep-
resentation for games shown in Fig. 1 is motivated by thedthg operation: when
a player completes a round in a game she is playing, then tjregagte for the game
should be updated. In order to update the underlying dagaltiasre would be two al-
ternatives: (i) the addition of the round just completedhi® aggregate representing the
game; (ii) a complete rewrite of the whole game. The formetearly more efficient.
Therefore, each round is a candidate to be represented hyt@moanous entry.

5 Implementation

In the last step, the selected data representation in NoANhjgemented using the
specific data structures of a target datastore. For the Sadmaoe, we discuss the im-
plementation only with respect to a single system: OraclBQlo. We have also imple-
mentations for other systems [6].

Oracle NoSQL [16] is a key-value store, in which a databasaesishemaless collec-
tion of key-value pairs, with a key-value inddgeysare structured; they are composed
of amajor keyand aminor key The major key is a non-empty sequence of strings. The
minor key is a sequence of strings. On the other hand, ealieis an uninterpreted
binary string.

A NoAM databaseD can be implemented in Oracle NoSQL as follows. We use a
key-value pair for each entrigk, ev) in D. The major key is composed of the collection
nameC and the block keyd, while the minor key is a proper coding of the entry key
ek. The value associated with this key is a representationegtitry valuecv. The
value can be either simple or a serialization of a complede/a.g., in JSON.

For example, Fig. 4(a) and 4(b) show the implementation®BAO and ETF data
representations, respectively, in Oracle NoSQL. Moredvigr 5 shows the implemen-
tation of the data representation of Fig. 1.
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Fig. 6. Experimental results

An implementation can be considerefflectiveif aggregates are indeed turned into
units of data access and distribution. The effectivenessi®@implementation is based
on the fact that in Oracle NoSQL the major key controls disiion (sharding is based
on it) and consistency (an operation involving multiple k&jue pairs can be executed
atomically only if the various pairs are over a same majol) key

6 Experiments

We now discuss a case study of NoSQL database design, wéitenel to our running
example. For the sake of simplicity, we focus only on the @spntation of aggregates
for games. Data for each game include a few scalar fields atlection of rounds.
The important operations over games are: (1) the retridhaabame, which should read
all the data concerning the game; and (2) the addition of addo a game. To manage
games, the candidate data representations are: (i) usingla entry for each game (as
shown in Fig. 3(a), in the following called EAQ); (ii) splitiy the data for each game
in a group of entries, one for each round, and including &lrmaining scalar fields
in a separate entry (a variant of the representation shoWwigiri, called RUNDS).

We ran a number of experiments to compare the above datesegpations in situ-
ations of different application workloads and databasessiand measured the running
time required by the workloads. The target system was Ofdo8QL, a key-value
store, deployed over Amazon AWS on a cluster of four EC2 ser{@&his work was
supported by AWS in Education Grant award.)

The results are shown in Fig. 6. Database sizes are in giggbiimings are in
milliseconds, and points denote the average running tinaesaigle operation. The ex-
periments show that the retrieval of a game (Fig. 6(a)) iagdrfavored by the EAO
data representation, for any database size. They also blabtine addition of a round to
an existing game (Fig. 6(b)) is always favored by tr@URDS data representation. Fi-
nally, the experiments over the mixed workload (Fig. 6(bpw a general advantage of
RounDs over EAO, which however decreases as the database sizasesreéDverall,
it turns out that the RuNDS data representation is preferable.

We also performed other experiments on a data represemthtibdoes not conform
to the design guidelines proposed in this paper. Specifjoa# divided the rounds of
a game into independent key-value pairs, rather than kgepam together in a same
block. In this case, the performance of the various opearatiworsened by an order of
magnitude. Moreover, it was not possible to update a game ai@mic way.

Overall, these experiments show that: (i) the design of NoS&tabases should
be done with care as it affects considerably the performanceconsistency of data



access operations, and (ii) our methodology provides asc#fe tool for choosing
among different alternatives.

7 Related Work

Several authors have observed that the development of datigies and tools sup-
porting NoSQL database design is demanding [2, 3, 13]. Hewaelis topic has been
explored so far only in some on-line papers, published ig$blaf practitioners, in terms
of best practices and guidelines for modeling NoSQL daebésg., [12, 15]), and usu-
ally with reference to specific systems (e.g., [19, 10, TI)the best of our knowledge,
this is the first proposal of a system-independent approache design of NoSQL
databases, which tackles the problem from a general pergpec

Domain-Driven Design [9] is a widely followed object-oried approach that in-
cludes a notion of aggregate. Also [11] advocates the usggegates (there called
entities) as units of distribution and consistency. We a@lsapose, for efficiency pur-
poses, to partition aggregates into smaller units of datasscand manipulation.

In [4] the authors propose entity groups, a set of entitiag gimilarly to our aggre-
gates, can be manipulated in an atomic way. They also desaripecific mapping of
entity groups to Bigtable [8]. Our approach is based on a rabstract database model,
NoAM, and is system independent, as it is targeted to a wiaesaf NoSQL systems.
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