

Towards an Automated Investigation of the Impact of BGP Routing Changes on Network Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

BGP Routing Changes Network Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

BGP Routing Changes Network Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

Impact BGP Routing Changes Network Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

"Impact"

"Impact"

"Impact"

SLAs

SLAs

SLAs

QoE

Motivations (and Applications)

Oh, no! I'm sensitive to delay!

Ĩ

ImpactBGP Routing ChangesNetwork Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

Automated Investigation of the Impact BGP Routing Changes Network Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

Towards an Automated Investigation of the Impact of BGP Routing Changes on Network Delay Variations

<u>Massimo Rimondini</u> Claudio Squarcella Giuseppe Di Battista

Passive and Active Measurement Conference (PAM 2014) March 11th, 2014

1. Methodology

1. Methodology

Automated Investigation of the Impact of BGP Routing Changes on Network Delay Variations

1. Methodology

- Determines if a routing change caused a significant RTT variation
- Statistical methods

1. Methodology

- Determines if a routing change caused a significant RTT variation
- Statistical methods
- 2. Application
 - RIPE RIS + RIPE Atlas
 - Test in the wild

1. Methodology

- Determines if a routing change caused a significant RTT variation
- Statistical methods
- 2. Application
 - RIPE RIS + RIPE Atlas
 - Test in the wild
- 3. A-posteriori statistics

 Pucha, H., Zhang, Y., Mao, Z., Hu, Y.: Understanding network delay changes caused by routing events.
 Proc. SIGMETRICS 2007

 Routing changes cause delay variations
 as opposed to congestion
 average delays mostly impacted by interdomain changes

- Chuah, C.N., Bhattacharyya, S., Diot, C.: Measuring I-BGP updates and their impact on traffic. Tech. Rep. TR02-ATL-051099, Sprint ATL 2002
- Wang, F., Mao, Z.M., Wang, J., Gao, L., Bush, R.: A Measurement study on the impact of routing events on end-to-end internet path performance. SIGCOMM Comput. Commun. Rev. 36(4), 375– 386, 2006
- Zhang, Y., Mao, Z., Wang, J.: A framework for measuring and predicting the impact of routing changes. Proc. INFOCOM 2007

Routing convergence can cause performance degradations

- Chuah, C.N., Bhattacharyya, S., Diot, C.: Measuring I-BGP updates and their impact on traffic. Tech. Rep. TR02-ATL-051099, Sprint ATL 2002
- Wang, F., Mao, Z.M., Wang, J., Gao, L., Bush, R.: A Measurement study on the impact of routing events on end-to-end internet path performance. SIGCOMM Comput. Commun. Rev. 36(4), 375– 386, 2006
- Zhang, Y., Mao, Z., Wang, J.: A framework for measuring and predicting the impact of routing changes. Proc. INFOCOM 2007

Routing convergence can cause performance degradations

 Da Lozzo, G., Di Battista, G., Squarcella, C.: Visual discovery of the correlation between BGP routing and round-trip delay active measurements. Computing, 1–11, 2013

Focus on the graphical metaphor

- Mahimkar, A., Ge, Z., Wang, J., Yates, J., Zhang, Y., Emmons, J., Huntley, B., Stockert, M.: **Rapid detection of maintenance induced changes in service performance**. Proc. CoNEXT 2011
- Mahimkar, A., Song, H., Ge, Z., Shaikh, A., Wang, J., Yates, J., Zhang, Y., Emmons, J.: Detecting the performance impact of upgrades in large operational networks. Proc. SIGCOMM 2010
- Identify patterns in performance changes
 statistical rule mining
 network configuration information

- Mahimkar, A., Ge, Z., Wang, J., Yates, J., Zhang, Y., Emmons, J., Huntley, B., Stockert, M.: Rapid detection of maintenance induced changes in service performance. Proc. CoNEXT 2011
- Mahimkar, A., Song, H., Ge, Z., Shaikh, A., Wang, J., Yates, J., Zhang, Y., Emmons, J.: Detecting the performance impact of upgrades in large operational networks. Proc. SIGCOMM 2010
- Identify patterns in performance changes
 statistical rule mining
 network configuration information

 Tsamoura, E., Gounaris, A.: Incorporating change detection in network coordinate systems for large data transfers. Proc. PCI 2013

Predict network delay between host pairs change detection algorithms

Scenario

Scenario

Scenario

Scenario

Scenario

Scenario

Raw RTT measurements

BGP updates

Methodology – Parameters

Methodology – Parameters

Data set	Correlation tuning
Time window	Time shift
Probe ID	Elbow slope threshold
Target	Penalty
(BGP) Prefix	Tolerance window
Collector peer	

Time shift Elbow slope threshold

Penalty

Tolerance window

RTT Measurements BGP updates

RTT Measurements BGP updates

Periodical

On-change

RTT Measurements	BGP updates	
Periodical	On-change	
Constant rate	Possibly bursty	

RTT Measurements	BGP updates
Periodical	On-change
Constant rate	Possibly bursty
Highly variable	Few paths

RTT Measurements	BGP updates	
Periodical	On-change	
Constant rate	Possibly bursty	
Highly variable	Few paths	

31 Jan 2012 31 Jan 2012 05:02:12 am 05:02:22 am

Methodology – Preprocessing

Methodology – Preprocessing

Methodology – Time shift

Account for
clock offsets
BGP update propagation delays
MRAI
relative position of devices

+ Goal

+ Goal

Technique Changepoint analysis statistical method(s)

Technique

Changepoint analysis statistical method(s)

Pruned Exact Linear Time (PELT)

• Killick, R., Fearnhead, P., Eckley, I.: **Optimal detection of changepoints with a linear computational cost**. Jour. Amer. Stat. Assoc. 107(500), 1590–1598, 2012

Technique

Changepoint analysis statistical method(s)

Pruned Exact Linear Time (PELT)

Detect mean & variance shifts in time series data

Technique

Changepoint analysis statistical method(s)

Pruned Exact Linear Time (PELT)

Detect mean & variance shifts in time series data

- long-lasting small changes
- short-lived significant changes

Technique

Changepoint analysis statistical method(s)

Pruned Exact Linear Time (PELT)

Detect mean & variance shifts in time series data

- long-lasting small changes
- short-lived significant changes
- Tunable

significant shifts

volatile shifts

Technique

Changepoint analysis statistical method(s)

Pruned Exact Linear Time (PELT)

Detect mean & variance shifts in time series data

- long-lasting small changes
- short-lived significant changes

Tunable

Correlation factor

$cf := \frac{\# \text{ of correlated BGP updates}}{\# \text{ of BGP updates}}$

Time window peer

BGP updates

Correlation factor

$cf := \frac{\# \text{ of correlated BGP updates}}{\# \text{ of BGP updates}}$

measurements

Correlation factor

of correlated BGP updates cf := # of BGP updates rime window Probe TD Target

How much are they correlated?

BGP updates

Time window peer

Correlation factor

$cf := \frac{\# \text{ of correlated BGP updates}}{\# \text{ of BGP updates}}$

Time winds II

How much are they correlated?

BGP updates

Methodology – Shortcomings

We do not account for:
Routing changes on the reverse path
RTT biases
Clock sync
Load balancers

Methodology – Shortcomings

We do not account for:
Routing changes on the reverse path
RTT biases
Clock sync
Load balancers

Interesting Results

Data sources

Data sources

Data sources

SamKnows™

Data sources

FCC Measuring Broadband America

Data sources

MisuraInternet

Data sources

CAIDA Archipelago

Data sources

M-Lab

Data sources

Data sources

RIPE RIS

Data sources

Data sources

Ripe Atlas

Data sources

RIPE RIS

 Data sources
Jan 2013 footprint:

- 55 ASes
- 126 CPs
- 200 probes

 Data sources
Jan 2013 footprint:

- 55 ASes
- 126 CPs
- 200 probes

193.0.0.195 62.101 05 0 193.0.0.195 62.100 05 0 193.0.0.195 62.100 05 0 193.0.0.195 62.100 05 0 193.0.0.100 05 0 193.0.000 05 0 193.0.000 05 0 193.0.000 05 0 193.0.000 05 0 193.000 05 0 193.0000 05 0 193.0000 05 0 193.0000 05 0 193.0000 0 193.									
		# of probes							
		1	2	3	4	5	7	13	22
# of CPs	1	22		1	1				
	2	12	3	3	2				1
	3	1			1	1			
	4	1	1						
	5	1						1	
	6	1					1		
	7			1					

 Data sources
Jan 2013 footprint:

- 55 ASes
- 126 CPs
- 200 probes

 Data sources
Jan 2013 footprint:
55 ASes

- 126 CPs
- 200 probes

Time window = 2 years (Jan 2011-Dec 2012)

 Data sources
Jan 2013 footprint:

- 55 ASes
- 126 CPs
- 200 probes

Time window = 2 years (Jan 2011-Dec 2012)

- 23 Targets
- one RTT every 4 minutes

Targets

ID	Target IP	BGP prefix	% of AS paths of len ≤5 (global avg.)	% of probes with avg. RTT ≤300ms
1001	193.0.14.129 k.root-servers.net	193.0.14.0/24 (Anycast)	87.5%	99.5%
1003	193.0.0.193 ns.ripe.net	193.0.0.0/21 (Unicast)	87.2%	97.3%
1004	192.5.5.241 f.root-servers.net	192.5.5.0/24 (Anycast)	57.8%	100%
1005	192.36.148.17 i.root-servers.net	192.36.148.0/24 (Anycast)	55.5%	99.1%

Targets

ID	Target IP	BGP prefix	% of AS paths of len ≤5 (global avg.)	% of probes with avg. RTT ≤300ms
1001	193.0.14.129 k.root-servers.net	193.0.14.0/24 (Anycast)	87.5%	99.5%
1003	193.0.0.193 ns.ripe.net	193.0.0.0/21 (Unicast)	87.2%	97.3%
1004	192.5.5.241 f.root-servers.net	192.5.5.0/24 (Anycast)	57.8%	100%
1005	192.36.148.17 i.root-servers.net	192.36.148.0/24 (Anycast)	55.5%	99.1%

Choice driven by... data availability!

Photo ©Martin Schoeller

Photo ©Martin Schoeller

Photo ©Martin Schoeller

 ◆ Find the combination of
■ Time shift
■ Elbow slope threshold (⇒ Penalty)
■ Tolerance window
That maximizes distinction between well correlated and badly correlated data

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed
 - Target and a few
 - Prefixes
 - (one comprising the Target)
- for all probe/CP
- pairs (in the same AS)
- we get...

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

Higher cf values

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

Higher *cf* values

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

Higher *cf* values

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

Higher *cf* values

- Time shift
- Elbow slope threshold
- Tolerance window
- considering a fixed Target and a few **Prefixes** (one comprising the Target) for all probe/CP pairs (in the same AS) we get.

Correlation score

◆ Independent of the specific probe and CP
◆ Higher score ⇒ lower correlation

Correlation score

◆ Independent of the specific probe and CP
◆ Higher score ⇒ lower correlation

Back to Correlation

Correlation score

◆ Independent of the specific probe and CP
 ◆ Higher score ⇒ lower correlation

Time shift, Elbow slope threshold

Correlation factor(s)

Correlation score

Time shift = 60s Elbow slope threshold = 10⁴

- + Time shift = 60s
- + Elbow slope threshold = 10^4
- Tolerance window = 5 mins
 - Based on the rate of RTT measurements

+ Time shift = 60s

- + Elbow slope threshold = 10^4
- Tolerance window = 5 mins
 - Based on the rate of RTT measurements

Good for all Targets and Prefixes!

Measurement ID				
1001	1003	1004	1005	

Measurement ID				
1001	1003	1004	1005	

Path-change: occurrence of $P_1 \rightarrow P_2$ recorded by a CP and matched with an RTT variation seen by a probe in the same AS

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%

Path-change: occurrence of $P_1 \rightarrow P_2$ recorded by a CP and matched with an RTT variation seen by a probe in the same AS

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%

Path-change: occurrence of $P_1 \rightarrow P_2$ recorded by a CP and matched with an RTT variation seen by a probe in the same AS

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%
path-change-pairs with $sign(\Delta RTT_{P_1 \rightarrow P_2}) = -sign(\Delta RTT_{P_2 \rightarrow P_1})$	64.8%	52.1%	43.3%	68.8%

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%
path-change-pairs with $sign(\Delta RTT_{P_1 \rightarrow P_2}) = -sign(\Delta RTT_{P_2 \rightarrow P_1})$	64.8%	52.1%	43.3%	68.8%

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%
path-change-pairs with $sign(\Delta RTT_{P_1 \rightarrow P_2}) = -sign(\Delta RTT_{P_2 \rightarrow P_1})$	64.8%	52.1%	43.3%	68.8%
path-changes with $sign(\Delta ASpathlen) = sign(\Delta RTT)$	76.4%	57.4%	64%	80.6%

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%
path-change-pairs with $sign(\Delta RTT_{P_1 \rightarrow P_2}) = -sign(\Delta RTT_{P_2 \rightarrow P_1})$	64.8%	52.1%	43.3%	68.8%
path-changes with $sign(\Delta ASpathlen) = sign(\Delta RTT)$	76.4%	57.4%	64%	80.6%

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%
path-change-pairs with $sign(\Delta RTT_{P_1 \rightarrow P_2}) = -sign(\Delta RTT_{P_2 \rightarrow P_1})$	64.8%	52.1%	43.3%	68.8%
path-changes with $sign(\Delta ASpathlen) = sign(\Delta RTT)$	76.4%	57.4%	64%	80.6%
path-changes with $\sigma_{\Delta RTT}/\overline{\Delta RTT} < 0.25$ (~same BGP change \Rightarrow same RTT change)	73.6%	75.5%	95.5%	93.1%

	Measurement ID			
	1001	1003	1004	1005
path-changes with consistent $sign(\Delta RTT)$	87.5%	78.6%	72.5%	86.4%
path-change-pairs with $sign(\Delta RTT_{P_1 \rightarrow P_2}) = -sign(\Delta RTT_{P_2 \rightarrow P_1})$	64.8%	52.1%	43.3%	68.8%
path-changes with $sign(\Delta ASpathlen) = sign(\Delta RTT)$	76.4%	57.4%	64%	80.6%
path-changes with $\sigma_{\Delta RTT}/\overline{\Delta RTT} < 0.25$ (~same BGP change \Rightarrow same RTT change)	73.6%	75.5%	95.5%	93.1%

Traceroutes from RIPE Atlas
 One every 20 mins

◆ Traceroutes from RIPE Atlas
 ■ One every 20 mins
 ◆ IP→AS mapping
 ■ Based on RIPE RIS BGP tables

◆ Traceroutes from RIPE Atlas
 ■ One every 20 mins
 ◆ IP→AS mapping
 ■ Based on RIPE RIS BGP tables
 ◆ BGP-RTT → BGP-traceroute

Traceroutes from RIPE Atlas One every 20 mins + IP \rightarrow AS mapping Based on RIPE RIS BGP tables \bullet BGP-RTT \rightarrow BGP-traceroute Results: correlated BGP-RTT data (high cf) For well

there is evidence of correlation even with traceroute data

◆ Traceroutes from RIPE Atlas
■ One every 20 mins
◆ IP→AS mapping
■ Based on RIPE RIS BGP tables
◆ BGP-RTT → BGP-traceroute
◆ Results:

For badly correlated BGP-RTT data (low cf) there is no evidence of correlation even with traceroute data

Further Possible Analyses

Further Possible Analyses

Recall from the motivations

Further Possible Analyses

Recall from the motivations Equivalence classes

Further Possible Analyses

Recall from the motivations Equivalence classes

Placement of delay-sensitive services

Further Possible Analyses

Recall from the motivations Equivalence classes

Placement of delay-sensitive servicesTroubleshooting

Conclusions

Conclusions

Automated Investigation of the Impact of BGP Routing Changes on Network Delay Variations

Conclusions

Automated Investigation of the Impact of BGP Routing Changes on Network Delay Variations

Application (+validation) & statistics

Other data sources/vantage points/targets

 Other data sources/vantage points/targets
 Other statistical methods
 Consider noise, gaps, patterns

Other data sources/vantage points/targets
Other statistical methods
Consider noise, gaps, patterns
Unreachability in BGP, gap in RTT: ok!

 Other data sources/vantage points/targets Other statistical methods Consider noise, gaps, patterns • Unreachability in BGP, gap in RTT: ok! 1-way performance indicators in a controlled environment 🛽 Wi-Fi

 Other data sources/vantage points/targets Other statistical methods Consider noise, gaps, patterns • Unreachability in BGP, gap in RTT: ok! 1-way performance indicators in a controlled environment 🛽 Wi-Fi Further analyses

