
TRE
R O M A

DIA

Università degli Studi di Roma Tre
Dipartimento di Informatica e Automazione

Via della Vasca Navale, 79 – 00146 Roma, Italy

How to Extract BGP Peering

Information from the Internet

Routing Registry

G. Di Battista1, T. Refice1, and M. Rimondini1

RT-DIA-108-2006 Maggio 2006

(1) Dipartimento di Informatica e Automazione,
Università di Roma Tre,

Rome, Italy.
{gdb,refice,rimondin}@dia.uniroma3.it

Work partially supported by European Commission - Fet Open project DELIS - Dynam-

ically Evolving Large Scale Information Systems - Contract no 001907 and by the Miur

Project ALGO-NEXT: Algorithms for the Next Generation Internet and Web: Method-

ologies, Design, and Experiments.

ABSTRACT

We describe an on-line service, and its underlying methodology, designed to extract peer-
ing information from the Internet Routing Registry. Both the method and the service are
based on: a consistency manager for integrating information across different registries,
an RPSL analyzer that extracts peering specifications from RPSL objects, and a peering
classifier that aims at understanding to what extent such peering specifications actually
contribute to fully determine a peering. A peering graph is built with different levels of
confidence. We compare the effectiveness of our method with the state of the art. The
comparison puts in evidence the quality of the proposed method.

2

1 Introduction

The Internet Routing Registry (IRR) [12, 7] is a large distributed repository of informa-
tion, containing the routing policies of many of the networks that compose the Internet.
The IRR was born about ten years ago with the main purpose to promote stability, con-
sistency, and security of the global Internet routing. It consists of several registries that
are maintained on a voluntary basis. The routing policies are expressed in the Routing
Policy Specification Language (RPSL) [14, 20, 15]. The IRR can be used by operators
to look up peering agreements, to study optimal policies, and to (possibly automatically)
configure routers.

There is a wide discussion about the current role of the IRR [24]. Some people consider
it outdated and almost useless. Others have put in evidence its importance to understand
the Internet routing and that it contains unique and significant information. Anyway,
it is undeniable that the IRR keeps on being fed by many operators, that useful tools
have been developed to deal with the IRR (see, e.g., IRRToolSet [3]), and that several
research issues on the Internet routing are, at least partially, based on the content of the
IRR. However, as pointed out in [24], extracting information from the IRR is far from
trivial: the policies written in RPSL can be quite complex, the level of accuracy of the
descriptions largely varies, and, also because of its distributed nature, the IRR contains
many inconsistencies [18].

The purpose of this paper is to describe an on-line service, and its underlying method-
ology, that extracts peering information from the IRR. We believe that our service can
have beneficial effects both for operators and for several research projects.

For example, the RIPE offers an IRR consistency check service (RRCC) [23, 11] that
aims at detecting unregistered peerings. It verifies whether a peering that can be inferred
from operational routing data is also described, in some form, into the IRR. We will show
later that currently the RIPE service extracts peerings from the IRR in a way that is
much less accurate than the one presented in this paper. Actually, the need of a better
analysis of the content of the IRR is pointed out by the RIPE itself that considers this as
a long term goal [11].

On the research side, Mahadevan et al. [19] presented a comparison of several charac-
teristics of the AS-level topologies built on the basis of different data sources, including
the IRR. They also proposed a metric to characterize such topologies. Zhang et al. [25]
derived an AS-level topology combining IRR data with BGP routing information collected
from multiple sources, such as RouteViews [6], looking glasses, and route servers. They
showed that the data from the RIPE registry reveal topology information which cannot
be found in other sources. Siganos et al. [24] developed a tool, called Nemecis [5], that
checks the correctness of IRR data and their consistency with respect to BGP routing ta-
ble information. They argued that 28% of ASes have both correct and consistent policies
and that RIPE is by far the most accurate registry. Carmignani et al. [16] presented a
service for the visualization of IRR data. We shall compare the level of accuracy of the
methods for extracting peerings from the IRR used in the above papers with respect to
ours.

The main results presented in this paper can be summarized as follows.

• We describe a method and a on-line service to extract peering relationships from
the IRR. Both the method and the service are based on: a consistency manager for

3

integrating information across different registries, an RPSL analyzer that extracts
peering specifications from RPSL objects, and a peering classifier that aims at un-
derstanding to what extent such peering specifications actually contribute to fully
determine a peering. A peering graph is built with different levels of confidence.

• We prove the effectiveness of our method by showing that it allows to discover many
more peerings than the state of the art.

• We provide an implementation of our method as an on-line service, available at
http://tocai.dia.uniroma3.it/~irr_analysis.

• As a side effect, our study highlights how the different RPSL constructions are
actually used to specify peerings.

The paper is organized as follows. Section 2 provides an overview of the IRR and of
RPSL. In Section 3 we present our methodology and the system we developed to extract
peering information from RPSL data. We use our system to analyze the data set specified
in Section 4. The problems arising from the use of several registries are faced in Section 5.
We explain in Section 6 how the peerings are discovered. Section 7 shows how to build a
topology based on the data we extract. A quantitative comparison with the state of the
art is done in Section 8. Future work is described in Section 9.

2 Background

The Internet is divided into tens of thousands of administrative domains called Au-

tonomous Systems (AS), each usually adopting a unique routing protocol and consis-
tent routing policies. An AS is identified by a number. The Border Gateway Protocol

(BGP) [21, 22] is the routing protocol used to exchange reachability information between
ASes. BGP allows to define complex routing policies that affect the propagation of BGP
announcements. Two ASes that exchange routing information using BGP are said to have
a peering between them; the ASes which have a peering with an AS A are termed peerers

of A.
There are many publicly available registries that describe both the allocation of In-

ternet resources and BGP routing policies. The Regional Internet Registries [17] (e.g.,
RIPE [9], ARIN [1]) are in charge of maintaining information over wide geographic re-
gions. The Local Internet Registries (e.g., VERIO [13], LEVEL3 [4]) describe the policies
of the customers of a specific ISP. Taken together, all these registries form the Internet

Routing Registry (IRR). The main purpose of the IRR is to support a consistent global
configuration of routing policies. It is also possible to automatically create BGP filters
and router configurations from registry information by using tools such as IRRToolSet [3].

The registration and maintenance of routing policies are performed on a voluntary
basis by network operators, who may register such policies at one or more registries. As
a consequence, information therein may be incorrect, incomplete, or outdated. Indeed,
some large ISPs and Internet Exchange Points rely on the IRR for route filtering and
do not allow their customers to participate in BGP routing unless they document their
routing policies in a registry.

The routing policies stored in the IRR are described using the Routing Policy Specifi-

cation Language (RPSL) [14, 20] or its more recent variant RPSLng [15], which introduces

4

support to both multicast and IPv6. RPSL is an object-oriented language that defines
13 classes of objects. Routing policies are described in the import, export, and default

attributes of aut-num objects. In turn, aut-nums may reference other objects that con-
tribute to the specification of the policies, such as as-sets and peering-sets.

What follows is a portion of an RPSL aut-num object from the RIPE registry which
describes the routing policies of AS137 (last updated 08/30/00). The portion of the
import (export) attribute following the from (to) keyword is a very simple example of
peering specification. The object indicates that AS137 accepts any route sent to it by
AS20965 and by AS1299 and propagates to AS1299 all the routes originated by ASes
belonging to the as-set named AS-GARR (an as-set is an RPSL object that specifies
a set of ASes). This implies that AS137 has a peering with AS20965 and AS1299.

aut-num: AS137

import: from AS20965 action pref=100;

from AS1299 action pref=100;

accept ANY

[...]

export: to AS1299 announce AS-GARR

[...]

changed: noc@garr.it 20000830

source: RIPE

In our service we make use of Peval, a low level policy evaluation tool conceived
to write router configuration generators. Peval is part of the Internet Routing Registry

Toolset (IRRToolSet) [3] suite. Peval takes as input an RPSL expression and evaluates it
by applying RPSL set operators (AND, OR, NOT) and by expanding as-sets, route-sets,
and AS numbers into the corresponding sets of prefixes. Alternatively, Peval can stop
the expansion at the level of ASes. We access the IRR data also through the Internet

Routing Registry Daemon (IRRd) [2], a freely available stand-alone IRR database server
supporting both RPSL and RPSLng.

3 An IRR Peering Extraction Service

Our method for extracting peerings has been implemented and is available as an on-line
service at http://tocai.dia.uniroma3.it/~irr_analysis. The service produces, on a
daily basis: (i) General statistics on the IRR (number of objects defined in each registry,
amount of overlapping information between registries, etc.). (ii) A set of pairs of ASes,
corresponding to peering relationships extracted from the IRR. Each pair is labeled with
information about the context where it has been found, like the type of policy and the
registry. The architecture of the service is composed by the following main blocks.

Basic Info Registry Analyzer : provides preliminary information on the registries.
For example, it computes the number of aut-nums and as-sets inside each registry.
Also, it computes the “amount of overlap” between pairs of registries. Further, it
deals with the evolution over time of registries, measuring the number of everyday
updates. Such basic information is useful for giving a correct interpretation of the
results obtained by using the service.

5

Inter-Registry Consistency Manager : starting from a set of registries that, consid-
ered as a whole, may contain inconsistent information, constructs a purged new
consistent version of the IRR. RPSL objects with the same key appearing in differ-
ent registries are compared. A choice is done relying on the timestamp of the last
change and in terms of the semantics of the attributes.

RPSL Peering Specification Analyzer : extracts from the IRR the peering relation-
ships between ASes. This is done by analyzing the body of RPSL objects. The
relationships extracted in this phase are candidate peerings for the subsequent elab-
oration. In this step we also evaluate the current usage of the RPSL syntax con-
structions for expressing peerings. This block exploits IRRd and Peval.

Peering Classifier : classifies the computed candidate peerings according to their rela-
tive matchings in order to understand to what extent they contribute to fully specify
a peering. The output of this step is a peering graph, that can be constructed with
different levels of confidence.

The above blocks will be detailed in the following sections.

4 Data Set

The registry data we use throughout this paper has been downloaded from [10, 8] on
03/31/06. At that time there were 68 registries available for download, which are listed in
Table 1. The registries are sorted according to their size in terms of number of aut-num
objects registered inside them (2nd column). Void registries are omitted.

ripe 11468 92% host 10 90% reach 2 50%
apnic 3299 84% ottix 9 33% nestegg 2 100%
radb 2695 77% csas 9 100% gw 2 100%
arin 555 41% rogers 8 100% bendtel 2 50%
verio 498 42% risq 8 100% univali 1 100%
dodnic 254 11% crc 8 62% soundinternet 1 100%
altdb 249 63% deru 7 0% panix 1 0%
savvis 180 75% sprint 6 16% openface 1 100%
epoch 137 100% bcnet 5 60% koren 1 100%
level3 126 40% vdn 4 25% gts 1 100%
bell 74 98% rgnet 4 100% gt 1 100%
aoltw 53 3% mto 4 25% fastvibe 1 100%
jpirr 43 34% easynet 4 100% eicat 1 100%
sinet 28 10% digitalrealm 4 100% ebit 1 100%
arcstar 16 6% look 3 100% area151 1 100%
chtr 11 0% retina 2 50%

Table 1: aut-num in the registries before and after resolving inter-registry inconsistencies.

Table 2 indicates the level of overlapping between the largest registries. For each pair
of registries (Ri1 , Ri2) the table provides the number of aut-num objects that are regis-

6

tered both in Ri1 and in Ri2 . The main diagonal (Ri, Ri) reports the count of aut-nums
appearing in registry Ri only.

apnic arin radb ripe verio
apnic 2688 1 423 19 113
arin 1 463 37 7 14
radb 423 37 2037 50 45
ripe 19 7 50 11238 23
verio 113 14 45 23 310

Table 2: Overlapping aut-nums between registries.

Figure 1 gives an idea of the amount of work of the operators on the IRR over time.
Namely, it shows the daily percentage of size variation of the RIPE registry (that is
by far the most popular) over the period 11/14/05–04/26/06. The plot shows that the
RIPE registry keeps on being updated on a regular basis and that it grows of about 2%
per month. Our reference date (arrow in the plot) has been selected to be one with an
average number of updates.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

11
/1

4/
20

05

11
/2

1/
20

05

11
/2

8/
20

05

12
/0

5/
20

05

12
/1

2/
20

05

12
/1

9/
20

05

12
/2

6/
20

05

01
/0

2/
20

06

01
/0

9/
20

06

01
/1

6/
20

06

01
/2

3/
20

06

01
/3

0/
20

06

02
/0

6/
20

06

02
/1

3/
20

06

02
/2

0/
20

06

02
/2

7/
20

06

03
/0

6/
20

06

03
/1

3/
20

06

03
/2

0/
20

06

03
/2

7/
20

06

04
/0

3/
20

06

04
/1

0/
20

06

04
/1

7/
20

06

04
/2

4/
20

06

% of variation in size (RIPE)

Figure 1: Daily growth of the RIPE registry.

5 Integrating Registries

RFC 2622 [14] considers the IRR system as a whole. However, the IRR is composed by
several registries, and the same object may be defined in many of them. For example, in
our data set, AS2510 is registered both in APNIC and in JPIRR. Of course, the presence
of multiple definitions of the same object can lead to inconsistencies. Our Inter-Registry
Consistency Manager takes care of resolving them. It takes as input a set of registries and
processes them in order to build a new repository where each RPSL object is defined only

7

once. Whenever it detects for a certain RPSL object the presence of multiple definitions
(possibly coming from different registries), it examines all the definitions in order to
determine which of them contains the most significant information. Such definition is
kept in the final repository, while all the others are discarded. In what follows, a triple
(x;y;z) represents a number of aut-nums, as-sets, peering-sets, respectively. In our
data set we have (19,800;7,798;149) overall definitions. Among them, (18,735;7,478;149)
are unique. Hence, potential inconsistencies affect at most (1,065;300;0) objects.

If an RPSL object is defined multiple times, the most informative definition is se-
lected. We call stub object an aut-num object which misses information about BGP
policies or a set object which misses the specification of the set members (consider that
some attributes of RPSL objects are optional). Operators sometimes use stub objects as
“placeholders” which can be referred to inside other parties’ BGP policies. Our data set
contains (3,133;206;11) stub definitions. If we detect that an object appears in more than
one registry, we discard its stub instances. Since stub objects do not provide useful data
about the existence of peerings, this does not cause any loss of information.

However, it may still be the case that several registries contain non-stub instances
of a single RPSL object. If this happens, we select the instance with the most recent
update timestamp, that is contained in the changed attribute. After removing the stub
definitions and selecting the most recent timestamp, the potential inconsistencies affect
at most (44;77;0) objects. Note that, even if the changed attribute is optional, in our
data set there is only one definition that misses the timestamp over 2,271,446 objects in
the IRR.

Yet, if there are (at least) two instances with the same most recent date, we select the
definition belonging to the registry with highest rank. We rank the registries according to
their size. This choice is somehow arbitrary. However, a registry with a higher number of
objects often provides more reliable information than the others. Also, as shown above,
the choice impacts very few objects. Last, we have inspected the objects that have
multiple definitions with the most recent date and discovered that in most cases their
definitions coincide. Of course, other rankings could be applied without impacting the
general structure of the method.

The third column of Table 1 shows the percentage of the remaining aut-num objects
per registry after running the Inter-Registry Consistency Manager. It is interesting to
observe that RIPE has the highest absolute number and the highest percentage among
the top 5 registries.

6 Discovering Peerings through RPSL Analysis

In this section we detail the procedure we apply to extract peering information from
RPSL data. As already stated in Section 2, peering specifications only appear in the
[mp-]import, [mp-]export, and [mp-]default attributes of aut-num objects. Hence,
aut-nums are the starting points of the peering extraction.

What follows is a fragment (25 lines, ASX1-ASX13 represent ASes) of RPSL code that
puts in evidence many of the problems encountered while discovering peerings in the IRR.
We now show how to extract from this fragment the peerers of ASX5.

8

1. peering-set: ASX1:PRNG-Y1 4. peering-set: PRNG-Y2

2. peering: PRNG-Y2 5. peering: ASX7

3. peering: ASX6

6. as-set: ASX1:AS-Z1 9. as-set: ASX2:AS-Z2

7. members: ASX8, ASX9 10. members: ASX2, ASX4

8. mbrs-by-ref: MNTR-ASX1

11. aut-num: ASX10

12. member-of: ASX1:AS-Z1

13. mnt-by: MNTR-ASX1

14. aut-num: ASX5

15. import: { from ASX2:AS-Z2 accept 100.0.0.0/8;

16. } refine {

17. from ASX1 ASX2 accept 100.1.0.0/16;

18. } except {

19. from ASX3 accept 100.1.1.0/24;}

20. export: to ASX1:PRNG-Y1

21. to ASX1:AS-Z1 except ASX9

22. announce 100.1.1.0/24

23. mp-export: to ASX11 at 2001::1 announce 2001::/48

24. default: to ASX12 action pref=10

25. default: to ASX13 100.1.1.1 at 100.1.1.2

By scanning such a code with the RIPE RRCC scripts [11], the following peerers are
found: ASX1, ASX3, ASX12, ASX13. They come out by examining the lines 17, 19 (import
from), 24, 25 (default to). However, such peerings are neither correct nor complete. On
one hand, the peering between ASX5 and ASX1 does not hold, since the refine semantics
require to compute the intersection between ASX2:AS-Z2 and ASes ASX1, ASX2. On the
other hand, there are peerers of ASX5 that have not been discovered. The peerers ASX6 and
ASX7 can be inferred only by considering all the ASes that belong to the peering-set used
at line 20 and defined at lines 1-5. Further, the peerers ASX8 and ASX10 can be inferred
only by considering all the ASes that belong to the as-set used at line 21 and defined
at lines 6-8,11-13. Finally, the peerers ASX2 and ASX11 are not discovered because the
scripts in [11] support neither multiple peerings appearing in the same from expression,
nor the mp-export attribute. Even if the example is not taken from the real life IRR, it
is a patchwork of pieces of code that are quite common in RPSL objects.

We now show our method for extracting peerings from the RPSL code. We describe
how we build a set of candidate peerings, which we use later to identify peerings.

For each aut-num object A we compute three sets import(A), export(A), and default(A)
of candidate peerers corresponding to the [mp-]import, [mp-]export, and [mp-]default

attributes, respectively. We describe our procedure with reference to the import at-
tributes. The other attributes are processed in a similar way. If A defines a private AS,
it is discarded (it should not be visible in the Internet).

An import attribute may contain a simple or a structured policy. A simple import

policy may contain several peering specifications. In this case import(A) is the union of the

9

candidate peerers corresponding to such peering specifications. If a peering specification
is a peering-set, it is recursively expanded into its members. If it involves information
about routers (e.g., interfaces, inet-rtrs, rtr-sets), they are removed. We keep only AS
names, as-set names, set operators, and the keyword AS-ANY. The resulting expression
is evaluated by using Peval. The output of Peval, consisting of a set of ASes, contributes
to the set of candidate peerers.

A structured policy is a policy that has except and/or refine operators. In this
case, import(A) is still the union of several candidate peerers, but such candidate peerers
are determined in a different way. First, we extract the two arguments of the except

(refine) operator, which are simple policies. Then, we process such policies as above,
thus obtaining two sets of peerers. The union (intersection) of these two sets is our set
of candidate peerers. If there are multiple except/refine expressions, we process them
iteratively.

If an aut-num has many import attributes the above procedure is repeated for each
one.

Finally, private ASes in import(A) are removed.
Some technical issues should be pointed out. For example, a peering specification may

contain the AS-ANY keyword. AS-ANY is either used “alone” (e.g. import from

AS-ANY) or in a structured policy. In the first case one could argue that there is an
AS that has a peering with all the other ASes, which is clearly unrealistic. Hence, in this
case we discard the peering specification. Else, if AS-ANY is used inside a structured policy,
we apply the above algorithm. Last, observe that also inet-rtr objects may contain
information about peerings. However, we do not consider such peerings meaningful unless
they appear in an [mp-]import, [mp-]export, or [mp-]default attribute of an aut-num.

Table 3 shows the incidence of RPSL constructions in the specification of peerings.

aut-num objects Action Uses Peval Occurrences

having a default attribute Supported No 4,851
having an mp-import, an mp-export, or an
mp-default attribute

Supported No 220

having a peering-set object in (*) Supported No 16
having an as-set object in (*) Supported Yes 939
having AS-ANY in (*) without further
specifications

Discarded No 660

having AS-ANY in (*) within a refine ex-
pression

Supported No 24

having an and, an or, a not, or an except

operator in (*)
Supported Yes 5

having a refine or except expression in
(*)

Supported No 29

registering a private AS Discarded No 1

Private ASes in (*) Discarded No 86

inet-rtr objects having peer attributes Discarded No 217

Table 3: Incidence of different RPSL constructions in the specification of peerings.
(*): an [mp-]import, an [mp-]export, or a [mp-]default policy.

10

Table 4 shows the number of peering candidates extracted from the registries.

ripe 342995 bell 974 risq 67 look 16 soundinternet 8
verio 118999 fastvibe 968 sinet 50 eicat 15 gw 8
radb 19309 level3 558 ottix 38 nestegg 14 digitalrealm 8
apnic 13979 epoch 439 jpirr 38 mto 14 univali 6
reach 9402 dodnic 389 csas 36 area151 14 gts 2
savvis 1593 gt 219 retina 22 openface 10 easynet 2
arin 1233 rogers 134 crc 22 bendtel 10 aoltw 2
altdb 1068 host 79 bcnet 18

Table 4: Peering candidates per registry.

7 Constructing a Peering Graph

Once a peering candidate has been extracted from the IRR, it is classified according to
the following two categories. Let A and B be the two ASes participating in the peering

candidate. A
E−→ B represents the fact that A registered an export policy allowing BGP

announcements to be sent to B. In turn, A
I−→ B indicates that B registered a policy

according to which B accepts incoming announcements from A. The peering candidates
are also tagged with the registries from which they have been extracted.

At this point, the peering candidates are used to determine whether there actually
is a peering between two ASes. For example if, for two ASes A and B, we have found

four peering candidates of type A
E−→ B, A

I−→ B, A
E←− B, A

I←− B, it means that
both A and B have fully considered their partner in the peering. Hence, we call this
peering “full peering” (A—B). Of course, there can be cases when the policies describe a

peering only partially. For example, we might have only A
E−→ B, A

I−→ B, in which case
the announcements from A to B are described in the policies, while there is no evidence
of policies allowing announcements from B to A. We call this situation “half peering”

(A
1/2

— B).
Table 5 shows all the possible relationships between two ASes. The column Peering

Type associates a symbol to each possible situation. The column # of Peerings counts
the peerings of each category. The column Single Registry reports the percentage of cases
where all the candidate peerings contributing to the peering are in a single registry. We
detail such percentage for the RIPE registry. A self peering refers to an AS that registers
a peering with itself.

The peering types of Table 5 can be used to construct Internet topologies with different
levels of confidence.

8 Comparison with Previous Work

In order to compare the peerings discovered with our techniques with those discovered
with previous approaches we ran on the same data set we used in our experiments the
piece of code that RIPE uses for peering extraction in the RRCC service [23, 11]. The

11

Policy Type Peering

Type

of

Peerings

Single

Registry

RIPE

OnlyA
E−→ B A

I−→ B A
E←− B A

I←− B√ √ √ √
A ——— B 42,599 96,7% 94.6%

√ √ √
A

3/4¬E
——— B 1,373 84.6% 80.3%

√ √ √
A

3/4¬I
——— B 1,013 88.8% 82.2%

√
A

1/4E
——— B 34,155 100% 7.7%

√
A

1/4I
——— B 13,997 100% 23.7%

√ √
A

1/2

——— B 114 90.4% 57.9%
√ √

A
1/2E

——— B 19 78.9% 47.4%
√ √

A
1/2AB

——— B 143,342 100% 58.4%
√ √

A
1/2I

——— B 51 72.5% 66.7%
Total (including Self-Peerings) 236,663

Self-Peerings 195

Table 5: Classification of the peerings discovered in the IRR

peerings obtained in such a way can be considered analogous to our peering candidates.
By using the RIPE code we obtained 295,587 RRCC peering candidates, that are much
less than our overall amount of 512,758 peering candidates (see Tab. 4). By aggregating
the RRCC peering candidates with the method of Section 7 we obtained 108,521 RRCC

peerings. Again, much less than our 236,663 peerings (see Tab. 5). Further, there are
102 RRCC peerings that we did not find. We discovered that 100 of them involve private
ASes and the remaining 2 come from an incorrect processing of the RRCC code of the
and operator. A comparison with [16] gave similar results.

Comparing our results with the ones presented in [19, 25, 24] is not easy. In fact, they
refer to the versions of the IRR of 04/07/04, 10/24/04, and 06/22/03, respectively. To
the best of our knowledge, no repository is available with IRR historical data. We have a
repository of such data in the interval described in Fig. 1 but, unfortunately, such interval
does not cover the above dates. The authors of [19] provide the peerings extracted from
the IRR on 04/07/04. The work in [25] is supported by a Web site providing several files
of peerings. It is updated on a daily basis, yet the peerings discovered in the IRR are
unavailable. Also the work in [24] has a Web site [5] that allows to interactively explore
the peerings detected on 11/08/05. Again, such date is not covered by our archives.

Hence, only a rough comparison is possible. The topology of [19] reports 56,973
peerings while [25] reports the discovery of 70,222 peerings. Both refer to the RIPE
registry only. Paper [24] reports 127,498 peerings referred to the entire IRR. All such
figures are very far from our results.

9 Future Work

We think that the data contained into the IRR are a unique source of valuable informa-
tion and therefore consider the results presented in this paper as a starting point and a
necessary premise for future research on the topic. The availability of an effective peering

12

extraction technique opens, at least, the following perspectives.
We can study how BGP announcements would spread over the Internet according to

the policies registered in the IRR. This would give a better estimate of the consistency
of IRR data against actual routing and would bring about the opportunity of performing
specific actions on the IRR to improve its consistency. One could even emulate the
entire (or a significant portion of) Internet by configuring virtual routers with the policies
documented in the IRR. We believe this could be of great help in understanding the
behaviour of Internet and in forecasting, preventing, or debugging abnormal or unsafe
routing scenarios.

10 Acknowledgements

We would like to thank Lorenzo Colitti and Guido Drovandi for their precious contribution
to this work.

References

[1] ARIN. http://www.arin.net/.

[2] Internet Routing Registry Daemon (IRRd). http://www.irrd.net/.

[3] Internet Routing Registry Toolset (IRRToolSet).
http://www.isc.org/index.pl?/sw/IRRToolSet/.

[4] LEVEL3. http://rr.level3.net/.

[5] Nemecis. http://ira.cs.ucr.edu:8080/Nemecis/.

[6] Oregon Route Views Project. http://www.routeviews.org/.

[7] Overview of the IRR. http://www.irr.net/docs/overview.html.

[8] RADB database. ftp://ftp.radb.net/radb/dbase/.

[9] RIPE. http://www.ripe.net/.

[10] RIPE database. ftp://ftp.ripe.net/ripe/dbase/.

[11] Routing Registry Consistency Check (RRCC). http://www.ripe.net/projects/rrcc/.

[12] The Internet Routing Registry: History and Purpose.
http://www.ripe.net/db/irr.html.

[13] VERIO. http://rr.verio.net/.

[14] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Kar-
renberg, and M. Terpstra. Routing Policy Specification Language (RPSL). IETF
RFC 2622, June 1999. http://www.ietf.org/rfc/rfc2622.txt.

13

[15] L. Blunk, J. Damas, F. Parent, and A. Robachevsky. Routing Policy Spec-
ification Language next generation (RPSLng). IETF RFC 4012, March 2005.
http://www.ietf.org/rfc/rfc4012.txt.

[16] A. Carmignani, G. Di Battista, W. Didimo, F. Matera, and M. Pizzonia. Visual-
ization of the High Level Structure of the Internet with Hermes. Journal of Graph

Algorithms and Applications, 21(6):53–61, 2002.

[17] D. Karrenberg, G. Ross, P. Wilson, and L. Nobile. Development of the Regional
Internet Registry System. Internet Protocol Journal, 4(4):17–29, 2001.

[18] S. Kerr. RIPE Database Inconsistencies. RIPE Meeting 43, September 2002.
http://www.ripe.net/ripe/meetings/ripe-43/.

[19] P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, K. Claffy,
and A. Vahdat. The Internet AS-Level Topology: Three Data Sources and One
Definitive Metric. ACM SIGCOMM Computer Communication Review, 36:2006,
2006.

[20] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu. Using RPSL in
Practice. IETF RFC 2650, August 1999. http://www.ietf.org/rfc/rfc2650.txt.

[21] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). IETF RFC 1771,
March 1995. http://www.ietf.org/rfc/rfc1771.txt.

[22] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). IETF
RFC 4271, January 2006. http://www.ietf.org/rfc/rfc4271.txt.

[23] J. Schmitz, E. Gunduz, S. Kerr, A. Robachevsky, and J. L. Silva Damas. Rout-
ing Registry Consistency Check (RRCC). RIPE Document 201, December 2001.
ftp://ftp.ripe.net/ripe/docs/ripe-201.txt.

[24] G. Siganos and M. Faloutsos. Analyzing BGP Policies: Methodology and Tool. In
IEEE INFOCOM, March 2004.

[25] B. Zhang, R. Liu, D. Massey, and L. Zhang. Collecting the Internet AS-Level Topol-
ogy. ACM SIGCOMM Computer Communication Review, 35(1):281–311, 2005.

14

