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Motivation

(and a bit of literature)

+ A GR-compliant network...

B . .preserves autonomy of each AS in
configuring local policies
| ...is safe and robust[8]
® . .has a convergence time that is roughly
bounded by a constant [9]
+ Remark:
GR compliance is regarded as a possible
explanation for Internet stability [2]

[8] L. Gao, T. Griffin, J. Rexford. Inherently Safe Backup Routing with BGP. INFOCOM 2001
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+[10

e[11
achieved efficiently

+[12]: a valley-free+acyclic assignment can
be achieved efficiently

+ [13]: distributed detection of the GR
conditions (with known relationships)

Other “"Grail Seekers” =

. relationship inference heuristic
. a valley-free assignment can be
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[11] G. Di Battista, T. Erlebach, A. Hall, M. Patrignani, M. Pizzonia, T. Schank. Computing the
Types of the Relationships between Autonomous Systems. ToN, 2007.

[12] S. Kosub, M.

CAAN 2006.

G. MaaB, H. Taubig. Acyclic Type-of-Relationship Problems on the Internet.

[13] S. Epstein, K. Mattar, I. Matta. Principles of Safe Policy Routing Dynamics. ICNP 2009. 43



>

Problem

GAO-REXFORD-CHECK

Instance: (model of) a BGP
configuration

ICNP 2010 - Oct 7th 44



Problem

GAO-REXFORD-CHECK

Instance: (model of) a BGP
configuration

router bgp 100
!
neighbor 140.222.1.1 route-map FIX-WEIGHT in

neighbor 140.222.1.1 remote-as 1
!

ip as-path access-list 200 permit ~690$
ip as-path access-1list 200 permit #1800
!
route-map FIX-WEIGHT permit 10
match as-path 200
set local-preference 250
set weight200

\_
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Problem

GAO-REXFORD-CHECK

Instance: (model of) a BGP
configuration

Question: Can the network

be partially oriented to a

customer-provider graph

that is GR-compliant?
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1. Polynomial algorithm for
GAO-REXFORD-CHECK

GAO-REXFORD-STRICT-CHECK:

same as GAO-REXFORD-CHECK,
but peers are preferred to
providers

2. NP-hardness of
GAO-REXFORD-STRICT-CHECK

ICNP 2010 - Oct 7th

.O

p
\

—-»

58



|

Models (briefly) =5




>

1 2.
O O
0
© O




Models (briefly) =5

B 2
0\ /9

/Q

0—O

|




|

Models (briefly) =5

1 2
10 9\ /9
/Q
30 €) (4,

210
20

420
430




Models (briefly) =5




Models (briefly) =5

1 2
10 9\ /9
/Q
30 €) (4,

Stable Paths Problem
(SPP) [2]

210
20

420
430

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 34



|

Models (briefly) =5

1 2 3
10 0\ /9

10
20 / \134...
421--- |
o o oo

30 9/ Q 420 e

430 342...
310
Stable Paths Problem
(SPP) [2]

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 55



Models (briefly) =5

1 2 3
10 0\ /9

10
20 / \134...
421--- |
o o oo

30 9/ Q 420 e

430 342...
310
Stable Paths Problem Succinct SPP
(SPP) [2] (SSPP)

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 56



Models (briefly) =5

1 2 3
10 0\ /9

10
20 / \13‘ .
42‘.--- |

0 Q\ /9 0

30 9/ Q 420 e

430 34...
310
Stable Paths Problem Succinct SPP
(SPP) [2] (SSPP)

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 57



Models (briefly) =5

1 2 3
10 0\ /9

10
20 / \134...
421--- |
o o oo

30 9/ Q 420 e

430 342...
310
Stable Paths Problem Succinct SPP
(SPP) [2] (SSPP)

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 58



Models (briefly) =5

1 2 3
10 0\ /9

10
20 / \134...
421--- |
0 9\ /9 0

30 9/ Q 420 e

430 342...
310
Stable Paths Problem Succinct SPP
(SPP) [2] (SSPP)

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 59



Models (briefly) =5

1 2 g
10 0\ /9

10
20 / \134...
421--- |
0 9\ /9 0

30 9/ Q 420 e

430 342...
310
Stable Paths Problem Succinct SPP
(SPP) [2] (SSPP)

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 70



Models (briefly) =5

1 2 g
10 0\ /9

10
20 / \134...
421--- |
0 9\ /9 0

30 9/ Q 420 e

430 342...
310
Stable Paths Problem Succinct SPP
(SPP) [2] (SSPP)

[2] T. G. Griffin, F. B. Shepherd, G. Wilfong. The Stable Paths Problem and Interdomain Routing.
ToN, 2002. 71



1
1o 9\ /9
/Q
30 €) (4,

210
20

420
430

Stable Paths Problem

(SPP) [2]

A\ Size: exponential in |V]

\/ Highly expressive

Models (briefly)

210

O .

421...
o\ e

©

342...

310
Succinct SPP

(SSPP)

Size: polynomial in |V|
Close to real configurations

00

&8
(2502
0

/2



Stable Paths Problem
(SPP) [2]

A\ Size: exponential in |V]
\/ Highly expressive

Models (briefly)

Succinct SPP
(SSPP)

Size: polynomial in |V|
Close to real configurations

/3



Stable Paths Problem unique
(SPP) [2] mapping

by chaining
path fragments

A\ Size: exponential in |V]
\/ Highly expressive

Models (briefly)

Succinct SPP
(SSPP)

Size: polynomial in |V|
Close to real configurations

&8
(2502
0

74



Models (briefly)

Stable Paths Problem unique Succinct SPP
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by chaining
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+ Input: instance of (S)SPP

+ Consider relation <

(u,v) < (u,w) iff u prefers some path starting
with (u, v) to some path starting with (u, w)

take the transitive closure
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+ Input: instance of (S)SPP

+ Consider relation <

(u,v) < (u,w) iff u prefers some path starting
with (u, v) to some path starting with (u, w)
take the transitive closure

interpretation: (u,v) < (u,w) reads
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Approach =5

+ Input: instance of (S)SPP

+ Consider relation <
(u,v) < (u,w) iff u prefers some path starting
with (u, v) to some path starting with (u, w)
take the transitive closure
interpretation: (u,v) < (u,w) reads
(u— w) = (u +— v)

+ Can the input graph be partially oriented to
an acyclic customer-provider graph such that
paths are valley-free and < constraints are
honored?
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Approach

+ Inspired by [12]

® Find a ¥ that

e never appears as an internal node in any paths

e does not have incoming edges
— one must exist in any GR-compliant orientation

® Orient edges away from v
® Recursive call

+ Not that easy due to =< constraints... [

[12] S. Kosub, M. G. MaaB, H. Taubig. Acyclic Type-of-Relationship Problems on the Internet.
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Forced Orientations

+ All edges in H,,, N F,,,

¢ (v —u) and (v« x) € Hyyif
Lyy N Fyy # 0

¢ (v—u) and (u — ) € Hyyif
(U «— w) € Lyy

¢ (v—u) and (u <« x) € Hyyif
J(u — w) € Fy,
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+ All edges in H,,, N F,,,

+ (v —u)and (u« x) € Hy,if
Lyy N Fup # 0

¢ (v —u) and (v ) € Hyy if
J(u «— w) € Ly,

¢ (v—u) and (u < x) € Hyyif
J(u — w) € Fuy
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Forced Orientations =

+ All edges in H,,, N F,,,

¢ (v—u) and (u — ) € Hyyif
LUU ﬂ FU'U # @

¢ (v —u) and (v ) € Hyy if
A(u «— w) € Lyy

¢ (v—u) and (u < x) € Hyyif
J(u — w) € Fy, freeness

by valley
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Recursive
call
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After Recursion

_ . N -
Recursive No valid Ol‘lentétIOI’.]. |
call ® Return “no valid orientation”

+ Otherwise...
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+ Solves GAO-REXFORD-CHECK with < constraints
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About the Algorithm =5

+ Solves GAO-REXFORD-CHECK with < constraints

® edges are oriented only if...
e ...CcOnstrained
e ...this does not introduce conflicts

+ Solves GAO-REXFORD-CHECK

+ Polynomial
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About the Algorithm

+ Solves GAO-REXFORD-CHECK with < constraints

® edges are oriented only if...
e ...CcOnstrained
e ...this does not introduce conflicts

+ Solves GAO-REXFORD-CHECK

r .
steps before recursion
+ Polynomial <

_ Steps after recursion
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About the Algorithm

+ Solves GAO-REXFORD-CHECK with < constraints

® edges are oriented only if...
e ...CcOnstrained
e ...this does not introduce conflicts

+ Solves GAO-REXFORD-CHECK

r .
steps before recursion

+ Polynomial < one vertex removed at each call
_ Steps after recursion
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About the Algorithm

+ Solves GAO-REXFORD-CHECK with < constraints

® edges are oriented only if...
e ...constrained

e ...this does

not introduce conflicts

+ Solves GAO-REXFORD-CHECK

+ Polynomial <

r ]
steps before recursion
one vertex removed at each call

+ Works pretty
model

_ Steps after recursion

much the same in the succinct
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Proof Outline =

+ 3SAT —> GAO-REXFORD-STRICT-CHECK
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Proof Outline =

+ 3SAT —> GAO-REXFORD-STRICT-CHECK

+ 3 satisfying assignment < 3 Gao-Rexford-
Strict-compliant orientation
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Proof Outline o

+ 3SAT —> GAO-REXFORD-STRICT-CHECK

+ 3 satisfying assignment < 3 Gao-Rexford-
Strict-compliant orientation

+ 7 Gao-Rexford-Strict-compliant
orientation: obtained by introducing a
forced cycle
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A The Forcing Configuration [k,
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SC(u, v, w)
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The Variable Gadget =5
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The Variable Gadget =5
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Concluding Remarks
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+ Our contribution (in 4 words):

® feasibility of checking GR
e relevant for routing stability

+ Applicability (hints):
® network simulators
® iBGP, confederations
+ Open Problems:
® backup routing policies?
® complexity of other conditions (no DW, etc.)?
® other models (e.qg., [13])

[13] T. Griffin, J. Sobrinho. Metarouting. SIGCOMM 2005.
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Running Example -
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not traversed by any paths
no incoming edge

(2,1) < (2,0) < (2,4)
(3,2) < (3,5)
(9,2) < (5,3)
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Running Example -

7/

— (2,1) < (2,0) < (2,4)
EIIOO_@@ @ (3? 2) —< (3? 5)
Fio={(1,2),(1,4)} (5,2) < (5,3)
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Running Example -

7 N\o/ \

O (2

_ 2,1) < (2,0) < (2,4)
Hyo={(2,1)} (

|—2200={(2,4)} @ (33 2) = (?’a 5)
Fbo={(2,5),(2,3)} (5,2) =< (5,3)
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Running Example -

_ 2,1) < (2,0) < (2,4)
Hyo={(2,1)} (

L2200={(2/4)} @ (3? 2) ~ (33 5)
F,e={(2,5),(2,3)} (5,2) < (5,3)
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(2,1) < (2,4)
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7AW

(2,1) < (2,4)

e (3,2) < (3.5
F41=1(4,2)} (5,2) < (5,3)
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N7aN

H21=@ (2? 1) ~ (2?4)
L= {(2,4)} (3,2) < (3,5)
Fb={(2,5),(2,3)} (5,2) < (5,3)

ICNP 2010 - Oct 7th 279



|

Running Example

Recursion

NN

(3,2) < (3,5)
(9,2) < (5,3)
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Recursion

INIDZAN

(3,2) < (3,5)
(9,2) < (5,3)
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INIDZAN

H. .=
L:22= %, (3? 2) ~ (3: 5)
F42= (5?2) —< (5? 3)
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Recursion

He, =)
Le,= {(5,3)} (3,2) < (3,9)
Fo={(53)} (5,2) < (5,3)
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FioN L5y # 08

He, =
L= {(5,3)) (3,2) < (3,5)

F5,=1(5,3)} (9,2) < (5,3)
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He, =)
Le,= {(5,3)} (3,2) < (3,9)
Fo={(53)} (5,2) < (5,3)
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Hyp=0
|—3322 {(3,5)} (3,2) < (3,5)
F3,=1(3,3)} (9,2) < (5,3)
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7\

Hay=
|—3322 {(3,5)} (3,2) < (3,5)

F3,=1(3,3)} (9,2) < (5,3)
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Hay=
|—3322 {(3,5)} (3,2) < (3,5)

F3,=1(3,3)} (9,2) < (5,3)
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Hs3=
Ls;= &
F53= @
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Back from recursion

4,
NANAN

©O———
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7N

Back from recursion

N

©O———
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Back from recursion

NN\

©O———

Hy =2
L= &

F41={(412)}
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Back from recursion

NN\

©O———

Hy =& E
L= &

F41={(412)}
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Back from recursion

NN\

©O———

Hy =<
L= 9

F41={(412)}
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7N

Back from recursion

N

©O———

H, =
I—21= {(214)}
F21={(215)l(213)}
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7N

Back from recursion

N

©O———

Hy =2 §
I—21= {(214)}
F21={(215)l(213)}
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7N

Back from recursion

N

©O———

H, =
I—21= {(214)}
F21={(215)l(213)}
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O—0—9O

Ny
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CR
L1p=2

F10={(112)I(114)}
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H, =2 §
L= @
F10={(112)I(114)}

ICNP 2010 - Oct 7th

&8
(2502
0

318



Running Example

Back from recursion

CR
L1p=2

F10={(112)I(114)}
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Back from recursion

7N

0——0O

O——

H20={(211)}
L20={(214)} @
F20={(2I5)I(213)}
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Back from recursion

7N

H,,={(2,1)} @ all the edges in Hy,
L,,={(2,4)} directed towards 2 §

F20={(2I5)I(213)}
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Back from recursion

7N

0——0O

O——

H20={(211)}
L20={(214)} @
F20={(2I5)I(213)}
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(2,1) < (2,0) < (2,4)
(3,2) < (3,5)
(9,2) < (5,3)
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