
UNIVERSITÀ DEGLI STUDI

ROMA
TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Interdomain Routing Policies
in the Internet:

Inference and Analysis

Massimo Rimondini

Interdomain Routing Policies
in the Internet:

Inference and Analysis

A thesis presented by
Massimo Rimondini

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

March 2007

Committee:
Prof. Giuseppe Di Battista (Università degli Studi Roma Tre)

Reviewers:
Prof. Timothy G. Griffin (University of Cambridge)
Prof. Fulvio Risso (Politecnico di Torino)

To my parents, who made it possible
To my advisor, who made me capable of doing it

To my friends, who made it pleasant

Contents

Introduction 3

I Background and Objectives 5

1 Interdomain Routing with BGP 7
1.1 BGP and Internet Routing . 7
1.2 Policy Routing with BGP . 15
1.3 Collecting BGP Routing Information 16

2 Motivations and Objectives 17
2.1 The Need for Topological Information 17
2.2 Analysis of Routing Policies . 18
2.3 How to Experiment Routing by Emulation 20

II Interdomain Topology Discovery Methods 21

Introduction 23

3 Topology Discovery by Active Probing 27
3.1 Background . 28
3.2 Related Work . 29
3.3 Probing Primitives . 31

3.3.1 Withdrawal Observation 33
3.3.2 AS-set Stuffing . 33
3.3.3 Effectiveness and Limitations 33

3.4 Discovery Techniques . 35
3.4.1 Obtaining a Topology 35
3.4.2 Operational and Ethical Impact 38

3.5 Experimental Results . 40
3.5.1 Experimental Setup . 40
3.5.2 Topology Discovery . 41

vii

3.5.3 Impact of Route-flap Dampening 43
3.5.4 Comparison with the Full AS Graph 45

3.6 Conclusions . 46

4 Topology Discovery based on Registry Information 47
4.1 Introduction and Related Work 48
4.2 Background . 50
4.3 A Methodology and a Service to Extract Peerings from the IRR 51

4.3.1 Reference Data Set . 53
4.3.2 Integrating Information from Different Registries 55
4.3.3 Extracting Peering Information from the IRR 56
4.3.4 Classifying the Peerings 60

4.4 Comparison with the State of the Art 60
4.5 Conclusions . 62

III Inference and Analysis of Routing Policies 65

Introduction 67

5 Inference of Commercial Relationships between Autonomous
Systems 69
5.1 Background . 70
5.2 Problem Statement . 71
5.3 Inference Algorithms . 73
5.4 A Methodology to Evaluate the Quality of Inference Algorithms 74

5.4.1 Measuring Differences between Inference Results 75
5.4.2 Extensively Evaluating Inference Algorithms 76

5.5 A Software Suite to Evaluate Inference Algorithms 78
5.6 Experimental Results . 80

5.6.1 Data Sets . 80
5.6.2 Independence of Inference Results from Routing Changes 82
5.6.3 Independence of Inference Results from the Algorithm . 85

5.7 Conclusions . 87

6 Policy-Based Interdomain Traffic Engineering 91
6.1 Background . 92
6.2 Related Work . 93
6.3 Traffic Engineering by Using Prepending 94

6.3.1 Computing Prepending by Integer Linear Programming 97
6.3.2 Computing Prepending by Computational Geometry . . 101

6.4 Remarks about Computational Complexity 104
6.5 Applicability Considerations . 106

viii

6.6 Conclusions . 107

7 Interplay of Routing Policies at different Autonomous Systems 109
7.1 Checking the Feasibility of AS-paths 110
7.2 Revealing the Preference Associated to AS-paths 112
7.3 Instabilities Caused by Routing Policies 116

7.3.1 The Stable Paths Problem Model 118
7.3.2 An Alternative Model to Investigate BGP Routing In-

stabilities . 123
7.4 Conclusions . 131

IV Experimenting Routing by Emulation 133

8 Emulation of Computer Networks with Netkit 135
8.1 An Overview of Emulation Environments 137
8.2 The Architecture of Netkit . 143

8.2.1 User-Mode Linux: a Kernel in the Kernel 147
8.2.2 Networking Support in Netkit 153
8.2.3 A Filesystem of Networking Tools 156
8.2.4 User Interface . 160

8.3 Setting up a Virtual Lab . 166
8.3.1 Defining the Topology 168
8.3.2 Implementing the Topology 169
8.3.3 Setting Network Addresses and Startup Time Services . 171
8.3.4 Configuring Services . 172
8.3.5 Tuning Lab Startup . 174
8.3.6 Testing the Lab . 175

8.4 Managing a Virtual Lab . 177
8.5 A Case Study: Multihoming . 179
8.6 Conclusions . 189

V Conclusions and Bibliography 193

Conclusions 195

Open Problems 199

Bibliography 203

ix

Introduction

C
ommunication systems play nowadays a crucial role in human interactions,
as they enable fast interchange of information for both business and enter-
tainment purposes. The Internet is undoubtedly one of the largest specimen

of this kind of system, providing interconnection and services to billions of users
around the globe. It is its towering size and overwhelming complexity that arose
the interest of lots of people trying to model, understand, and explain the laws of
such a giant network.

One of the challenges that mostly attracted the attention of computer scientists
is the design and operation of algorithms and protocols that make the Internet
self-adjusting with respect to topological changes. Being so huge a system, it is
impracticable to think of manually updating it every time a host joins or leaves
the network. Instead, routing protocols have been conceived and deployed to
automatically propagate the necessary reachability information.

Among the currently running routing protocols, BGP is responsible for ensuring
connectivity between large administrative domains, essentially corresponding to
Internet Service Providers, on a large scale. Devices running BGP do not have to
care about the internal structure of ISPs, as they are in charge of routing traffic
outside of their boundaries. Roughly speaking, BGP may be thought of as having
a similar function to that of phone lines interconnecting a country to another. This
is why BGP is often addressed as an interdomain routing protocol.

A careful understanding of the mechanics of BGP is essential to debug routing
issues and to deploy consistent configurations. However, before digging into the
dynamics of any routing protocol, it is essential to know the scenario it is being
run on. Namely, the topology. Getting an interdomain topology is typically possi-
ble by accessing services around the world that monitor and collect BGP routing
messages. However, this often impedes the disclosure of a substantial portion of
the Internet, as the points of view may be limited. Also, some links may become
active, hence visible, only under particular conditions, which include faults or traffic
shifts. Part II of this thesis proposes methods and algorithms to overcome these
limits and get a more comprehensive map of the administrative domains and their
interconnections. Chapter 3 describes a method to exploit suitably wrapped up
BGP messages to probe for links and domains that are not observable from col-
lected routing data. Chapter 4 presents an alternative approach to the discovery
of interdomain topologies, which is based on the extraction of information from
archives that track the allocation of network resources over the Internet, known as
Routing Registries.

Once the topology on which BGP operates is known, the interest shifts to the
outcome of applying filters and manipulations on the routing messages being is-
sued. By configuring policies that have nothing to do with the pursuance of optimal

routing, BGP allows to limit the spread of routing information and, to a certain
extent, to purposefully alter it. Incorrect usage of policies or simply unexpected in-
teractions among them may lead to abnormal or malfunctioning routing scenarios.
Unfortunately, policies are usually restricted information, whereas they are likely to
carry clues about the internal arrangement of an ISP. Part III contains an extensive
analysis of the usage and effects of routing policies. Chapter 5 presents a survey
and an evaluation of algorithms for inferring the commercial agreements between
ISPs which, being closely related to business matters, is a piece of information
that is hard to track down elsewhere. Chapter 6 introduces a theoretical frame-
work to determine the optimal configuration policies to be deployed in order to
achieve traffic engineering requirements, such as optimal bandwidth usage or cost
sharing. Chapter 7 describes some methods to investigate the interactions among
policies utilized at different ISPs. Probing techniques for attempting to reveal the
policies running on live routers are presented, together with a model that allows
to characterize and study persistent routing oscillations.

Solely introducing models for studying routing phenomena without having a
chance to experiment them may bring about the risk of producing a bunch of poor
founded results that is an end in itself. Part IV describes the emulation environment
Netkit, which enables practicing networking scenarios as it would happen on real
devices. Chapter 8 includes an introduction to the architecture of the environment
and some proposed experiments that better substantiate the effectiveness of an
emulation-based approach for supporting research activity.

Part I opens the thesis with an overview of BGP in Chapter 1 and some motiva-
tional arguments that justify this work in Chapter 2. Part V concludes with some
final argumentations and proposals for future research, and includes an extensive
bibliography.

Part I

Background and Objectives

Chapter 1

Interdomain Routing with BGP

Does the road wind uphill all the way?
Yes, to the very end.
Will the day’s journey take the whole long day?
From morn to night, my friend.

Uphill
Christina Georgina Rossetti

T
he Internet is a huge network of hundreds of millions of nodes that exchange
information with each other. Because of the dynamic nature and giant size
of the network, routing of data within it takes place on two hierarchical

levels. At a lower level, the devices controlled by an Internet Service Provider
have a complete view of the ISP’s own network and are responsible for the routing
of Internet traffic within its boundaries (intradomain routing). At a higher level,
routing between different ISPs (interdomain routing) takes place by means of the
Border Gateway Protocol (BGP).

Since this thesis focuses on the study of interdomain routing, this Chapter
provides an introduction to the fundamental concepts of BGP and to the principles
of its operation.

1.1 BGP and Internet Routing

The Internet is partitioned into tens of thousands of administrative domains
known as Autonomous Systems (ASes). Each AS is identified by an integer

7

1. Interdomain Routing with BGP

number and typically corresponds to an organization, often an Internet Service
Provider (ISP). The devices that make up a single AS are usually distributed
over a wide geographic area (one or more countries). They are typically config-
ured to use a single protocol (Interior Gateway Protocol) for internal routing
and to implement coherent routing policies. Different ASes cooperate with
each other to ensure global reachability of all destinations on the Internet.

The border routers of different ASes exchange routing information by means
of the Border Gateway Protocol (BGP) [252, 100, 203], a de-facto standard
for interdomain routing since the early nineties. A peering session between
two BGP routers, called peerers or peers, is a TCP connection used to send
BGP messages. Observe that peerings can involve routers at arbitrary distance
(multi-hop peering). Since the configuration of BGP peerings affects the prop-
agation of routing information, many studies focusing on BGP are primarily
concerned with the identification of established peerings, a piece of information
that is often referred to as the AS-level topology of the Internet. Most of these
studies rely on the simplifying assumption that each AS is made up of a single
router. This is usually reasonable and is supported by the fact that configu-
rations on the border routers are expected to be consistent, even if there are
exceptions [247]. For this reason, by extension we say that two ASes are peers
or neighbors if there is at least one BGP peering session involving a router of
one AS and a router of the other AS.

BGP peerings may also be configured between different routers of the same
AS. In this case BGP works in the same way (except that some messages are
slightly modified), but we speak of internal BGP or iBGP as opposed to eBGP.

BGP operates by propagating information on the reachability of contiguous
blocks of IP addresses known as prefixes. The AS that owns a certain network,
called origin, is responsible for first sending BGP messages concerning the
corresponding prefix. Reachability information for that prefix is then selectively
propagated from AS to AS depending on the configuration of BGP routers [58,
59, 121]. Traffic addressed to a certain prefix flows through the ASes that
have propagated the corresponding announcement. Because of this mechanism
of operation, in which a router sends to its neighbors information about the
paths to be used to reach different destinations, BGP is classified as path vector
protocol.

Figure 1.1 shows an example of BGP message. Nodes represent ASes and
links represent BGP peerings. We assume that each AS is made up of a single
BGP router. AS1 owns prefix 193.204.0.0/15 and first propagates informa-
tion about it. Each BGP message consists, at least, of the prefix and the
AS-level path to be used to reach it. For example, AS1 sends a BGP message

8

BGP and Internet Routing

1 2 3

1

193.204.0.0/15

2 1

193.204.0.0/15

193.204.0.0/15

BGP messages

Traffic flow to 193.204.0.0/15

Figure 1.1: An example of BGP message. Nodes represent ASes and links
represent BGP peerings. Each AS is supposed to be made up of a single
BGP router. AS1 owns prefix 193.204.0.0/15.

stating that 193.204.0.0/15 can be reached through himself. AS2 propagates
this message after prepending its own AS number to the path: the result-
ing path (2 1) tells AS3 the ASes that must be traversed in order to reach
193.204.0.0/15. Observe that traffic flows the opposite way with respect to
BGP messages.

Routing information is advertised by using BGP messages called updates,
which can be of two different types: announcements advertise the reachability
of a prefix, while withdrawals communicate that a previously announced prefix
has become unreachable. Figure 1.1 shows some examples of announcements.
Information about the prefixes affected by a BGP update are contained in
the Network Layer Reachability Information (NLRI) field of the update. The
sequence of ASes a BGP announcement has passed through is stored in the
AS-path field of the announcement itself. When an AS propagates an an-
nouncement, it prepends its own number to the AS-path contained in the
announcement, so that the AS-path ultimately describes the sequence of ASes
to be traversed in order to reach the destination prefix. A pair consisting of
a prefix and the AS-path to be used to reach it is commonly referred to as a
route. By extension, a route is an entry of the routing table that retains all
the information of the BGP announcement it derives from.

A BGP message also contains other fields called attributes. An attribute
may be:

• Well-known or optional, depending on the expected support by BGP
implementations: all BGP implementations must recognize well-known
attributes, while it is not required that they support all optional at-
tributes.

9

1. Interdomain Routing with BGP

• Mandatory or discretionary, depending on its presence in BGP mes-
sages: mandatory attributes must be included in every update message
that contains NLRI, while discretionary attributes may or may not be
sent in update messages.

• Transitive or non-transitive, depending on the fact that routers retain
the attribute for propagation to other BGP routers or not.

The following is a list of the BGP attributes as documented in RFCs
4271 [252] and 1997 [164]:

• Origin (well-known, mandatory, transitive): it determines whether the
prefix originated inside an AS, has been learned via the older EGP in-
terdomain routing protocol, or is known by some other means. In most
cases, the value of this attribute is 0, meaning that NLRI is interior to
the originating AS.

• AS-path (well-known, mandatory, transitive): it indicates the sequence
of ASes to be traversed in order to reach the prefix. More precisely, an
AS-path is a sequence of segments each of which may be an AS-sequence
or an AS-set. An AS-sequence is an ordered set of ASes, and contains
the ASes that have been traversed by the announcement. AS-sets are un-
ordered sets of ASes that have been introduced in order to support route
aggregation. An AS-set usually contains the set of ASes of the routes
from which the aggregate was formed. In practice, the vast majority of
the AS-paths only contains a single AS-sequence.

• Next Hop (well-known, mandatory, transitive): defines the IP address
of the router that should be used as the next hop to reach the prefix.

• Multi Exit Discriminator (MED) (optional, discretionary, non-transitive):
may be used to influence a router in the choice among multiple exit points
from an AS. The value of the MED is called metric and is only compa-
rable between routes learned from the same neighboring AS.

• Local Preference (well-known, usage depends on the type of an-
nouncement, non-transitive): associates with a route a level of prefer-
ence. If a router has to choose between different available alternatives to
reach a prefix, it selects the one that has been assigned highest preference.
BGP announcements directed to internal peers must be equipped with
a local preference value, so that it can be distributed to all the border

10

BGP and Internet Routing

routers of an AS; BGP announcements going to external peers must not
include this attribute, as it contains information that is only useful for
route selection at the local AS.

• Atomic Aggregate (well-known, discretionary, transitive): the pres-
ence of this attribute in a BGP update means that a router has aggregated
some routes into the one contained in the update itself.

• Aggregator (optional, discretionary, transitive): this attribute con-
tains the AS number and IP address of the router that has performed
route aggregation.

• Community (optional, discretionary, transitive): the main purpose of
the community attribute is to tag a group of destinations that share some
common property. In general, the values of the community attribute
may be assigned arbitrary meanings by network administrators, and a
router may undertake arbitrary actions upon receiving an announcement
tagged with a certain community. Nevertheless, some community values
are well-known and can be used to limit the spread of routing information
by telling routers not to advertise routes that they have learned via BGP
announcements.

BGP routers store information about the prefixes they are aware of inside
a table of routes called Routing Information Base (RIB). Information inside
the RIB is updated according to the following process.

BGP speaking routers it store the BGP announcements they receive inside
a set of routes called Adj-RIBs-In. Entries in the Adj-RIBs-In are then ma-
nipulated according to a set of import policies. This includes both discarding
undesired routes and altering the BGP attributes of those that have not been
filtered out. In this phase, routes that contain the router’s own AS number in
the AS-path are discarded because they would introduce cycles.

The leftover routes undergo a decision process [30] which aims at selecting,
for each prefix, the route that is considered the best alternative to reach it.
The decision process takes into account the values of several attributes of BGP
announcements and is detailed in Figure 1.2. Observe that the selection steps
are such that routes are chosen deterministically (even if this is not always true
– see, e.g., [135]). Nevertheless, not all the implementations of BGP support
all these steps: for example, Quagga [233] stops at step 6. That is, not all the
implementations adopt deterministic selection processes, even if most of the
commercial ones do.

11

1. Interdomain Routing with BGP

Among the available routes to reach a prefix...

0. ...take into consideration only those for which the next
hop is resolvable via an entry of the local router’s for-
warding table that has not been learned via BGP; among
these routes...

1. ...select the route with highest weight (Cisco proprietary);
in case of equal or unavailable weights...

2. ...select the route with highest local preference; in case of
equal local preferences...

3. ...select the route that is configured to be locally origi-
nated by the router; if none is available...

4. ...select the route with shortest AS-path (AS-sets are con-
sidered of length 1, no matter how many ASes are in the
set); if multiple routes with equally long AS-paths are
available...

5. ...select the route with lowest origin type (IGP < EGP <
INCOMPLETE); being equal the origin type...

6. ...select the route with lowest Multi Exit Discriminator;
in case of equal MEDs...

7. ...prefer routes learned via eBGP over those learned via
iBGP; in case multiple eBGP routes are available...

8. ...select the route with lowest IGP metric to the BGP
next hop; in case of equal metrics...

9. ...select the route that has been announced by the router
with lowest router ID.

Figure 1.2: The BGP decision process used to pick the best route among
the different alternatives available to reach a prefix.

12

BGP and Internet Routing

Adj−RIB−In

Loc−RIB

Adj−RIB−OutFIB

Import

policies

Decision

process

announcements

Incoming BGP

Outgoing BGP

announcements

Accepted routes

Best routes

policies

Export

Figure 1.3: Processing steps of BGP announcements at a BGP speaking
router.

The routes selected as best are stored in a set called Loc-RIB. The entries
from the Loc-RIB are injected in the Forwarding Information Base (FIB) of
the router and are actually used to forward packets. At the same time the
entries in the Loc-RIB are processed according to export policies, which may
discard some routes or alter the BGP attributes of the leftover ones. Entries
that have not been filtered by export policies are stored in a set Adj-RIBs-Out.
Routes in the Adj-RIBs-Out are then actually advertised by the router to its
BGP neighbors. Figure 1.3 graphically describes this mechanism for processing
announcements.

Notice that routers do not necessarily implement Adj-RIBs-In, Loc-RIB,
and Adj-RIBs-Out as three separate data structures: this subdivision is only
introduced to simplify the conceptual model.

Also consider that this model describes the processing of a cumulated set

13

1. Interdomain Routing with BGP

of BGP announcements. In the real world, announcements come one after the
other and must be processed separately. What happens is that, whenever a
router receives a BGP announcement concerning a prefix, it updates its own
RIB and runs the BGP decision process to refresh the best alternative to be
used to reach that prefix. If this leads to a change of the route selected as best,
the router sends a BGP announcement containing the new best route to all its
neighbors. Therefore, routers always avoid advertising their full routing table,
but rather announce only those entries for which the best choice has changed.
Of course, new locally originated routes that are manually added to the config-
uration of the router are immediately announced. Withdrawals are only sent
when a route becomes unavailable and there are no other alternatives in the
routing table to reach its prefix. For this reason, network failures often lead to
a potentially lengthy process [40] in which each router selects and announces
alternative paths before eventually giving up and sending a withdrawal.

It may be the case that a BGP router receives announcements about two dif-
ferent prefixes such that one is contained in the other. This happens when one
prefix is a smaller, more specific address block contained in a larger, less spe-
cific aggregate. If the router has to forward a packet to a destination for which
two (or more) such alternatives are available, it uses the one with the most
specific (i.e., longest) netmask. For example, if both 193.204.128.0/17 and
193.204.0.0/15 are contained in the router’s RIB, a packet to 193.204.128.14
is forwarded according to the path of the most specific entry 193.204.128.0/17,
while a packet to 193.204.0.27 is forwarded according to the path specified
in the only available entry 193.204.0.0/15.

In order to reduce the amount of routing traffic and to save the processing
power required to run the BGP decision process, routers implement a timer that
limits the rate at which they send updates. The MinRouteAdvertisementInter-
val (MRAI) timer determines the minimum amount of time that must elapse
between updates concerning a particular set of destinations sent by a BGP
speaker to a peer. This rate limiting procedure applies on a per destination
basis, although the value of the timer is set on a per BGP peer basis.

Moreover, in order to avoid routing instabilities, routers also adopt a flap
dampening mechanism. A flap occurs when a prefix is repeatedly announced
and withdrawn within a short span of time. Since it takes time and several BGP
update messages to propagate these variations over the whole Internet, flapping
routes have a harmful effect on router performance and on interdomain routing
stability and must be suppressed. Dampening is implemented by assigning each
route a penalty value that is increased every time the route flaps. If the penalty
exceeds a threshold, the route is neither accepted from nor announced to other

14

Policy Routing with BGP

peers any more. That is, the route becomes unavailable for a certain interval
of time. During this interval the penalty is gradually decreased until the route
becomes again usable.

1.2 Policy Routing with BGP

BGP allows to apply configuration settings that have nothing to do with the
optimization of routing performance. For example, it is possible to express
political or economical constraints by means of BGP configuration statements.
Of course, it is also possible to take advantage of BGP configurations to imple-
ment some kinds of optimization on network traffic. The actions undertaken
in processing BGP routing messages are called policies. Notice that there can
be separate policies for handling received and sent BGP updates (import and
export policies).

There are several possible usages of routing policies. For example, an ISP
may configure appropriate policies that implement the commercial agreements
it has established with its providers. On the other hand, the routers of an
AS may implement policies that are aimed at achieving traffic engineering
requirements. Other kinds of policies can be such as to ensure resilience in
case of network faults.

In general, routing policies are implemented by leveraging the manipulation
of the attributes of BGP announcements, typically the local preference, the
AS-path, the Multi Exit Discriminator, or the community. One of the most
commonly implemented routing policies is the AS-path prepending, a technique
that deliberately “inflates” the length of an AS-path. An ISP is said to apply
prepending whenever it propagates a BGP announcement by inserting its AS
identifier more than once into the AS-path. For example, in the AS-path
1 2 2 2 3 AS2 has announced a prefix after prepending its own AS number
three times. Since it affects the length of an AS-path, which is one of the
factors that influences the BGP decision process, prepending is an effective way
of attempting to drive the selection of routing paths performed at other ASes.
Notice that this technique does not alter routing information and exploits a
transitive BGP attribute, thus affecting routing choices even at distant ASes.

Other policies may simply make use of filters to throw away routes based
on the AS they are announced from, on the prefixes they contain, or on the
values of the community attribute. For example, a router can be configured
not to accept announcements concerning 193.204.0.0/15 from AS2 because
traffic to 193.204.0.0/15 should be routed through a different AS.

15

1. Interdomain Routing with BGP

1.3 Collecting BGP Routing Information

Because of the complex interactions between policies deployed on routers be-
longing to different ASes, BGP routing poses interesting challenges which are
the subject for several studies. In order to support investigations on the be-
havior of BGP, different services for collecting routing data have been made
available.

Looking glasses are standard BGP routers that are configured to be world-
wide accessible and that allow to perform different kinds of lookups. For exam-
ple, a looking glass can be queried to get its routing table, have details about
a certain route, obtain some statistics about the status of its peerings, or get
information about route flap dampening penalties. Looking glasses can typi-
cally be accessed either via telnet or by using a web form. A comprehensive
list of available looking glasses can be found at [188, 25].

A route collector is a router that continuously receives BGP updates from
a usually large number of neighboring routers called collector peers but never
propagates any routing information nor sends any kind of traffic. The view of
the network provided by a route collector is typically better the more collector
peers it has. The most important projects that provide route collectors are the
RIPE Routing Information Service (RIS) [173] and the University of Oregon
Route Views [198]. At the time of writing, the RIPE RIS provides 14 route
collectors distributed in various locations all over the world and each having
a number of peers that ranges from 4 to 141. Route Views provides 8 route
collectors spread in various locations each having between 1 and 51 collector
peers. Both the RIS and Route Views permanently store and make available
the BGP updates received by the route collectors as well as their BGP routing
tables, which are dumped on a regular basis. Both the RIS and Route Views
also make their route collectors accessible as looking glasses, in order to be able
to query for information about the current state of BGP routing.

In order to further support the study of BGP dynamics, some routers are
configured to act as beacons. A beacon prefix is an unused block of network
addresses which has a well-defined and publicly known schedule for announce-
ment and withdrawal. By extension, a BGP beacon [258] is a router that is
configured to periodically announce and withdraw one or more beacon prefixes
according to the schedule. A few well-known beacons are listed at [172, 254].

16

Chapter 2

Motivations and Objectives

And so Tom awoke and we rose in the dark
And got with our bags and our brushes to work.
Though the morning was cold, Tom was happy and warm
So if all do their duty, they need not fear harm.

The Chimney Sweeper
William Blake

B
y looking at the subject of this work, a clear question might instinctively
arise: why BGP, among the plenty of routing protocols?
It is well known by computer scientists studying networking topics that

BGP, in its current version (4), is prone to the establishment of anomalous routing
conditions, which may affect the reachability of some portions of a network. Besides
this, BGP sometimes exhibits strange or unforeseen behaviors that are still difficult
to capture into a general enough model. This Chapter briefly illustrates these and
some other aspects that nourished the interest in analyzing BGP-related routing
issues in depth, and it provides motivations justifying the studies presented in this
thesis.

2.1 The Need for Topological Information

In order to be able to investigate on the behavior of a routing protocol, it is
essential to know the topology of the network it operates on. This is typically
difficult for different reasons: networks continuously evolve in topology, even

17

2. Motivations and Objectives

because a single user’s PC has switched on or off its wireless card; moreover,
even small local networks usually extend over a rather wide area (one or more
buildings). This makes it unfeasible to think of gathering topological informa-
tion by “on-the-field” inquiry. On the other hand, remotely querying network
devices for their routing tables may not be feasible too, because access to those
devices is very likely to be restricted. Therefore, information is often obtained
by observing the messages exchanged by routing protocols or by sending probes
aimed at discovering live hosts.

Unfortunately, even such an approach may lead to incomplete information.
In the case of BGP, there are several route collectors and looking glasses which
continuously receive and collect BGP updates. Yet, the propagation of these
updates is limited because only the best routes are advertised and because rout-
ing policies impose constraints on the updates that can actually be sent. This
prevents the collectors from observing all the BGP updates. Unfortunately,
there are no available techniques to perform BGP-oriented active probings
aimed at obtaining an AS-level topology, and even getting information out of
static archives like the Internet Routing Registry database [216, 143, 60] is not
an easy task because of the presence of out of date or inconsistent chunks of
data.

Part II of this thesis presents two novel techniques to get AS-level topologi-
cal information. Chapter 3 describes how standard BGP messages can be used
to discover BGP peerings that are not observed during the normal operation
of the Internet. Chapter 4 illustrates a methodology and a tool to accurately
extract BGP peerings from the Internet Routing Registry, by taking into ac-
count and resolving inconsistencies and by digging for the most recent available
information; the methodology we propose can also help in assessing the health
status of the IRR.

2.2 Analysis of Routing Policies

One of the aspects that has arisen most interest while studying interdomain
routing is the effect of deploying different and potentially conflicting sets of
routing policies at different ASes. Part III of this thesis addresses the problem
of getting to know the policies and of studying the outcome of the interplay
between routing policies deployed at different ASes.

An interesting challenge that is dealt with in Chapter 5 is the discovery
of commercial relationships between ASes. This knowledge would provide a
deeper insight into the laws governing routing processes, and would constitute

18

Analysis of Routing Policies

a useful guideline for choosing connection strategies and device configurations.
Unfortunately, information about the established commercial agreements is
kept reserved by the operators, as it is considered critical for the economical
strategies of an ISP. This brings about the need for methodologies to infer
commercial relationships based on solely analyzing routing information. While
some inference algorithms have already been introduced, it is still unclear to
what extent the results they produce are realistic and of practical interest.
Chapter 5 describes a methodology for assessing the quality of inferred rela-
tionships and describes the application of this methodology for the evaluation
of state of the art inference algorithms.

Routing policies are often used as a means to perform traffic engineering.
For example, a multihomed ISP may apply opportune filtering of outgoing
BGP announcements in order to constrain incoming traffic to distribute on
different upstream links. Operators sometimes perform traffic engineering on
a trial-and-error basis, which may require several attempts that alter network
conditions and potentially affect routing stability. Chapter 6 of this thesis
describes theoretical approaches to determine the configuration parameters to
be used to achieve different traffic engineering requirements. The proposed
approaches include an integer linear programming formulation and a method-
ology that exploits a computational geometry model. The two approaches can
be used to compute the optimal amount of prepending to be used in outgoing
BGP announcements in order to achieve requirements ranging from optimal
bandwidth allocation to fair distribution of upstream link costs.

Besides studying the effect of routing policies, it is also very interesting to
determine how routing is influenced by the interplay of policies deployed at
different ASes. Chapter 7 deals with this aspect. In particular, this thesis
introduces a technique for determining whether an arbitrarily chosen AS-path
that is not commonly observed on the Internet is feasible for sending traffic
to a certain destination. A variant of this technique can then be used to de-
termine the level of preference that a BGP router associates with two equally
long AS-paths. Interactions between conflicting routing policies may also lead
to unexpected outcomes such as routing oscillations. Chapter 7 also presents a
model and some properties to determine the characteristics of BGP configura-
tions that are likely to trigger routing instabilities. While this issue has already
been extensively studied in the past, our model extends existing approaches by
taking into account all the possible timings of exchanged BGP messages.

19

2. Motivations and Objectives

2.3 How to Experiment Routing by Emulation

One of the most common needs both for network administrators and for com-
puter scientists studying networking is to experiment with network configu-
rations before actually deploying them on devices. This helps in preventing
trouble from happening on a running network and supports the validation of
theoretical models. Performing experiments for these purposes is not feasible
on a live network, as some tests may involve actions that disrupt connectivity
or affect currently running services. On the other hand, no other devices may
be available to perform the tests on a separate network set up for the purpose.

A possible solution to this problem is to take advantage of emulation.
Part IV provides an overview of existing environments for the emulation of
computer networks and describes in detail Netkit, a lightweight product based
on open source software that allows to experiment networking on a single per-
sonal computer. Chapter 8 describes the architecture of Netkit and shows
how it can be used to easily prepare and package complex network scenarios
that can be easily redistributed for sharing with other people. Netkit is also
equipped with a set of documented and ready to use virtual network scenarios
that allow to immediately experiment with specific case studies. Netkit fully
installs and runs in user space without the need of administrative privileges
and it provides users with a familiar environment consisting of Debian based
virtual Linux boxes as well as widely known routing software and networking
tools. Chapter 8 also presents a sample application of Netkit to the study of
a multihoming configuration, and shows how the environment can be effec-
tively used to point out issues related to the interplay between BGP and IGP
protocols.

20

Part II

Interdomain Topology Discovery
Methods

Introduction

O
ne of the most common ways to model the interaction of different compo-
nents of a real world system is to represent the system itself as a network.
The term network here is to be intended as a data structure that is able

to capture an abstraction of the system components (usually corresponding to the
nodes of the network) and of the information flows they exchange (usually assumed
to traverse the network links). The data structure that best fits such representation
requirements is the graph.

Modelling a system with a graph fits well for various kinds of analysis, depending
on the specific context being considered. However, there is a piece of information
that is common to all contexts and that should be accurately settled in order to
get consistent results: the topology.

Unfortunately, getting topological information that likely reproduces the char-
acteristics of the system being studied may not be easy. This is especially true
in the case of the Internet, because of its huge size and continuously changing
topology. To make things even more challenging, the Internet carries production
traffic that is critical for many applications, which hinders shutting it down to take
an offline snapshot at rest and brings about the need for effective non-intrusive
exploration techniques.

There are several methods that have been proposed in the literature to find out
as most as possible about the topology of the Internet. Depending on the kind of
information they get topological data from, they can be classified into:

• routing protocol based methods: they reconstruct the topology by looking
at information conveyed by routing protocols, as routing messages are known
to purposefully spread topological information;

• traceroute based methods: they rely on the usage of traceroute-like tools
in order to query the network for the paths to reach a meaningful set of
destinations;

23

• registry based methods: they collect data from well known archives of rout-
ing information (Routing Registries [216, 142]), which contents are supposed
to be reasonably aligned with currently adopted routing policies.

Topology discovery methods can also be classified depending on the strategy
adopted for collecting network information:

• passive methods: they rely on the observation of routing information ex-
changed during the normal operation of the network; they are completely
unobtrusive;

• active methods: they deliberately inject suitable information into the net-
work in order to generate routing protocol message exchanges or to solicit
responses by network devices.

Last, regardless of the specific techniques being adopted, topology discovery
methods can be further classified according to the granularity of the topology they
look for:

• interdomain topology discovery methods: they observe BGP routing mes-
sages and attempt to build a topological map representing the connectivity
of the Autonomous Systems;

• intradomain topology discovery methods: they try to reveal a fine-grained
map of the connectivity of routing devices and end systems; they are not
necessarily limited to the topology of a single Autonomous Systems.

Many of the most significant attempts to figure out the structure of the Internet
relied on active traceroute based intradomain discovery approaches. Among them,
it is worth mentioning the CAIDA Skitter project [26, 15, 106, 103, 16, 105, 104]
started in 1998 and the Rocketfuel project [200, 147, 165, 148], dating back to
2002. The goal of Skitter is to obtain connectivity and performance information
on a large scale, while Rocketfuel is more aimed at mapping the topology of single
Internet Service Providers.

Other past works focus on the behavior of the interdomain routing protocol
BGP, which is still a very interesting matter for research. As a preliminary step,
they usually present passive routing protocol based approaches to get an AS-level
topology. The data sources that are mostly exploited for this purpose are the
University of Oregon’s Route Views [198] and RIPE NCC’s Routing Information
Service [173] collection projects. Works in this area [247, 12, 250, 76] attempt to
achieve the highest level of accuracy in the topologies by overcoming the limitations

24

imposed by BGP routing policies on the spread of routing information (see, e.g., [73,
123] and by taking advantage of multiple data collectors in order to get a more
complete view of the Internet (see, e.g., [158, 188]).

There are very few works in the literature that attempt to extract topological
information solely from the Routing Registries [216]. The reluctance in using
this data source is usually ascribed to the scarce overlapping between archived
information and real routing behavior. Therefore, authors have been typically using
Registry data only to complement topologies obtained with other techniques and
to provide some preliminary estimation of the quality of data in the Registries (see,
e.g., [163, 12]). An exception to this trend is the work by Siganos et al. [61], which
digs into data from the Internet Routing Registry and describes a methodology to
extract BGP peerings and routing policies from it.

This part describes two methodologies for discovering interdomain topologies
which further improve the approaches proposed in the literature. Chapter 3 de-
scribes a technique which makes use of standard BGP announcements to reveal
portions of the Internet that are not typically observed in a stable routing state.
The effectiveness of the technique is then proved by experimentation on the live
IPv6 and IPv4 Internet. As opposed to routing data based methods, Chapter 4
presents an improved methodology to extract BGP peering information from the
Internet Routing Registry. Thanks to the accuracy put in processing Registry infor-
mation, the proposed approach is shown to perform significantly better than state
of the art methods. An automatic online service that extracts the peerings on a
daily basis is also presented.

25

Chapter 3

Topology Discovery by Active Probing

What the hammer? What the chain?
In what furnace was thy brain?
What the anvil? What dread grasp
Dare its deadly terrors clasp?

The Tiger
William Blake

D
ue to the distributed nature of BGP, every Autonomous System only has
an extremely partial view of the interdomain topology. However, it would
be invaluable to network operators of an ISP to be able to know which

paths might be traversed by BGP announcements for its prefixes in the presence of
network faults or changes in routing policies. In fact, such knowledge would allow
operators to develop more effective peering strategies, better assess the quality of
their upstream connectivity, and to perform more effective traffic engineering.

This Chapter presents a technique that, by exploiting suitably crafted BGP
messages, allows to discover portions of the interdomain topology of the Internet
which are not typically observable in stable routing states. The probing primitives
presented use standard BGP to influence how the announcements for a given prefix
propagate through the Internet. An AS that originates a given prefix can use
these primitives to discover which ASes and peerings can be traversed by the BGP
announcements for that prefix.

27

3. Topology Discovery by Active Probing

3.1 Background

The BGP protocol is responsible for carrying routing information between dif-
ferent Autonomous Systems. The fundamental principles of its operation, its
mechanisms and messages have already been introduced in Chapter 1. This
Section provides some further details about the contents of BGP messages and
some other preliminary definitions, which will come handy in the description
of the topology discovery technique under examination.

BGP announcements for a particular prefix contain the AS-path for that
prefix, which is the sequence of ASes to be used by traffic to the prefix. The
BGP specification [252] states that AS-paths may be composed of an arbitrary
number of AS-set or AS-sequence elements: the AS-sequence is an ordered
list of ASes, while the AS-set is an unordered set of ASes. In practice, the
vast majority of BGP announcements are composed of a single AS-sequence,
possibly followed by an AS-set.

We say that an AS-path An . . . A2A1, where A1 is the origin AS, is feasible
for a prefix p if the policies of each Ai permit Ai to announce p to Ai+1 with
AS-path Ai . . . A1. Observe that the feasibility of an AS-path for a prefix does
not imply that the AS-path is necessarily visible in the Internet: it only means
that under certain circumstances it may be visible. The set of feasible AS-paths
for a prefix p thus contains all the AS-paths that may be observed for p in the
Internet. We note that the concept of feasible path has also been used in the
literature on the stability of BGP with the name of permitted path (e.g. [191]).
A peering between two ASes P and Q is feasible for p in the direction from P
to Q if there exists at least one feasible path in which P immediately follows Q.
In diagrams we shall represent a feasible peering from P to Q with a directed
arc from P to Q. For example, in Figure 3.1(a) the directed arc between 10566
and 6175 indicates that the policies of AS 10566 permit it to announce the
prefix 2001:a30::/32 to AS 6175.

We name routing state for a prefix p at a given time the set of best routes
to p of each router in the Internet at that time. We empirically say that a
routing state for p is stable if we have observed no BGP updates for p for
a sufficiently large time interval. To obtain (partial) information about the
evolution of the Internet routing state, we may use projects such as the RIPE
NCC Routing Information Service (RIS) [173] and the University of Oregon’s
Route Views Project [198]. They deploy route collectors in specific points
of the Internet to record BGP updates from routers in a number of ASes
which we name collector-peers. Thus, the best routes of each collector-peer
at any given time are known. The RIBs of the collectors and the updates

28

Related Work

they receive are periodically dumped, permanently stored and made publicly
available over the Web. Routing information can also be obtained by querying
looking glasses [188], which are publicly accessible routers that may be queried
for RIBs or other BGP information. Since looking glasses do not store any
information over time, they can effectively be used only to get information in
a stable routing state.

3.2 Related Work

There are several contributions in the literature which describe methodologies
to infer the AS-level topology of the Internet. As already stated in the intro-
duction of this Chapter, some of them rely on sending probe packets in order
to discover the network topology, while others rely on the passive observation
of BGP routing data.

The skitter [26, 15] project makes use of a distributed set of measurement
points known as monitors which use probe packets to discover router level
topologies and collect roundtrip time measurements. The monitors, about 20
at the time of writing [27], periodically send ICMP probe packets to a list of
hundreds of thousands of destinations. The results are merged to obtain a
router-level topology and, by mapping IP addresses to ASes based on informa-
tion gathered from the Oregon Route Views [198] BGP routing table dumps, an
AS-level topology is produced. While this approach ensures that the collected
AS-paths closely match actual network layer routing, it has some drawbacks.
For example, routers may aggregate different prefixes into a larger less specific
prefix, in which case the AS that first announced the prefix cannot be deter-
mined. Moreover, some prefixes may be announced from multiple origins (for
example, when anycast [23] is used). Both these situations can impair IP-to-AS
mapping and bring about distortions in the AS-level topology obtained.

Further refinements to the technique used in skitter have been proposed by
Mao et al. In [256] the authors adopt several methods to improve the qual-
ity of the mapping from IP addresses to ASes: they perform data cleanup
in order to remove the effect of route changes, apply a heuristic to deal with
hidden hops (that is, nodes that do not respond to ICMP probes), exploit
DNS [157] and whois [112] information to resolve unmapped nodes, and try
to single out mismatch patterns in IP-to-AS mapping in order to improve its
quality. They also describe an algorithm to detect Internet Exchange Points,
infrastructures where multiple ISPs meet to exchange traffic and routing infor-
mation and whose presence typically cannot be observed using BGP routing

29

3. Topology Discovery by Active Probing

data. Since mapping IP addresses to AS numbers is a complex task, in [255]
the same authors propose further improvements to their techniques based on a
collection of optimization problems which can be solved efficiently by dynamic
programming, together with an iterative improvement algorithm.

Much work has taken the approach of deducing the AS-level topology from
BGP routing tables, usually those collected and made publicly available by
projects such as Oregon Route Views [198] and the RIS [173]. An early example
is described in [16], which uses the general purpose topology visualization tool
Otter. This approach has been used by a large body of work on topics as
diverse as evaluating the efficiency of BGP [73] and deducing the commercial
relationships between ASes [121, 115, 64].

Subsequent work integrates information from BGP data with those collected
from other sources. Chang et al. [76] augment Oregon Route Views data sets
with information extracted from several looking glasses spread over the Internet
and with AS-level adjacencies described inside the Internet Routing Registry
(IRR) [22, 216]. Dimitropoulos et al. propose a topology discovery methodology
based on the accumulation of AS-path information from BGP updates collected
from Route Views, showing that observation of the network over a period of
time brings about a linear increase of the number of links discovered [250].
The obtained topology retains the power-law behavior [145] which is typical
of topologies built on the basis of BGP table snapshots, and reveals more
links between low and medium-degree nodes, which are likely to be either
backup links or links used for local communication between small ISPs. A
similar approach is adopted by Zhang et al. in [12], in which they accumulate
topological information from BGP updates and extract data from the Internet
Routing Registry. In doing this, they attempt to determine the optimal size
of the time window in which BGP updates should be collected: even if longer
observation periods reveal more links, some of them may become inactive in
the mean time. They show that an appropriate window of observation is about
60 days long.

The primary goal of most of the works mentioned above is to collect a
reasonable topology of the network. Di Battista et al. in [63, 129, 32, 33]
also propose a methodology and a tool (BGPlay) to visualize routing changes.
Based on the integration of BGP data collected from Route Views [198] and the
RIPE NCC Routing Information Service [173], the tool allows to graphically
observe how traffic to a certain AS is routed and how routing paths change
over time.

However, although these works document extremely interesting results that
are essential to our understanding of the interdomain routing system, none

30

Probing Primitives

of them tackles the problem of determining whether a path can actually be
traversed by a BGP announcement.

3.3 Probing Primitives

Unfortunately, despite the wealth of literature on interdomain topology, no
method has been proposed to determine how BGP announcements are actually
propagated. Even recent methods which make use of the passive observation of
BGP dynamics [12, 250] still do not provide comprehensive information on how
a specific prefix is propagated in the Internet and how it might be propagated
in the event of link faults, changes in routing, or different traffic engineering
strategies. This is because existing methods either attempt to discover the
AS-level interconnections of the Internet, ignoring the effect of routing policies,
or limit themselves to studying the paths to a particular destination at a given
instant in time, and thus do not obtain any information on alternate paths
that are permitted by routing policies, such as backup paths.

As an example, Figure 3.1(a) shows what the operators of AS 5397 may
discover about the routing of their IPv6 prefix 2001:a30::/32 at a given time
by querying the publicly available RIPE NCC RIS service [173]. An arrow
from an AS A to an AS B means that an announcement of the specified prefix
was made by A to B. The graph shows that AS 5397’s upstream provider
(AS 15589) propagates the announcement to AS 10566, AS 3320 and AS 33, but
does not show, for example, that AS 15589 is propagating the announcement to
AS 1275 as well. Figure 3.1(b) shows the additional information that AS 5397
may obtain by sending out a single BGP announcement using the techniques
presented in this Chapter. We show in the following that a more thorough
application of our techniques can yield almost three times the number of ASes
and more than seven times the peerings visible using a standard RIS query.

In the following Sections we present our primitives, which are based on
sending BGP updates for a prefix p from an AS Z and observing the effects
using route collectors or looking glasses. While using these primitives, con-
nectivity to p is disrupted; however, p may be a test prefix which does not
carry production traffic. Since the vast majority of routing policies do not
discriminate between different prefixes originating in the same AS based only
on the prefix itself, the results obtained using p will hold for the other prefixes
originated by Z as well.

31

3. Topology Discovery by Active Probing

5397

15589

33 10566 3320

6939 1930 6175 1299 5539 293 31103

6830 209652914 1853 3265 12779 8447 8763 3425 29686

3549 127933333 12859 559 1103 11537

51332575417

5385

(a)

5397

15589

3310566 3320 1275

693919306175 1299 5539293 31103 127025424

6830 20965 4691 291430071 13944 2535818533265 12779 8447 87633425 29686

3549 12793333312859 25005591103 11537

51318084 766032575417

5385

(b)

Figure 3.1: (a) What an operator of AS 5397 may discover about the
routing of its prefix 2001:a30::/32 on Dec 30 2004 at 02:44:00 UTC using
standard routing information services. (b) Additional topology discovered
by sending one BGP announcement including ASes 33, 3320 and 10566 in
an AS-set.

32

Probing Primitives

3.3.1 Withdrawal Observation

The first probing primitive, which we name withdrawal observation, consists
in sending a withdrawal for p and observing all the paths that become visible
during the BGP convergence process. As first noted in [40], the withdrawal of a
prefix causes a potentially lengthy (usually lasting several minutes) convergence
process in which BGP explores alternate paths before concluding that the prefix
is unreachable. Therefore, observation of the BGP updates during a withdrawal
allows us to record the alternate paths which appear during convergence and
are not visible in a stable routing state. We note that the idea of observing
BGP updates to discover alternate paths is not new (see, for example, [250]);
however, while the approach in existing work is that of passive observation, our
primitive involves the purposeful generation of withdrawals in order to observe
alternate paths.

3.3.2 AS-set Stuffing

The second primitive, which we name AS-set stuffing, consists in announcing
p with an AS-path of Z{A1, A2, . . . , An}, where {A1, A2, . . . , An} is an AS-set.
Since a BGP router discards any announcement whose AS-path contains its
own AS number, the ASes Ai will discard the announcement and will not
propagate it to any other ASes. This effectively eliminates the ASes Ai from
the Internet as far as the propagation of p is concerned; we name these ASes
prohibited ASes. The observation of the resulting routing state and, possibly,
of the convergence process, allows us to determine alternate feasible paths for
p that do not contain the prohibited ASes. The use of an AS-set ensures that
the length of the AS-path, which is one of the most important metrics used by
BGP routers in the process of selecting a best route, does not depend on the
number of prohibited ASes.

3.3.3 Effectiveness and Limitations

Despite the fact that withdrawals usually spark a significant number of BGP
updates, which is likely to reveal peerings that are not visible in stable routing
states, what can be seen using withdrawal observation is very hard to antici-
pate, since the peerings discovered depend entirely on the unpredictable order
of BGP announcements. Consequently, a limitation of withdrawal observation
is that it is not possible to perform targeted explorations, which impairs the
use of this primitive for some applications discussed later on in this Chapter.

33

3. Topology Discovery by Active Probing

1
C

Z

A B

D

Figure 3.2: A topology where AS-set stuffing cannot guarantee the dis-
covery of the feasible peering between B and A.

As for AS-set stuffing, it allows to do more than simply observe alternate
paths: it allows us to alter the interdomain routing for p in a stable state.
This has two important advantages. The first is that observing alternate paths
does not require the collection of BGP updates, but may be performed using
any commonly available looking glass, thus greatly increasing the number of
observation points that may be employed. The second is that once the routing
state is altered, other tools may be used to probe network connectivity and
performance, thus allowing “what-if” analyses on Internet performance to be
made.

There are intrinsic limitations to what we may observe using AS-set stuffing
or withdrawal observation. Consider Figure 3.2. In the following we assume
that Z is the origin AS; C1 (and, in the following figures, C2, C3, and C4)
indicates a collector; an edge directed from x to y represents a peering that is
feasible in that direction. In the case of Figure 3.2, the use of AS-set stuffing
does not guarantee that it is possible to observe the peering between B and
A, although it is feasible: we cannot force the observation of the peering in
a stable routing state, because the only probes that can be performed are to
prohibit A and/or B, but in every case the peering will not be visible since
one of its endpoints is prohibited. However, a path such as C1DABZ may
be visible during BGP convergence, depending on the unpredictable order of
updates propagated in the network.

34

Discovery Techniques

3.4 Discovery Techniques

In this Section, we present several applications of the primitives introduced in
Section 3.3.1 and 3.3.2, again considering the case of an AS Z that originates
a prefix p. In the following, we use the concept of feasibility graph, which
represents feasible peerings and how they are topologically related, and is thus
a valuable starting point for further deductions. Given a set S of feasible
paths for a prefix p, we name feasibility graph the directed graph whose nodes
are the ASes and whose arcs are the peerings that appear in the paths of
S. Observe that, because of routing policies, not every path in the feasibility
graph is feasible; however, since every arc in the feasibility graph is feasible,
an arbitrary path P on the feasibility graph may well be feasible even if it is
not in S. We name level of a node X the length of the shortest directed path
from Z to X.

3.4.1 Obtaining a Topology

There are several possible methods to obtain a feasibility graph. The simplest
way is to query the route collectors for p, but the extent of such a graph is
limited, as can be seen in Figure 3.1(a). A more effective approach is to use
withdrawal observation. Although simple, this requires the collection of BGP
updates, and thus does not permit to use looking glasses as observation points.
Furthermore, the peerings discovered depend on the unpredictable order of
BGP updates generated during convergence.

Another approach makes use of AS-set stuffing. By prohibiting a set of
ASes, we may record one or more alternate paths. So, to obtain the most
complete picture possible, the originating AS Z could in theory send 2n an-
nouncements, including in each one an AS-set prohibiting one of the 2n subsets
of the n ASes in the Internet. Such a brute force approach is infeasible both
because the number of ASes that may be included in an AS-set is limited and
because of the long exploration times it would require. Therefore, we adopt the
following strategy: begin with the directed AS graph seen by the route collec-
tors at a certain instant and proceed level by level, starting from level one. For
each level, prohibit all the known ASes in the level. At this point, either there
will be no feasible paths to the collectors, or the announcements will propagate
through new, previously unknown, nodes at the same level. Each new node
and arc found is added to the feasibility graph. If new nodes in the same level
have been found, insert them into the prohibited set; otherwise, empty the set
of prohibited ASes and proceed to the next level. As an example, Figure 3.1(b)

35

3. Topology Discovery by Active Probing

shows the new nodes and arcs discovered starting from the situation in Fig-
ure 3.1(a) by announcing the AS-set {33, 3320, 10566}, which corresponds to
all the known nodes at level two in the initial graph. After every BGP update,
we wait a period of time to allow the network to converge and to limit the
effects of route flap dampening [257]. To observe paths that are not visible in
stable states, we examine all the updates received for p during the convergence
period.

A more formal description of the algorithm is shown in Figure 3.3. We
denote with F the feasibility graph, which is initially empty and is incrementally
constructed during the execution of the algorithm, and with F[lev] the nodes
of level lev in F. We use the same notation for a temporary graph G. We denote
with p the prefix announced by Z. We name this algorithm the level-by-level
exploration algorithm.

We note that this algorithm, in addition to the intrinsic constraints of
AS-set stuffing already discussed in Section 3.3.3, suffers from further limita-
tions. For example, in Fig 3.4, the algorithm does not guarantee that all the
arcs will be discovered. In fact, nodes E and D will perform a choice on the
paths ZAEC2, ZBEC2 (for E) and ZADC3, ZBDC3 (for D) based on their
routing policies, and will therefore make some of the arcs A → D, B → E,
A→ E, and B → D invisible from the collectors. The algorithm then excludes
the nodes A and B on level 1 (it knows them both thanks to collectors C1 and
C4), thus never revealing the invisible arcs.

Another possible algorithm based on the same primitive is as follows: once
all nodes in a level l have been found, process each node in l in turn. For each
one, prohibit all the other nodes in l, then progressively prohibit all visible
nodes in level l+1 until no new nodes in level l+1 are found. Then empty the
set of the prohibited nodes and advance to the next node in l. This approach
overcomes the limitations of level-by-level exploration, but it requires many
more updates and therefore much longer exploration times.

Finally, all these algorithms observe the network using all the route collec-
tors simultaneously. However, in certain topologies, using only one collector at
a time and merging the results at the end would discover more peerings. For
example, in Figure 3.4, exploring the topology separately using level-by-level
exploration, first using only C2 and then only C3, would also reveal the arcs
B → E and A→ D, while exploring the topology using both collectors simul-
taneously might only discover the arcs A→ E and B → D.

36

Discovery Techniques

Obtain initial graph

F = query_route_collectors(p)

Explore one level at a time

lev = 1

while F[lev] not empty:

Progressively prohibit ASes until no

new nodes are found in level lev

newnodes = F[lev]

while newnodes not empty:

Announce AS-set containing all

known nodes at level lev

announce_as_set(F[lev])

wait_for_bgp_convergence()

Query route collectors, merge new

nodes and arcs found into F

previous = F[lev]

G = query_route_collectors(p)

F = merge_graphs(F, G)

newnodes = F[lev] - previous

lev = lev + 1

Figure 3.3: Level-by-level exploration algorithm

E

1 2 3 4

D

BA

Z

C C C C

Figure 3.4: Limitations of the level-by-level exploration algorithm: a
topology in which not all the feasible peerings can be discovered.

37

3. Topology Discovery by Active Probing

3.4.2 Operational and Ethical Impact

In this Section, we discuss the technical and operational factors that may limit
the applicability of our techniques – including their impact on the interdomain
routing infrastructure – and show how they are unlikely to be an issue.

Usage of Large AS-sets

To discover whether our BGP updates might have an operational impact on
the Internet, we examined historical BGP data to determine the incidence of
AS-sets and their sizes in the normal operation of the Internet. The results show
that AS-sets, although rare, are constantly present in today’s Internet. For
example, data from the RIS route collector RRC03 for the month of February
2005 showed that every RIB dump contained between 500 and 700 entries
which originated in an AS-set. The AS-sets observed are usually not very large:
the largest AS-set observed during this period contained 15 ASes. However,
AS-sets of unusual length have been observed before. For example, an AS-set
containing 123 ASes was observed in January 2001 [71], and one containing
124 ASes was observed in June 2002 [96]. We know of no reports of adverse
affects on the network caused by these announcements.

Impact on Network Devices

To determine how routers treat large AS-set, and so see whether our AS-set
stuffing primitive can effectively be used in topology discovery in the real world,
we also performed tests on equipment from popular router manufacturers. The
BGP specification limits the length of an AS-set to 255 ASes, but the limits
posed by commercial router BGP implementations are lower. This was not an
issue in any of the topologies we tested, and should not pose a problem for all
but very largest ISPs with hundreds of peers. Our tests on network equipment
from various vendors showed that they correctly handle long AS-sets. Versions
12.2 and 12.0(17)S of Cisco IOS introduced the bgp maxas-limit command,
which causes the router not to use or propagate announcements whose AS-path
contains more than the configured number of ASes. The default value is 75;
however, irrespective of the value of the setting, tests on certain releases of
IOS showed that the routers would reset the BGP session if they received
an AS-path more than 512 bytes long, i.e., where the total number of ASes
(including both the ASes in the AS-sequence and in the AS-set) is greater than
254. We also tested with a Juniper M7i router running JUNOS 7.0R1.5, which

38

Discovery Techniques

had no problems receiving and propagating AS-sets containing up to 255 ASes,
the maximum length permitted by the BGP packet format.

As the example AS-sets used in our experiments show (see Section 3.5),
such limits do not pose practical problems to our techniques in the topologies
we tested, since the number of nodes involved is generally much lower. Further,
we must take into account the fact that more ASes are added to the path as it
is propagated in the Internet, and therefore our techniques must “leave room”
for propagation, although we note that AS-paths longer than 15 ASes are rare
in today’s Internet [56].

As regards possible impact on router memory, we expect a large AS-set to
consume about 200 extra bytes per prefix. This is negligible compared to the
several megabytes of memory used by a full BGP table; also, since prefixes
used for AS-set stuffing suffer connectivity problems, we expect its use to be
restricted to test prefixes and limited to temporary experiments.

Route Flap Dampening

Another constraint to consider is that posed by route flap dampening, which
limits the propagation of frequent updates for the same prefix. The exact effects
of route flap dampening depend on the topology, but [257] suggests that the
maximum length of time a route can be suppressed by dampening in today’s
Internet is approximately one hour. Therefore, dampening can be avoided by
rate-limiting BGP probes to less than one every hour. Even at this rate, all the
experiments we performed, including level-by-level explorations of nodes up to
four levels away, were completed in a few hours. Rate-limiting the updates
also has the effect of limiting the load placed on routers by the explorations,
although this is negligible in the face of the order of the ∼15,000 updates per
hour seen by Tier-1 routers.

Ethical Issues

One possible concern regarding our techniques is that they might cause oper-
ational problems: an update with a large number of ASes in the AS-set might
cause confusion as to which AS actually originated the update, thus hampering
debugging; and the presence of an AS number in an AS-path might suggest
that that AS was involved in the update even though in fact it was not. How-
ever, we note that the conventional use of AS-sets for route aggregation already
suffers from both these problems. For example, an AS-path of 1 {2, 3, 4} im-
plies that one of AS2, AS3, or AS4 originated the routing information that

39

3. Topology Discovery by Active Probing

generated the update, but does not specify which one. Also, since every BGP
announcement is tied to a particular prefix, the origin of the announcement
can easily be traced by querying public Internet registries. Finally, the BGP
announcements used can be tagged using BGP community attributes [164] to
indicate that they make use of AS-set stuffing, although community values are
not always propagated by the ASes they traverse.

Another possible concern is that our use of AS-sets is not the use intended
by the BGP specification. This is true, but we note that it frequently happens
that protocols designed for a certain purpose are used in ways that the original
designers did not foresee. Examples are Network Address Translation [153],
which uses the TCP and UDP port fields to distinguish between hosts using
private addresses, IP-in-IP tunneling [201], where a layer 3 protocol is carried
by another layer 3 protocol instead of by a data-link layer protocol, and the
use of duplicated TCP acknowledgements to implement fast retransmit and
fast recovery congestion control [133].

Finally, it could be argued that placing the AS number of another AS in
a BGP update should require permission from the AS in question. There
is no technical reason for this; rather, such an action might be perceived as
an improper use of an asset of another organization. We believe that this is
a matter of policy to be discussed in the appropriate fora. Our opinion is
that, since the techniques cause no technical problems, it is only a matter of
determining their cost-benefit ratio. Since our techniques cannot reasonably
be used if the originating AS needs to obtain permission from all the ASes that
are close to it in the Internet topology, we believe that the question is simply
one of deciding whether the techniques are useful for the Internet community
or not.

3.5 Experimental Results

In this Section we describe the experimental setup and discuss the effectiveness
of the prefix propagation discovery strategies and the limitations posed by route
flap dampening. Finally, we evaluate our discovery techniques against more
conventional methods.

3.5.1 Experimental Setup

Due to the innovative nature of our techniques, we first tested them in the IPv6
Internet, in order to limit the extent of any possible problems they might cause:

40

Experimental Results

the IPv6 Internet is smaller than the IPv4 Internet, employs fewer legacy de-
vices, and supports fewer mission-critical services. The IPv6 experiments were
performed between November 2004 and April 2005. Once we were confident of
the reliability and effectiveness of our techniques, we performed more limited
testing on the IPv4 Internet in order to verify how the different topologies and
operational practices in use affect our techniques. These experiments, with
prior warning to various high-profile operational mailing lists [127, 128, 126],
were conducted between June 2005 and July 2005.

All BGP updates were generated using custom software developed by the
authors [31], and the effect of each BGP update sent was observed by means
of the RIS database, which provides BGP data collected in real-time. IPv6
BGP announcements originated in AS 5397 using the prefix 2001:a30::/32,
while IPv4 BGP announcements originated in AS 12654 using the prefixes
84.205.73.0/24 and 84.205.89.0/24. These IPv4 prefixes are reserved for
BGP experiments and are announced by the RIS route collectors, which at the
time of performing the experiments were present in 13 locations around the
world. In order to approximate the situation of a small to medium-sized ISP,
each prefix was announced by one route collector at a time.

3.5.2 Topology Discovery

To evaluate the effectiveness of our topology discovery strategies, we compared
the feasibility graphs they generated to graphs obtained from the route collec-
tors in stable routing states. The results are in Table 3.1.

As can be seen, our techniques observe between 20% and 200% more ASes
and between 110% and 620% more feasible peerings than when active probing
is not used. There is a difference in effectiveness between IPv6 and IPv4, which
we believe to be due to the much more restrictive routing policies employed in
the IPv4 Internet.

Method IPv6 IPv4
ASes Peerings ASes Peerings

Stable state 32 31 24 23
Withdrawal 94 (2.9×) 211 (6.8×) 28 (1.2×) 49 (2.1×)

Level-by-level 97 (3.0×) 222 (7.2×) 29 (1.2×) 55 (2.4×)

Table 3.1: ASes and feasible peerings found by a standard RIS query, by
withdrawal observation, and by level-by-level exploration.

41

3. Topology Discovery by Active Probing

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12

Discovered ASes by level

query
withdrawal

level-by-level

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6 7 8 9 10 11 12

Discovered peerings by level

query
withdrawal

level-by-level

IPv6

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9

Discovered ASes by level

query
withdrawal

level-by-level

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

Discovered peerings by level

query
withdrawal

level-by-level

IPv4
Figure 3.5: ASes and peerings found by a standard RIS query, by with-
drawal observation, and by level-by-level exploration, sorted by level, in
IPv6 and IPv4. Every peering is counted twice, once at the level of one
endpoint and once at the level of the other endpoint.

The results obtained using AS-set stuffing are slightly better than those
produced by withdrawal observation: although they are similar in terms of the
number of nodes and peerings discovered, the topologies discovered are dif-
ferent. The graphs in Figure 3.5 show the level at which the new ASes and
peerings are discovered. As can be seen from the graph, the topology produced
by level-by-level exploration is more concentrated in the lower levels of the
feasibility graph. Since the ASes that were discovered by the two methods are
mostly the same, this means that certain ASes were discovered at a lower level
by level-by-level exploration than by withdrawal observation. Therefore, by
definition of level of a node, the topologies produced by level-by-level explo-
ration are more accurate.

As an example of how AS-set stuffing may be used to discover the peers of

42

Experimental Results

an ISP’s upstream provider, Figure 3.6 shows a stable state feasibility graph
for prefix 84.205.73.0/24 announced from RRC11 and observed at 14:49:59
UTC on July 5 2005. The graph shows that AS 13030 is the only upstream
of the origin AS (AS 12654) and has 9 visible peers. A single announcement
with an AS-path of 12654 {8210, 20932, 286, 13237, 702, 2497, 9044, 1239,
3320} at 14:55:35 UTC allowed the discovery of two previously unknown peers
of AS 13030 which propagate the announcements for the prefix (in black). It
is worth mentioning that a previously performed withdrawal observation had
not discovered either of these ASes as peers of AS 13030.

3.5.3 Impact of Route-flap Dampening

As described in Section 3.4.2, effective use of our discovery strategies requires
that the interval between updates be appropriately determined to avoid the
effects of route-flap dampening. To provide a worst-case estimation of the
effects on dampening of a single BGP update, we sent out withdrawals at
varying time intervals. A single withdrawal typically generates a very large
number of updates due to the path exploration process, thus greatly increasing
the likelihood of dampening.

The first withdrawal was sent in a stable routing state, many hours after the
last previously observed BGP update for the prefix. The second withdrawal
was sent after approximately two hours; the third was sent approximately one
hour later, and subsequent withdrawals were sent approximately every half
hour. After each withdrawal, we observed the BGP convergence process in a 15-
minute interval and measured the number of new ASes and peerings discovered
with respect to the previous stable state. The prefix was then reannounced in
preparation for the next withdrawal.

The IPv6 results in Figure 3.7 show that the number of new ASes and
peerings found substantially decreases if the withdrawal is performed less than
one hour after the previous withdrawal. Furthermore, approximately one hour
after the first withdrawal, additional BGP activity for the prefix was observed,
possibly due to paths that were dampened during the withdrawal being un-
suppressed and reused. This suggests that the maximum time that a route is
suppressed in the IPv6 Internet is approximately one hour. These results are
in agreement with the results in [257].

Our IPv4 results, however, suggest that dampening continues to affect rout-
ing for longer than one hour: all subsequent withdrawal observations discovered
about 35-40 new peerings and about 5 new nodes, compared with 43 new peer-
ings and 17 new nodes for the first withdrawal. The results suggest that an

43

3. Topology Discovery by Active Probing

12654

13030

8210 286 13237 6461702 2497 20932 205629044 1239 3320

8434 84688342 16034 5511 513

8220 559

21162914 20965

11537

7575

Figure 3.6: Example of use of our topology discovery techniques: fea-
sibility graph obtained by making a single announcement with AS-path
12654 {8210, 20932, 286, 13237, 702, 2497, 9044, 1239, 3320}. The two
newly-discovered peers of AS 13030 are in black.

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

Time (mins)

New nodes
New edges

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

Time (mins)

New Nodes
New Edges

IPv6 IPv4

Figure 3.7: Effect of route flap dampening in IPv6 and IPv4. The data
points in the graph correspond to withdrawal observations. The x coor-
dinate of each data point represents the instant in which the withdrawal
was sent, and the y coordinates represents the number of new ASes and
peerings that were discovered during the convergence process, with respect
to the preceding announcement.

44

Experimental Results

Date Protocol I W I only W only
2005/02/23 09:54 IPv6 312 158 (51%) 175 21 (13%)
2005/02/25 10:03 IPv6 334 168 (50%) 189 23 (14%)
2005/02/27 15:18 IPv6 302 154 (51%) 174 26 (17%)
2005/07/05 00:00 IPv4 241 61 (25%) 181 1 (2%)

Table 3.2: Comparison between the arcs in the graph W generated by
withdrawal observation and those in the graph I induced by W in the
global AS-graph C.

appropriate interval between updates should be over two hours if the maximum
effectiveness of our topology discovery is to be attained.

3.5.4 Comparison with the Full AS Graph

We also compared the results of our discovery strategies with more conventional
interdomain topology discovery techniques. At a given time, we simultaneously
obtained a feasibility graph W using withdrawal observation and a full AS
graph C for all the prefixes announced on the Internet obtained from RIS
data. We then compared W with the graph I induced by the nodes of W in
C.

The results in Table 3.2 show that the graphs generated by withdrawal
observation only have about 50% of the arcs of the induced graphs for IPv6
and 25% for IPv4. This shows that there is a substantial difference between
existing topology discovery methods and our active probing discovery methods.
The topology captured by the former is much richer; however, the topology
discovered by our techniques consists of only those ASes and peerings that
may actually be traversed by BGP announcements from p (and thus traffic
flows to p) and is thus much more valuable from an ISP’s point of view.

Finally, we note that between 13% and 17% of the arcs in the IPv6 graphs
obtained by withdrawal observation were not visible in the graphs induced in
the full AS graph. The IPv4 figure is only 2%. We suspect that this is due
to the much greater redundancy of the IPv6 network, in which the widespread
use of tunnels makes it easy to create a much denser connectivity mesh.

45

3. Topology Discovery by Active Probing

3.6 Conclusions

This Chapter presents methodologies for discovering how a prefix is propa-
gated in the Internet. Our techniques allow the operators of an ISP to gain a
greater understanding of how its BGP announcements are propagated than by
using existing techniques. For example, it is possible for an ISP to use these
techniques in order to know which paths might be traversed by BGP announce-
ments for its prefixes in the presence of network faults or changes in routing
policies. Extensive experimental results show the effectiveness of our methods
both in the IPv6 and the IPv4 Internet. This has led us to believe that our
techniques can be very useful for operators, while they still have a negligible
impact on routing infrastructure.

The introduction of novel network probing techniques for discovering topolo-
gies also opens some interesting issues:

• The development of effective and computationally inexpensive topology
discovery algorithms using our primitives would improve the ability to
discover larger portions of the Internet with less announcements.

• The formal study of which peerings/ASes can be discovered by our tech-
niques would further support the formulation of efficient discovery algo-
rithms in terms of number of revealed arcs per probe and would give a
better estimate of the limits of our methodologies.

• Combination AS-set stuffing with network measurements (e.g. RTT
probes) would help in evaluating how network performance would be
affected by alternate routing configurations.

46

Chapter 4

Topology Discovery based on Registry
Information

Continuous as the stars that shine
And twinkle on the milky way,
They stretched in never-ending line
Along the margin of a bay:
Ten thousand saw I at a glance,
Tossing their heads in sprightly dance.

Daffodils
William Wordsworth

M
ost of the existing topology discovery techniques rely on the utilization of
information collected during the operation of a routing protocol in a live
network. As regards interdomain topologies, the best known sources of

routing data are the Oregon Route Views project [198] and the RIPE NCC Routing
Information Service [173], which provide BGP routing table dumps and BGP update
messages collected by different monitors over time. The typical approach is to
extract AS-level adjacencies from the AS-paths contained in BGP routing data.
While processing BGP information in this way yields topologies that are aligned
with actual routing policies, its drawback is that some adjacencies are not revealed
by BGP data. This happens because some BGP peerings are only used (and,
therefore, appear in AS-paths) in particular conditions, such as link failures or load
imbalance.

47

4. Topology Discovery based on Registry Information

An effective approach to augment the discovered topology is to combine in-
formation coming from different data sources. This includes both the usage of
different observation points [188], and the integration of different kinds of data.
For example, Zhang et al. [12], Mahadevan et al. [163], and Chang et al. [76],
propose methods to construct topologies based on the combination of collected
BGP data [198, 173], queries to looking glasses [188], and gathering of peering
information from the Internet Routing Registry (IRR) [216, 143, 142]. There is
only one relevant work [60, 61] which attempts to exclusively focus on IRR data.

This Chapter proposes an alternative approach to the discovery of topologies
that only makes use of data from the IRR. The accuracy of information registered
inside the IRR has been considered questionable in the past, but the methodologies
introduced in this Chapter also try to address the problem of getting significant
data out of the Registry. The presented approach purges IRR information and ac-
curately processes it in order to extract BGP peering information from RPSL [22]
descriptions of interdomain policies. The Chapter also describes an online ser-
vice [39] that has been developed in order to automatically perform this extraction
task on a daily basis. The service also allows to get several kinds of statistical
information about the health status of the Registries. Taking advantage of the
service also enables the understanding of how information inside the IRR varies
over time.

4.1 Introduction and Related Work

The Internet Routing Registry (IRR) [216, 143] is a large distributed repository
of information, containing the routing policies of many of the networks that
compose the Internet. The IRR was born about ten years ago with the main
purpose to promote stability, consistency, and security of the global Internet
routing. It consists of several Registries that are maintained on a voluntary
basis. The routing policies are expressed in the Routing Policy Specification
Language (RPSL) [22, 44, 111], a replacement of the older RIPE-81 [196] and
RIPE-181 [195, 184]. The IRR can be used by operators to look up peering
agreements, to study optimal policies, and to (possibly automatically) configure
routers.

There is a wide discussion about the current role of the IRR [60]. Some
people consider it outdated and almost useless. Others have put in evidence
its importance to understand the Internet routing and that it contains unique
and significant information. Anyway, it is undeniable that the IRR keeps on
being fed by many operators, that useful tools have been developed to deal

48

Introduction and Related Work

with the IRR (see, e.g., IRRToolSet [83]), and that several research issues on
the Internet routing are, at least partially, based on the content of the IRR.
However, as pointed out in [60, 61], extracting information from the IRR is far
from trivial: the policies written in RPSL can be quite complex, the level of
accuracy of the descriptions largely varies, and, also because of its distributed
nature, the IRR contains many inconsistencies [180, 28, 42, 170].

In this Chapter we describe an online service [39], and its underlying method-
ology, that extracts peering information from the IRR. We believe that our
service can have beneficial effects both for operators and for several research
projects.

For example, the RIPE offers an IRR consistency check service (RRCC) [99,
174] that aims at detecting unregistered peerings. It verifies whether a peering
that can be inferred from operational routing data is also described, in some
form, into the IRR. We will show later that currently the RIPE service extracts
peerings from the IRR in a way that is much less accurate than the one pre-
sented in this Chapter. Actually, the need of a better analysis of the content
of the IRR is pointed out by the RIPE itself that considers this as a long term
goal [174].

On the research side, Mahadevan et al. [163] presented a comparison of
several characteristics of the AS-level topologies built on the basis of different
data sources, including the IRR. They also proposed a metric to characterize
such topologies. Zhang et al. [12] derived an AS-level topology combining
IRR data with BGP routing information collected from multiple sources, such
as Route Views [198], looking glasses, and route servers. They showed that
the data from the RIPE Registry reveal topology information which cannot be
found in other sources. Siganos et al. [61] developed a tool called Nemecis [223]
that checks the correctness of IRR data and their consistency with respect to
BGP routing table information. They argued that 28% of ASes have both
correct and consistent policies and that RIPE is by far the most accurate
Registry. Carmignani et al. [9] presented a service for the visualization of IRR
data. We shall compare the level of accuracy of the methods for extracting
peerings from the IRR used in the above papers with respect to those presented
in this Chapter.

The methodology we propose to extract peerings from the IRR, and the
service that implements it [39], are based on: a consistency manager for inte-
grating information across different Registries, an RPSL analyzer that extracts
peering specifications from RPSL objects, and a peering classifier that aims at
understanding to what extent these peering specifications actually contribute
to fully determine a peering. A peering graph can therefore be built with differ-

49

4. Topology Discovery based on Registry Information

ent levels of confidence. We prove the effectiveness of our method by showing
that it allows to discover many more peerings than the state of the art. As a
side effect, our study also highlights how the different RPSL constructions are
actually used to specify peerings.

4.2 Background

This Section presents an overview of how the Internet Routing Registry is
structured and what its role is. Some fundamental concepts of the RPSL
language, together with tools to manipulate it, are also introduced.

There are many publicly available Registries that describe both the allo-
cation of Internet resources and BGP routing policies. The Regional Internet
Registries [45] (e.g., RIPE [171], ARIN [11]) are in charge of maintaining in-
formation over wide geographic regions. The Local Internet Registries (e.g.,
VERIO, LEVEL3) describe the policies of the customers of a specific ISP.
Taken together, all these Registries form the Internet Routing Registry (IRR).
The main purpose of the IRR is to support a consistent global configuration
of routing policies. It is also possible to automatically create BGP filters and
router configurations from Registry information by using tools such as IR-
RToolSet [83].

The registration and maintenance of routing policies are performed on a
voluntary basis by network operators, who may register the policies at one or
more Registries. As a consequence, information therein may be incorrect, in-
complete, or outdated. Indeed, some large ISPs and Internet Exchange Points
rely on the IRR for route filtering and do not allow their customers to partici-
pate in BGP routing unless they document their routing policies in a Registry.

The routing policies stored in the IRR are described using the Routing
Policy Specification Language (RPSL) [22, 44] or its more recent variant RP-
SLng [111], which introduces support to both multicast and IPv6. RPSL is
an object-oriented language that defines 13 classes of objects. Routing poli-
cies are described in the import, export, and default attributes of aut-num
objects. In turn, aut-nums may reference other objects that contribute to the
specification of the policies, such as as-sets1and peering-sets.

Figure 4.1 shows a portion of an RPSL aut-num object from the RIPE Reg-
istry which describes the routing policies of AS137 (last updated 08/30/2000).

1RPSL’s as-sets are descriptive data structures that group several aut-nums together;
they must not be confused with BGP’s AS-sets, which are unordered portions of an AS-path
(see Section 1.1).

50

A Methodology and a Service to Extract Peerings from the IRR

aut-num: AS137
import: from AS20965 action pref=100;

from AS1299 action pref=100;
accept ANY

[...]
export: to AS1299 announce AS-GARR
[...]
changed: noc@garr.it 20000830
source: RIPE

Figure 4.1: A fragment of RPSL object.

The portion of the import (export) attribute following the from (to) keyword
is a very simple example of peering specification. The object indicates that
AS137 accepts any route sent to it by AS20965 and by AS1299 and propagates
to AS1299 all the routes originated by ASes belonging to the as-set named
AS-GARR (an as-set is an RPSL object that specifies a set of ASes). This
implies that AS137 has a peering with AS20965 and AS1299.

In our service we make use of Peval, a low level policy evaluation tool
conceived to write router configuration generators. Peval is part of the Internet
Routing Registry Toolset (IRRToolSet) [83] suite. Peval takes as input an RPSL
expression and evaluates it by applying RPSL set operators (AND, OR, NOT) and
by expanding as-sets, route-sets, and AS numbers into the corresponding
sets of prefixes. Alternatively, Peval can stop the expansion at the level of
ASes. We access IRR data also through the Internet Routing Registry Daemon
(IRRd) [217], a freely available stand-alone IRR database server supporting
both RPSL and RPSLng.

4.3 A Methodology and a Service to Extract Peerings
from the IRR

The methodology we use to extract information from the IRR consists of the
following main blocks, each performing specific tasks. The details of each block
are provided in the following Sections.

Basic Information Analyzer: its goal is to provide preliminary information

51

4. Topology Discovery based on Registry Information

on the Registries. For example, it computes the number of aut-nums and
as-sets inside each Registry. Also, it computes the amount of overlap of
information between pairs of Registries. Further, it deals with the evolu-
tion over time of Registries, measuring the number of everyday updates.
Such basic information is useful for giving a correct interpretation of the
results obtained by using the methodology.

Inter-Registry Consistency Manager: the IRR is, in itself, a distributed
system consisting of different nodes (the Registries) that may contain
inconsistent information. Starting from a set of Registries, this block
constructs a purged new consistent version of the IRR. RPSL objects
with the same key appearing in different Registries are compared. A
choice is done relying on the timestamp of the last change and in terms
of the semantics of the attributes.

RPSL Peering Specification Analyzer: this block is responsible for ex-
tracting from the IRR the peering relationships between ASes. This is
done by analyzing the body of RPSL objects. The relationships extracted
in this phase are candidate peerings for the subsequent elaboration. In
this step we also evaluate the current usage of the RPSL syntax construc-
tions for expressing peerings. The implementation of this block exploits
IRRd [217] and Peval [83].

Peering Classifier: this block defines a classification of the computed candi-
date peerings according to their relative matchings in order to understand
to what extent they contribute to fully specify a peering. The output of
this step is a peering graph, that can be constructed with different levels
of confidence.

The methodology has been implemented and is available as an online service
at [39]. Each of the above described blocks roughly corresponds to a component
of the service. The following information is automatically produced by the
service, on a daily basis:

(i). General statistics on the IRR (number of objects defined in each Registry,
amount of overlapping information between Registries, etc.).

(ii). A set of pairs of ASes, corresponding to peering relationships extracted
from the IRR. Each pair is labeled with information about the context
where it has been found, like the type of policy and the Registry.

52

A Methodology and a Service to Extract Peerings from the IRR

(iii). A classification of the extracted peerings according to the way peering
specifications contribute to fully specify the peering.

(iv). Other statistics about the current usage of RPSL constructions by the
operators.

The service can also be queried to obtain statistical information about the
evolution of Registries over time and their health status.

4.3.1 Reference Data Set

The reference Registry data we use throughout this Chapter to show the results
obtained by applying our methodology has been downloaded from [171, 144]
on 03/31/2006. At that time there were 68 Registries available for download,
which are listed in Table 4.2. The Registries are sorted according to their size
in terms of number of aut-num objects registered inside them (2nd column).
We omit void Registries and those which the mirrors failed to collect data from.

Table 4.1 indicates the amount of overlapping between the largest Reg-
istries. For each pair of Registries (Ri1 , Ri2) the table provides the number of
aut-num objects that are registered both in Ri1 and in Ri2 . The main diagonal
(Ri, Ri) reports the count of aut-nums appearing in Registry Ri only.

Figure 4.2 gives an idea of the amount of work of the operators on the
IRR over time. Namely, it shows the daily percentage of size variation of the
RIPE Registry (that is by far the most popular) over the period 11/14/2005–
04/26/2006. The plot shows that the RIPE Registry keeps on being updated
on a regular basis and that it grows of about 2% per month. Our reference
date (arrow in the plot) has been selected to be one with an average number
of updates.

apnic arin radb ripe verio
apnic 2688 1 423 19 113
arin 1 463 37 7 14
radb 423 37 2037 50 45
ripe 19 7 50 11238 23
verio 113 14 45 23 310

Table 4.1: Overlapping aut-nums between Registries.

53

4. Topology Discovery based on Registry Information

ripe 11468 92% host 10 90% reach 2 50%
apnic 3299 84% ottix 9 33% nestegg 2 100%
radb 2695 77% csas 9 100% gw 2 100%
arin 555 41% rogers 8 100% bendtel 2 50%
verio 498 42% risq 8 100% univali 1 100%
dodnic 254 11% crc 8 62% soundinternet 1 100%
altdb 249 63% deru 7 0% panix 1 0%
savvis 180 75% sprint 6 16% openface 1 100%
epoch 137 100% bcnet 5 60% koren 1 100%
level3 126 40% vdn 4 25% gts 1 100%
bell 74 98% rgnet 4 100% gt 1 100%
aoltw 53 3% mto 4 25% fastvibe 1 100%
jpirr 43 34% easynet 4 100% eicat 1 100%
sinet 28 10% digitalrealm 4 100% ebit 1 100%
arcstar 16 6% look 3 100% area151 1 100%
chtr 11 0% retina 2 50%

Table 4.2: aut-num objects in the Registries before and after resolving
inter-Registry inconsistencies.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

11
/1

4/
20

05

11
/2

1/
20

05

11
/2

8/
20

05

12
/0

5/
20

05

12
/1

2/
20

05

12
/1

9/
20

05

12
/2

6/
20

05

01
/0

2/
20

06

01
/0

9/
20

06

01
/1

6/
20

06

01
/2

3/
20

06

01
/3

0/
20

06

02
/0

6/
20

06

02
/1

3/
20

06

02
/2

0/
20

06

02
/2

7/
20

06

03
/0

6/
20

06

03
/1

3/
20

06

03
/2

0/
20

06

03
/2

7/
20

06

04
/0

3/
20

06

04
/1

0/
20

06

04
/1

7/
20

06

04
/2

4/
20

06

% of variation in size (RIPE)

Figure 4.2: Daily growth of the RIPE Registry.

54

A Methodology and a Service to Extract Peerings from the IRR

4.3.2 Integrating Information from Different Registries

RFC 2622 [22] considers the IRR system as a whole. However, the IRR consists
of several Registries, and the same object may be defined in many of them. For
example, in our data set, AS2510 is registered both in APNIC and in JPIRR.
Of course, the presence of multiple definitions of the same object can lead to
inconsistencies. Our Inter-Registry Consistency Manager takes care of resolv-
ing them. It takes as input a set of Registries and processes them in order to
build a new repository where each RPSL object is defined only once. When-
ever it detects for a certain RPSL object the presence of multiple definitions
(possibly coming from different Registries), it examines all the definitions in
order to determine which of them contains the most significant information.
Such definition is kept in the final repository, while all the others are discarded.
In what follows, a triple (x; y; z) represents a number of aut-nums, as-sets,
peering-sets, respectively. In our data set we have (19, 800; 7, 798; 149) over-
all definitions. Among them, (18, 735; 7, 478; 149) are unique. Hence, potential
inconsistencies affect at most (1, 065; 300; 0) objects.

If an RPSL object is defined multiple times, the most informative definition
is selected. We call stub object an aut-num object which misses information
about BGP policies or a set object which misses the specification of the set
members (consider that some attributes of RPSL objects are optional). Op-
erators sometimes use stub objects as “placeholders” which can be referred to
inside other parties’ BGP policies. Our data set contains (3, 133; 206; 11) stub
definitions. If we detect that an object appears in more than one Registry, we
discard its stub instances. Since stub objects do not provide useful data about
the existence of peerings, this does not cause any loss of information.

However, it may still be the case that several Registries contain non-stub
instances of a single RPSL object. If this happens, we select the instance with
the most recent update timestamp, that is contained in the changed attribute.
After removing the stub definitions and selecting the most recent timestamp,
the potential inconsistencies affect at most (44; 77; 0) objects. Note that, even
if the changed attribute is optional, in our data set there is only one definition
that misses the timestamp over 2,271,446 objects in the IRR.

Yet, if there are (at least) two instances with the same most recent date,
we select the definition belonging to the Registry with highest rank. We rank
the Registries according to their size. This choice is somehow arbitrary. How-
ever, a Registry with a higher number of objects often provides more reliable
information than the others. Also, as shown above, the choice impacts very
few objects. Last, we have inspected the objects that have multiple definitions

55

4. Topology Discovery based on Registry Information

with the most recent date and discovered that in most cases their definitions
coincide. Of course, other rankings could be applied without impacting the
general structure of the method.

The third column of Table 4.2 shows the percentage of the remaining
aut-num objects per Registry after running the Inter-Registry Consistency Manager.
It is interesting to observe that RIPE has the highest absolute number and the
highest percentage among the top 5 Registries.

4.3.3 Extracting Peering Information from the IRR

In this Section we detail the procedure we apply to extract BGP peering infor-
mation from RPSL data. As already stated in Section 4.2, peering specifications
only appear in the [mp-]import, [mp-]export, and [mp-]default attributes
of aut-num objects. Hence, aut-nums are the starting points of the peering
extraction.

Figure 4.3 shows a fragment (25 lines, ASX1-ASX13 represent ASes) of RPSL
code that puts in evidence many of the problems encountered while discovering
peerings in the IRR. Even if this example is not taken from the real life IRR, it
is a patchwork of pieces of code that are quite common in RPSL objects. We
now show how to extract from this fragment the peerers of ASX5.

By scanning this code with the RIPE RRCC [174] scripts [234], the following
peerers of ASX5 are found: ASX1, ASX3, ASX12, ASX13. They come out by
examining the lines 17, 19 (import from), 24, 25 (default to). However,
these peerings are neither correct nor complete. On one hand, the peering
between ASX5 and ASX1 does not hold, since the refine semantics require to
compute the intersection between ASX2:AS-Z2 and ASes ASX1, ASX2. On the
other hand, there are peerers of ASX5 that have not been discovered. The
peerers ASX6 and ASX7 can be inferred only by considering all the ASes that
belong to the peering-set used at line 20 and defined at lines 1-5. Further, the
peerers ASX8 and ASX10 can be inferred only by considering all the ASes that
belong to the as-set used at line 21 and defined at lines 6-8,11-13. Finally,
the peerers ASX2 and ASX11 are not discovered because the scripts in [234]
support neither multiple peerings appearing in the same from expression, nor
the mp-export attribute.

We now describe our method for extracting peerings from the RPSL code.
In particular, we describe how we build a set of candidate peerings which we
use later to identify peerings.

For each aut-num object A we compute three sets import(A), export(A),
and default(A) of candidate peerers corresponding to the [mp-]import,

56

A Methodology and a Service to Extract Peerings from the IRR

1. peering-set: ASX1:PRNG-Y1
2. peering: PRNG-Y2
3. peering: ASX6

4. peering-set: PRNG-Y2
5. peering: ASX7

6. as-set: ASX1:AS-Z1
7. members: ASX8, ASX9
8. mbrs-by-ref: MNTR-ASX1

9. as-set: ASX2:AS-Z2
10. members: ASX2, ASX4

11. aut-num: ASX10
12. member-of: ASX1:AS-Z1
13. mnt-by: MNTR-ASX1

14. aut-num: ASX5
15. import: { from ASX2:AS-Z2 accept 100.0.0.0/8;
16. } refine {
17. from ASX1 ASX2 accept 100.1.0.0/16;
18. } except {
19. from ASX3 accept 100.1.1.0/24;}
20. export: to ASX1:PRNG-Y1
21. to ASX1:AS-Z1 except ASX9
22. announce 100.1.1.0/24
23. mp-export: to ASX11 at 2001::1 announce 2001::/48
24. default: to ASX12 action pref=10
25. default: to ASX13 100.1.1.1 at 100.1.1.2

Figure 4.3: Sample fragment of RPSL code pointing out the problems
encountered while extracting BGP peering information from the IRR.

57

4. Topology Discovery based on Registry Information

[mp-]export, and [mp-]default attributes, respectively. We describe our
procedure with reference to the import attributes. The other attributes are
processed in a similar way. If A defines a private AS, it is discarded (it should
not be visible in the Internet).

An import attribute may contain a simple or a structured policy. A sim-
ple import policy may contain several peering specifications. In this case
import(A) is the union of the candidate peerers corresponding to these peer-
ing specifications. If a peering specification is a peering-set, it is recursively
expanded into its members. If it involves information about routers (e.g., in-
terfaces, inet-rtrs, rtr-sets), they are removed. We keep only AS names,
as-set names, set operators, and the keyword AS-ANY. The resulting expres-
sion is evaluated by using Peval [83]. The output of Peval, consisting of a set
of ASes, contributes to the set of candidate peerers.

A structured policy is a policy that has except and/or refine operators.
In this case, import(A) is still the union of several candidate peerers, but
these candidate peerers are determined in a different way. First, we extract
the two arguments of the except (refine) operator, which are simple policies.
Then, we process these policies as above, thus obtaining two sets of peerers.
The union (intersection) of these two sets is our set of candidate peerers. If
there are multiple except/refine expressions, we process them iteratively.
Consider that, as an amendment to RFC 2622 [22], RFC 4012 [111] confirms
that the RPSL specification does not allow the use of nested except/refine
expressions.

If an aut-num has many import attributes the above procedure is repeated
for each one.

Finally, private ASes in import(A) are removed.
Some technical issues are worth being pointed out. For example, a peering

specification may contain the AS-ANY keyword. AS-ANY is either used “alone”
(e.g. import from AS-ANY) or in a structured policy. In the first
case one could argue that there is an AS that has a peering with all the other
ASes, which is clearly unrealistic. Hence, in this case we discard the peer-
ing specification. Else, if AS-ANY is used inside a structured policy, we apply
the above algorithm. Last, observe that also inet-rtr objects may contain
information about peerings. However, we do not consider such peerings mean-
ingful unless they appear in an [mp-]import, [mp-]export, or [mp-]default
attribute of an aut-num.

Table 4.3 shows the actual usage of RPSL constructions in the specification
of peerings. This gives an idea of the syntactical expressions that are most
frequently used by the operators. The second column of Table 4.3 also shows

58

A Methodology and a Service to Extract Peerings from the IRR

aut-num objects Action Uses Peval Occurrences

having a default attribute Supported No 4,851

having an mp-import, an mp-export,
or an mp-default attribute

Supported No 220

having a peering-set object in (*) Supported No 16

having an as-set object in (*) Supported Yes 939

having AS-ANY in (*) without further
specifications

Discarded No 660

having AS-ANY in (*) within a refine

expression
Supported No 24

having an and, an or, a not, or an
except operator in (*)

Supported Yes 5

having a refine or except expression
in (*)

Supported No 29

registering a private AS Discarded No 1

Private ASes in (*) Discarded No 86

inet-rtr objects having peer at-
tributes

Discarded No 217

(*)= “an [mp-]import, an [mp-]export, or a [mp-]default policy”

Table 4.3: Incidence of different RPSL constructions in the specification
of peerings.

ripe 342995 bell 974 risq 67 look 16 soundinternet 8

verio 118999 fastvibe 968 sinet 50 eicat 15 gw 8

radb 19309 level3 558 ottix 38 nestegg 14 digitalrealm 8

apnic 13979 epoch 439 jpirr 38 mto 14 univali 6

reach 9402 dodnic 389 csas 36 area151 14 gts 2

savvis 1593 gt 219 retina 22 openface 10 easynet 2

arin 1233 rogers 134 crc 22 bendtel 10 aoltw 2

altdb 1068 host 79 bcnet 18

Table 4.4: Peering candidates per Registry.

whether the listed constructions are supported by our processing engines or are
simply discarded because they do not provide useful information. The third
column specifies whether the policy evaluator Peval [83] is invoked in resolving
each construction.

Table 4.4 shows the number of peering candidates extracted from the Reg-

59

4. Topology Discovery based on Registry Information

istries with respect to the reference data set of 03/31/2006.

4.3.4 Classifying the Peerings

Once a peering candidate has been extracted from the IRR, it is classified
according to the following two categories. Let A and B be the two ASes
participating in the peering candidate. A

E−→ B represents the fact that A
registered an export policy allowing BGP announcements to be sent to B. In
turn, A

I−→ B indicates that B registered a policy according to which B accepts
incoming announcements from A. The peering candidates are also tagged with
the Registries from which they have been extracted.

At this point, the peering candidates are used to determine whether there
actually is a peering between two ASes. For example if, for two ASes A and B,
we have found four peering candidates of type A

E−→ B, A
I−→ B, A

E←− B,
A

I←− B, it means that both A and B have fully considered their partner in the
peering. Hence, we call this peering “full peering” (A—B). Of course, there
can be cases when the policies describe a peering only partially. For example,
we might have only A

E−→ B, A
I−→ B, in which case the announcements

from A to B are described in the policies, while there is no evidence of policies
allowing announcements from B to A. We call this situation “half peering”

(A
1/2
— B).
Table 4.5 shows all the possible relationships between two ASes (combina-

tions that can be obtained by swapping A and B are omitted). The column
Peering Type associates a symbol to each possible situation. The column #
of Peerings counts the peerings of each category. The column Single Registry
reports the percentage of cases where all the candidate peerings contributing
to the peering are in a single Registry. We detail this percentage for the case
of the RIPE Registry. A “self peering” refers to an AS that registers a peering
with itself.

The peering types of Table 4.5 can be used to construct Internet topologies
with different levels of confidence.

4.4 Comparison with the State of the Art

In order to compare the peerings discovered with our techniques with those
discovered with previous approaches we ran on the same data set we used in
our experiments the piece of code that RIPE uses for peering extraction in

60

Comparison with the State of the Art

P
ol

ic
y

T
y
p
e

P
ee

ri
n
g

T
y
p
e

#
of

P
ee

ri
n
gs

S
in

gl
e

R
eg

is
tr

y
R

IP
E

O
n
ly

A
E −→

B
A

I −→
B

A
E ←
−

B
A

I ←
−

B
√

√
√

√
A

—
—

—
B

42
,5

99
96

,7
%

94
.6

%
√

√
√

A
3
/
4
¬

E
—

—
—

B
1,

37
3

84
.6

%
80

.3
%

√
√

√
A

3
/
4
¬

I
—

—
—

B
1,

01
3

88
.8

%
82

.2
%

√
A

1
/
4
E

—
—

—
B

34
,1

55
10

0%
7.

7%
√

A
1
/
4
I

—
—

—
B

13
,9

97
10

0%
23

.7
%

√
√

A
1
/
2

—
—

—
B

11
4

90
.4

%
57

.9
%

√
√

A
1
/
2
E

—
—

—
B

19
78

.9
%

47
.4

%
√

√
A

1
/
2
A

B
—

—
—

B
14

3,
34

2
10

0%
58

.4
%

√
√

A
1
/
2
I

—
—

—
B

51
72

.5
%

66
.7

%
T
ot

al
(i

nc
lu

di
ng

Se
lf-

P
ee

ri
ng

s)
23

6,
66

3
S
el

f-
P
ee

ri
n
gs

19
5

Table 4.5: Classification of the peerings extracted from the IRR.

61

4. Topology Discovery based on Registry Information

the RRCC service [234]. The peerings obtained in this way can be considered
analogous to our peering candidates. By using the RIPE code we obtained
295,587 RRCC peering candidates, that are much less than our overall amount
of 512,758 peering candidates (see Table 4.4). By aggregating the RRCC peer-
ing candidates with the method of Section 4.3.4 we obtained 108,521 RRCC
peerings. Again, much less than our 236,663 peerings (see Table 4.5). Further,
there are 102 RRCC peerings that we did not find. We discovered that 100
of them involve private ASes and the remaining 2 are due to an incorrect pro-
cessing of the and operator by the RRCC code. A comparison with [9] gave
similar results.

Comparing our results with the ones presented in [163, 12, 60] is not easy.
In fact, they refer to the versions of the IRR of 04/07/2004, 10/24/2004, and
06/22/2003, respectively. To the best of our knowledge, no repository is avail-
able with IRR historical data. We have a repository of such data in the interval
described in Figure 4.2 but, unfortunately, this interval does not cover the above
dates. The authors of [163] provide the peerings extracted from the IRR on
04/07/2004. The work in [12] is supported by a web site providing several files
of peerings. It is updated on a daily basis, yet the peerings discovered in the
IRR are unavailable. Also the work in [60] has a web site [223] that allows to
interactively explore the peerings detected on a specific date (at the time of
writing, 11/08/2005). Again, this date is not covered by our archives.

Hence, only a rough comparison is possible. The topology of [163] reports
56,949 peerings while [12] reports the discovery of 70,222 peerings. Both refer
to the RIPE Registry only. Paper [60] reports 127,498 peerings referred to the
entire IRR. All these figures are very far from our results.

4.5 Conclusions

We think that the data contained into the IRR are a unique source of valu-
able information and therefore the results presented in this Chapter should be
considered as a starting point and a necessary premise for future research on
the topic. The availability of an effective peering extraction technique allows
to retrieve topological information from the IRR with greater accuracy and
opens, at least, the following perspectives.

Comparing the topological data extracted from the IRR with live routing
data would give some hints about the overlapping of information between the
two data sources and would help in assessing the health status of the IRR.

62

Conclusions

It would also be interesting to study how BGP announcements would spread
over the Internet according to the policies registered in the IRR. This would
give a better estimate of the consistency of IRR data against actual routing
and would bring about the opportunity to perform specific actions on the IRR
to improve its consistency.

On a longer term, one could even take advantage of routing policies docu-
mented in the IRR for emulating the entire (or a significant portion of) Internet.
Virtual routers could be configured according to the policies described in RPSL
objects. This could be of great help in understanding the behavior of the In-
ternet and in forecasting, preventing, or debugging abnormal or unsafe routing
scenarios.

63

Part III

Inference and Analysis of
Routing Policies

Introduction

O
ne of the aspects that has attracted most interest in the analysis of in-
terdomain routing phenomena is the study of routing policies. The rea-
son is that routing policies drive many of the behaviors that can be ob-

served on the Internet. In the particular case of BGP, policies can be speci-
fied independently of routing optimization requirements, and this “freedom” of
choice can lead to unexpected interactions among policies specified at different
sites. Therefore, one of the reasons that foster investigations on routing poli-
cies is the need to prevent and, should they happen, to debug routing anoma-
lies [193, 98, 68, 114, 75, 97, 101, 74, 191, 125, 124, 194].

However, there are also other reasons that make it interesting to understand the
effects of routing policies. For example, policies are used to implement the com-
mercial relationships [121] between different Autonomous Systems and, especially
on the part of the ISPs, knowing such relationships would improve the awareness
in setting up new commercial agreements. Also, routing policies are an effective
means to achieve traffic engineering requirements: operators can deploy ad hoc
configurations that influence the way traffic flows access or leave the Autonomous
System they operate.

Unfortunately, routing policies are not publicly available heritage. Since they
often implement ISP strategic choices, they are kept reserved in order not to leak
internal sensible information. This brings about the need to develop algorithms that
are capable of inferring them based on publicly available data. Several solutions
have been proposed in the literature to address the problem of inferring the com-
mercial relationships between Autonomous Systems [248, 187, 115, 122, 260, 121].
Chapter 5 presents a brief survey of these algorithms and describes a methodol-
ogy for the comparative evaluation of their results, which helps in validating and
determining the quality and reliability of the inferred relationships. The method-
ology has been implemented as a publicly available suite of software tools [237],

67

and is used to perform extensive analyses on the results produced by the inference
algorithms.

Among the known interdomain traffic engineering strategies [21, 152, 19, 151,
132], one that has proved to be effective for influencing inbound traffic flows
is based on the prepending technique [175]. Chapter 6 describes a theoretical
framework which helps in determining the optimal amount of prepending to be
used for pursuing different kinds of objectives, from cost sharing to well-balanced
bandwidth allocation.

Chapter 7, which concludes this part, presents possible approaches to the study
of the interaction of interdomain routing policies configured at different sites. In
particular, it presents techniques to determine whether policies allow traffic to a
certain prefix to traverse arbitrarily chosen AS-paths, and to establish how the BGP
selection mechanism assigns a preference to two distinct, equally long, AS-paths.
Issues related to bad interactions of routing policies leading to the occurrence of
routing instabilities are also discussed in this Chapter. In particular, a model is
proposed to capture different kinds of stable configurations.

68

Chapter 5

Inference of Commercial Relationships
between Autonomous Systems

But I was one-and-twenty,
No use to talk to me.

A Shropshire Lad, poem XIII
Alfred Edward Housman

T
he study of interdomain routing policies definitely helps in better under-
standing routing dynamics. This does not only mean focusing on abnormal
scenarios (such as loss of reachability, occurrence of routing oscillations,

etc.) with the purpose of debugging them, but also gaining deeper insight in the
mechanisms that regulate the large scale behavior of the Internet.

There are several people that would gain a benefit from knowing currently
running routing policies. Researchers can take advantage of this knowledge to
address and correct flaws of routing protocols [150]. Operators have an addi-
tional piece of information to debug unstable configurations [98, 193, 97, 191,
125, 194, 124, 190, 192]. Internet Service Providers can better choose their up-
stream providers [246, 58, 59, 160].

Unfortunately, routing policies are kept reserved by network operators because
they are considered as integral part of the economic strategies of an ISP. For
this reason, ad hoc inference algorithms have been developed to deduce them from
publicly available routing information. This Chapter concentrates on algorithms for
the inference of the commercial relationships between Autonomous Systems [248,
187, 115, 122, 260, 121]. The Chapter presents a brief survey of these algorithms

69

5. Inference of Commercial Relationships between Autonomous
Systems

and describes a methodology to assess the quality and reliability of their results
by comparative analysis. A publicly available suite of software tools [237] that
implements the methodology is also described. The methodology and the tools are
exploited to perform extensive analyses on the results produced by the inference
algorithms.

5.1 Background

The administrative authorities controlling each Autonomous System need to
subscribe contracts for obtaining connectivity to the rest of the Internet. These
contracts are commonly (and a bit roughly) referred to as commercial relation-
ships, and can be of different kinds [58, 59, 57].

The BGP protocol allows to impose limits on the spread of routing infor-
mation by means of the configuration elements known as policies. In practice,
commercial relationships are implemented using specific sets of policies. What
follows is a description of the most common commercial relationships [122, 121],
together with the policies that usually implement them:

Customer-provider: ASc is said to be a customer of ASp if ASc pays ASp

for obtaining the connectivity to the rest of Internet. The policies that
are used to export routing information are usually the following:

• ASc exports to ASp its own prefixes and the ones of its customers;
it does not export prefixes coming from its peers or providers;

• ASp exports to ASc its own prefixes and those of its other customers,
peers, and providers.

Peer-peer: Two ASes are said to be peers if they mutually agree to exchange
traffic between their customers, quite often free of charge. The policies
that are used to export routing information are usually the following:

• each of the two ASes exports to the other its own prefixes and the
ones of its customers; it does not export prefixes coming from its
peers or providers.

Understanding the commercial relationships between ASes is useful for sev-
eral reasons. New Internet Service Providers (ISPs) can exploit such knowl-
edge in order to infer the relevance of the other ASes in the Internet and
hence choose better which ASes should be preferred for establishing commer-
cial relationships. Network administrators can obtain useful hints from such

70

Problem Statement

knowledge, because it can help them in avoiding configurations which induce
BGP instabilities [124, 125, 191]. People studying the Internet evolution can
exploit the knowledge of the commercial relationships to better understand the
laws that control the growth of the network.

Explicitly asking the ISPs for the relationships they establish each other is
practically impossible for several reasons: the number of ASes which we may
need to query is incredibly large, such organizations are usually not willing to
reveal information that are sensible for their core business, and it is hard even
to collect the needed contact information. Hence, other procedures must be
introduced, that do not involve the direct contact with the AS organization.

Several algorithms [122, 115, 64, 187] have been proposed in the literature
to infer the commercial relationships between ASes, based on the observation
“from the outside” of their routing behavior. This Section presents a brief
survey of these algorithms.

Inference algorithms usually take as input a list of AS-paths and produce as
output a relationship assignment. The list of AS-paths can be obtained from
one or more telnet looking glass servers [188], which are routers whose BGP
routing tables can be looked at from a remote location. Since routing tables
contain the AS-paths used to reach various destinations, these paths can be
merged into an AS graph. The vertices of this graph are the ASes, and the
edges correspond to adjacencies in the paths. In turn, an adjacency (AS1, AS2)
is evidence of a BGP session between a router of AS1 and a router of AS2.

5.2 Problem Statement

Given an AS graph G, an inference algorithm produces a relationship assign-
ment on it, that is a labelling of each edge of G with the relationship occurring
between its terminal nodes. We will also refer to the labelled graph as an ori-
ented graph. The relationship assignment corresponds to a partial orientation
of the AS graph G: it can be assumed that an undirected edge corresponds
to a peering relationship, while a directed edge is oriented from customer to
provider. Therefore, the terms orientation and relationship assignment will be
used as synonyms in the following.

In [122] has been first observed that, if the commercial relationships are
actually implemented using the policies described in Section 5.1, then all the
AS-paths should have no valleys. Given an oriented AS graph G, an AS-path
p = AS1, AS2, . . . , ASn is valley-free (or valid) if either one of the following
conditions holds:

71

5. Inference of Commercial Relationships between Autonomous
Systems

• p is a sequence AS1, . . . , ASi, 1 ≤ i ≤ n of customer-provider edges, fol-
lowed by a sequence ASi, . . . , ASn of provider-customer edges;

• p is a sequence AS1, . . . , ASi, 1 ≤ i < n of customer-provider edges, fol-
lowed by the peer-peer edge ASi, ASi+1, followed by a sequence
ASi+1, . . . , ASn of provider-customer edges.

In other words, p is valley-free with respect to a given orientation if
provider-customer edges are always followed by provider-customer edges and
peer-peer edges are always followed by provider-customer edges.

All the algorithms which are described here are based on the fundamental
assumption that realistic routing policies would lead to AS-paths all satisfying
the valley-free property.

Figure 5.1 shows some examples of invalid paths. Consider, for example,
path (a), which traverses the provider-customer edge (Pr1, C) and then the
customer-provider edge (C,Pr2). Such a configuration implies that customer
C exports prefixes coming from Pr2 to Pr1 or vice versa. This would result in
customer C offering transit service between Pr1 and Pr2, which is unrealistic.
A similar argument holds for paths (b), (c) and (d).

The valley-free property inspired the formulation of a combinatorial prob-
lem, which has been first introduced in [115] as the Type of Relationship (ToR)
problem: given an AS graph G and a set of AS-paths P , find an orientation (re-
lationship assignment) of some of the edges of G which minimizes the number
of invalid paths in P .

C

21 PrPr

(a) (b)

(c) (d)

Figure 5.1: Examples of invalid (non valley-free) paths.

72

Inference Algorithms

5.3 Inference Algorithms

It has been proved [64, 187] that ToR is NP-complete. Therefore, inference al-
gorithms are either based on heuristics [122, 115] or on less constrained versions
of the same problem [64, 187].

The first heuristic has been proposed by Lixin Gao [122]. This algorithm
starts by computing the degree (number of adjacent ASes) of each AS in the AS
graph and uses it to infer transit relationships. Customer-provider relationships
are then assigned according to the inferred transit relationships. A refined
version of this algorithm allows to also assign peer-peer relationships.

A second algorithm has been introduced by Agarwal et al. [115]. This algo-
rithm considers routing data obtained from various looking glasses, which the
authors call vantage points. For each vantage point, the algorithm associates
a rank to each AS. Then, if two adjacent ASes are found to have a different
rank, the one with lower rank is considered as a customer and the other one
as a provider. Note that, given an edge e, each vantage point could assign a
different relationship to e, from its specific point of view. The algorithm actu-
ally assigns to e the relationship which is proposed by the highest number of
vantage points.

One of the most recent algorithms has been proposed by Di Battista et al.
in [64]. This algorithm is based on a reduction of the ToR problem to the well
known problem of satisfiability of propositional formulae (SAT). Essentially,
the relationship assignment is computed by defining an instance of the SAT
problem and solving it. Note that the algorithm looks for a solution of the
ToR problem with no invalid paths, which reduces the computational com-
plexity but at the same time deviates from the original formulation of the ToR
problem. However, starting from the input set P , a maximal subset of valid
paths can then be computed by using some heuristics. A similar approach has
independently been proposed by Erlebach et al. in [187].

The most recent approach has been proposed by Dimitropoulos et al. [248,
249, 251], who reformulate the ToR problem as a multiobjective optimization
problem. The goal is to extend the combinatorial optimization approach based
on the minimization of invalid paths with information about the AS degree.
A tunable parameter allows to steer the inference of the relationships to pur-
sue one objective or the other. This is a way to conciliate Di Battista [64]
and Erlebach’s [187] approach with Gao’s [122], and to overcome some of the
shortcomings of the two.

73

5. Inference of Commercial Relationships between Autonomous
Systems

4321

4321

4321

Figure 5.2: Examples of orientations (relationship assignments) which
make the AS-path 1234 valid.

5.4 A Methodology to Evaluate the Quality of Inference
Algorithms

An important issue that is left open by the algorithms presented in Section 5.3
is to understand whether their approach yields results that are of practical
interest.

One possibility could be to evaluate the proposed techniques against their
ability of enforcing the valley-free property on the AS graph, yet this may not
be enough. For example, suppose the input to our inference algorithm is just
one AS-path. Figure 5.2 shows that many solutions exist that make this path
valley-free but, presumably, only one of them is correct.

Another approach could be to validate the results of the inference against
relationships known from reality. In [122] the authors pursue this approach.
However, such a validation process cannot scale to the entire Internet, and can
therefore be only performed in the small.

Further investigation is therefore needed in order to validate the inference
results. A first step towards this is to identify features that a reasonably good
inference should have:

Stability: Internet is constantly evolving under the pressure of social and
economic forces, but this evolution is slow and never affected by many
changes on the short period. On the contrary, the technical aspects of the
network superimpose to the above slow evolution the changes brought
about by routing algorithms, mainly when technical failures happens.
This evolution usually suffers of bursts of many events on the short period.
The results of an inference algorithm should ideally be mostly affected
by the first kind of changes.

Independence from the algorithm: Computing the types of the relation-
ships requires using a specific inference algorithm. Thus, the obtained
relationships might be bound to choices which are specific to the that

74

A Methodology to Evaluate the Quality of Inference Algorithms

algorithm. This is obviously undesirable, since only one choice of the
relationships can be considered correct. The ideal inference result should
be algorithm independent, in the sense that it is the same (or, at least,
very similar) for all “good” inference algorithms.

This constitutes a first possible set of features to test the validity of the
different inference procedures known in the literature. The aim is to exploit
them in order to determine whether considering the valley-free property alone,
which most algorithms are based on, is sufficient to produce an acceptable
assignment.

5.4.1 Measuring Differences between Inference Results

In accordance with the features defined in Section 5.4, which are supposed to
characterize good quality algorithms for inferring the commercial relationships,
the methodology is based on two kinds of analysis: a stability analysis, which
compares the inference results obtained from a single algorithm run on inputs
taken at different time instants, and an algorithm independence analysis, that
compares the inference results obtained using different algorithms on the same
input.

Given an AS graph G = (V,E) obtained as described in Section 5.1, let
R : E → V ∪ {peering, unknown} be a function describing the relationship
assigned by an inference algorithm to each edge e = (AS1, AS2) ∈ E, in the
following way:

R(e) =

AS2 if AS2 is a provider of AS1

AS1 if AS1 is a provider of AS2

peering if AS1 and AS2 are peers
unknown if no relationship is known.

(5.1)

We now introduce a set of measures which can be used to compare two
distinct relationship assignments RA(·) and RB(·), defined on the same graph
G = (V,E). In particular, the differences between the assignments are esti-
mated in terms of the cardinality of the following sets of edges, each isolating
a particular kind of difference:

Both = {e ∈ E|RA(e) 6= unknown ∧RB(e) 6= unknown} (5.2)
OnlyInA = {e ∈ E|RA(e) 6= unknown ∧RB(e) = unknown} (5.3)
OnlyInB = {e ∈ E|RA(e) = unknown ∧RB(e) 6= unknown} (5.4)

75

5. Inference of Commercial Relationships between Autonomous
Systems

The set Both contains edges which have successfully been assigned a re-
lationship by both the inferences. OnlyInA and OnlyInB contain edges for
which the assignment has successfully been inferred in only one case.

The set Both is further partitioned into the following two subsets:

Consistent = {e ∈ Both | RA(e) = RB(e)} (5.5)
Inconsistent = {e ∈ Both | RA(e) 6= RB(e)} (5.6)

In turn, the set Inconsistent can be further partitioned in order to identify
the kind of difference occurring between the two assignments:

Opposite = {e ∈ Inconsistent |RA(e) 6= peer ∧ RB(e) 6= peer} (5.7)
PeerInA = {e ∈ Inconsistent |RA(e) = peer ∧ RB(e) 6= peer} (5.8)
PeerInB = {e ∈ Inconsistent |RA(e) 6= peer ∧ RB(e) = peer} (5.9)

The set Opposite, as the name itself suggests, contains edges that have been
assigned the opposite relationship by RA(·) and RB(·) (i.e., they are labelled
as customer-provider edges by one assignment and as provider-customer by the
other).

In order to better understand how the relationship assignments RA(·) and
RB(·) are compared, Figure 5.3 graphically depicts the sets of edges defined
up to this point. Table 5.1 shows how these sets are populated according to
the relationships described by RA(·) and RB(·): each edge e = (AS1, AS2) is
inserted in the sets listed in the cell corresponding to the values of RA(e) and
RB(e).

5.4.2 Extensively Evaluating Inference Algorithms

The sets introduced in Section 5.4.1 have been defined to compare two different
assignments constructed on the same graph. In this Section we define measures
to characterize how the same assignment algorithm works on many graphs
obtained by data snapshots distributed over time.

Consider a sequence of sets of AS-paths that are obtained by consecutively
probing the network over time and suppose to run a single inference algo-
rithm on each set. Such sequence of sets induces a sequence of AS graphs
G1(V1, E1), . . . , Gn(Vn, En).

Let G̃ = (Ṽ , Ẽ) be an AS graph such that: Ẽ =
⋃n

i=1 Ei, that is, Ẽ is the
set of edges which appear in at least one of the Gi; Ṽ is naturally induced by
Ẽ (note that no isolated nodes are omitted in Ṽ since the graphs G1, . . . , Gn

76

A Methodology to Evaluate the Quality of Inference Algorithms

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

(directed)
OnlyInB

Inconsistent
(PeerInA)

Consistent

(directed)
OnlyInA

(peering)

OnlyInA

Inconsistent
(Opposite)

Inconsistent
(PeerInB)

(peering)
OnlyInB

Figure 5.3: The sets of edges we use to compare two relationship assign-
ments RA(·) and RB(·). This diagram is to be intended in a universe which
contains the edges of G. Outer ovals represent peering edges. Inner ovals
contain directed (customer-provider or provider-customer) edges.

RA ((AS1, AS2))
AS1 AS2 peering unknown

RB ((AS1, AS2))

AS1 Both,
Consistent

Both,
Inconsistent,
Opposite

Both,
Inconsistent,
PeerInA

OnlyInB

AS2 Both,
Inconsistent,
Opposite

Both,
Consistent

Both,
Inconsistent,
PeerInA

OnlyInB

peering Both,
Inconsistent,
PeerInB

Both,
Inconsistent,
PeerInB

Both,
Consistent

OnlyInB

unknown OnlyInA OnlyInA OnlyInA —

Table 5.1: The sets of edges we use to compare two relationship assign-
ments RA(·) and RB(·). Each edge e = (AS1, AS2) of the AS graph is
inserted in the sets listed in the cell corresponding to the values of RA(e)
and RB(e).

77

5. Inference of Commercial Relationships between Autonomous
Systems

are connected). The inference on the i-th data set results in a relationship
assignment Ri(·) which is defined on Ei. However, to make the notation easier,
in the following we assume Ri(·) to be defined on Ẽ, having value unknownon
edges in Ẽ\Ei.

Each edge e ∈ E is labelled with values which summarize the history of the
relationships assigned to it:

Occurrences(e) = |{i | 1 ≤ i ≤ n ∧ e ∈ Ei}| (5.10)
Assignments(e) = |{i | 1 ≤ i ≤ n ∧Ri(e) 6= unknown}| (5.11)

Changes(e) = |{i | i ≤ i ≤ n− 1 ∧Ri(e) 6= Ri+1(e)}| (5.12)

The value Occurrences(e) corresponds to the number of graphs Gi(i =
1, . . . , n) edge e appears in. Assignments(e) is the number of graphs in which
edge e has been assigned a relationship. Changes(e) is the number of times
R(e) changes its value in the sequence R1(e), . . . , Rn(e).

5.5 A Software Suite to Evaluate Inference Algorithms

In order to apply the evaluation methodology and to compute the measures
defined in Sections 5.4.1 and 5.4.2, we have developed a suite of software tools
called TORQUE (Type Of Relationship QUality Evaluation) [237].

Computing the measures requires processing both the data sets provided as
input to the inference algorithm and the corresponding inference results. The
tools of the suite handle both kinds of information. The intended usage flow of
the tools in TORQUE is shown in Figure 5.4, where data are shown as square
boxes while tools are represented as rounded boxes. Arrows describe the flow
of information.

Data sets come, usually, in the form of show ip bgp dumps, while inference
algorithms work on files containing plain lists of AS-paths. For this reason
we implemented an AS-path extractor tool. We payed special attention to
implement various kinds of processing on the extracted AS-paths, like removal
of prepending, AS-sets, cycling paths, duplicates, etc.

A graph generator tool merges the information of an AS-path list, a BGP
dump, and a relationship assignment computed by an inference algorithm,
producing a labelled AS graph where each edge is associated with the values of
the function R(·) (see Section 5.4.1). The tool is designed to be flexible with
respect to the input information used to generate the labelled graph.

The graph comparison tool allows to compare two or more labelled AS
graphs. When exactly two labelled AS graphs are given as input, it computes

78

A Software Suite to Evaluate Inference Algorithms

Inference
algorithm

Labelled AS
graph

Stability

report

Graph
viewer

report
Algorithm independence

Inference
algorithm

AS path
extractor

Graph
generator

AS path listBGP dump

graph
Labelled AS

tool
Graph comparison

Inference
algorithm

Relationship

assignment

Figure 5.4: Intended usage flow for the tools in the TORQUE software
suite [237]. Square boxes represent data; rounded boxes represent tools;
arrows describe information flows.

and provides a report of the cardinalities of the sets Both, OnlyInA, OnlyInB,
Consistent, Inconsistent, Opposite, PeerInA, and PeerInB. If more than two
labelled AS graphs are given as input, it computes, for each edge, the following
measures: Occurrences, Assignments, and Changes. In the latter case the
output is another AS graph which edges are labelled with these measures.

Last, the graph view tool may be used to produce various kinds of reports
(strongly connected components, differences in edges orientation, etc.).

Both the methodology and the tools have been conceived with one impor-
tant objective in mind: to clear up the semantic of the whole processing, which
we believe can be helpful in establishing a unified approach for this kind of
data analysis.

79

5. Inference of Commercial Relationships between Autonomous
Systems

5.6 Experimental Results

In this Section we present the results we obtained by applying the method-
ology and the tools to evaluate the inference algorithms by Di Battista et
al. [64] (DPP) and by Subramanian et al. [115] (SARK). Due to the lack of an
available working implementation (Gao’s group has developed one [259], but
it fails in processing our large data sets), this analysis leaves out Gao’s [122]
and Dimitropoulos’ [248] algorithms. However, by using the software tools, it
would be easy to extend the investigation to the missing algorithm once an
implementation is available.

5.6.1 Data Sets

In the following, we use the term snapshot to denote both a list of AS-paths and
the AS graph which it induces. The specific meaning depends on the context.

We consider snapshots provided by two different sources.
The first one is the site describing the SARK algorithm [116], which provides

several snapshots, each collecting paths simultaneously taken from different
BGP looking glasses. We consider the snapshots listed in Table 5.3. We address
this data set using the name MVP.

The second source is the Oregon Route Views Archive [198], which provides
BGP routing table dumps of a router having peering sessions with about 50
ASes at the time of the experiments. The dumps are collected every two hours.
We consider the snapshots corresponding to the time intervals in Table 5.2.
Figure 5.5 shows the size of the data sets RV1 and RV2. The set RV2 contains
an incomplete snapshot (10/03/2001 14:00), which is due to some failure in the
Route Views collection process.

Since we want to test the stability of the inference results, we chose RV1
to cover a period during which only a few ASes changed the commercial agree-
ments, whereas RV2 has been selected to consider a time interval during which
several commercial changes took place. We obtained information about com-

Snapshot name Period # of snapshotsStart End
RV1 03/25/2003 00:00 03/31/2003 22:00 84
RV2 09/25/2001 00:00 10/08/2001 22:00 168

Table 5.2: Snapshots taken from [198].

80

Experimental Results

Date Used looking glasses (AS number)
AS graph Unique

AS-pathsNodes Edges

04/18/2001 1, 1740, 3549, 3582, 3967, 4197,
7018, 8220, 8709

10909 23817 511200

01/29/2002,
02/04/2002

1, 3549, 3582, 3967, 4197, 7018,
8220, 8709

12708 27555 722481

04/06/2002 1, 1838, 3549, 3582, 3967, 4197,
5511, 7018, 8220, 8709, 15290

13079 28309 942382

07/29/2002 1, 1838, 3257, 3549, 3582, 3967,
4197, 5511, 7018, 8220, 8709, 15290

13705 29073 948720

08/09/2002 1, 1838, 3257, 3549, 3582, 4197,
5511, 7018, 8220, 15290

13754 29009 894396

10/19/2002 1, 1838, 3582, 3967, 5511, 7018,
8220, 15290

14113 29422 881836

10/29/2003 1, 50, 210, 553, 852, 1838, 3257,
3549, 3582, 3741, 3967, 4197, 5388,
5511, 6395, 6539, 6893, 7018, 8220,
8709, 8843, 9328, 15290

16420 37470 1143373

11/13/2003 1, 50, 210, 553, 852, 1838, 3257,
3549, 3582, 3741, 3967, 4197, 5388,
5511, 6395, 6539, 6893, 7018, 8220,
8709, 8843, 9328, 15290

16461 37406 1157802

11/28/2003 1, 50, 210, 553, 852, 1838, 3257,
3549, 3582, 3741, 3967, 4197, 5388,
5511, 6395, 6539, 6893, 7018, 8220,
8709, 8843, 9328, 15290

16316 31419 247691

12/12/2003 1, 50, 210, 553, 852, 1838, 3257,
3549, 3582, 3741, 3967, 4197, 5388,
5511, 6395, 6539, 6893, 7018, 8220,
8709, 8843, 9328, 15290

16585 37790 1216534

12/29/2003 1, 50, 210, 553, 852, 1838, 3257,
3549, 3582, 3741, 3967, 4197, 5388,
5511, 6395, 6539, 6893, 7018, 8220,
8709, 8843, 9328, 15290

16728 38162 1164370

01/13/2004 1, 50, 210, 553, 852, 1838, 3257,
3549, 3582, 3741, 3967, 4197, 5388,
5511, 6395, 6539, 6893, 7018, 8220,
8709, 8843, 9328, 15290

16762 38205 1264677

Table 5.3: Snapshots in the MVP data set from [116].

81

5. Inference of Commercial Relationships between Autonomous
Systems

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

25
 M

ar
 2

00
3

26
 M

ar
 2

00
3

27
 M

ar
 2

00
3

28
 M

ar
 2

00
3

29
 M

ar
 2

00
3

30
 M

ar
 2

00
3

31
 M

ar
 2

00
3

 785000

 790000

 795000

 800000

 805000

 810000

 815000

of

 n
od

es
, e

dg
es

of

 u
ni

qu
e

A
S

 p
at

hs

Snapshot

Nodes Edges AS paths

 0

 5000

 10000

 15000

 20000

 25000

 30000

26
 S

ep
 2

00
1

28
 S

ep
 2

00
1

30
 S

ep
 2

00
1

02
 O

ct
 2

00
1

04
 O

ct
 2

00
1

06
 O

ct
 2

00
1

08
 O

ct
 2

00
1

 0

 100000

 200000

 300000

 400000

 500000

 600000

of

 n
od

es
, e

dg
es

of

 u
ni

qu
e

A
S

 p
at

hs

Snapshot

Nodes Edges AS paths

Figure 5.5: Size of the snapshots in RV1 (left) and RV2 (right).

mercial agreements from [215] and [218], and used them to identify the two
intervals.

All the snapshots have been processed in order to extract AS-paths from
BGP dumps. We always considered lists of unique AS-paths: i.e., for AS-paths
occurring more than once in an input data set, only one instance is kept.

5.6.2 Independence of Inference Results from Routing
Changes

Our first kind of analysis ascertains whether the results produced by inference
algorithms are only affected by real commercial events and not by the (more
frequent) underlying routing changes. We consider an assignment stable when
the relationships remain almost the same over snapshot collected at different
times.

The stability analysis considers all the data sets described above. In par-
ticular, we run the DPP algorithm [64] on all the sets MVP, RV1, and RV2,
and we consider the results of the SARK [115] algorithm on the MVP data set.
Stability is evaluated as follows.

For the MVP data we consider pairs of consecutive snapshots and compare
the relationship assignments computed by the same algorithm (DPP or SARK)
on such pairs (with the exception of the pair 10/19/2002, 10/29/2003). For
each pair we compute the cardinalities of the sets defined in Section 5.4.1, with
RA(·) and RB(·) being defined on the intersection of the AS graphs of the two
snapshots. The results are shown in Tables 5.4 for the DPP algorithm and 5.5

82

Experimental Results

A: 04/18/2001
B: 01/29/2002,

02/04/2002

A: 01/29/2002,
02/04/2002

B: 04/06/2002
A: 04/06/2002
B: 07/29/2002

A: 07/29/2002
B: 08/09/2002

OnlyInA 7 1 2 5

OnlyInB 18 9 1 1

Both 15919 24743 23638 28039

Consistent 15118 (95%) 24112 (97%) 23044 (97%) 27719 (99%)

Inconsistent 801 (5%) 631 (3%) 594 (3%) 320 (1%)

A: 08/09/2002
B: 10/19/2002

A: 10/29/2003
B: 11/13/2003

A: 11/13/2003
B: 11/28/2003

A: 11/28/2003
B: 12/12/2003

OnlyInA 3 4 4 4

OnlyInB 2 8 2 2

Both 25458 35751 30654 31034

Consistent 24916 (98%) 35211 (98%) 30120 (98%) 30509 (98%)

Inconsistent 542 (2%) 540 (2%) 534 (2%) 525 (2%)

A: 12/12/2003
B: 12/29/2003

A: 12/29/2003
B: 01/13/2004

OnlyInA 7 9
OnlyInB 2 6
Both 37038 36865
Consistent 36653 (99%) 36268 (98%)
Inconsistent 385 (1%) 597 (2%)

Table 5.4: Comparison of the results produced by the DPP algorithm [64]
over pairs of consecutive snapshots (A, B) (data set MVP). Values represent
the cardinalities of the sets in the leftmost column. Percentages are relative
to the value of Both.

for the SARK algorithm. The percent values for the rows Consistent and
Inconsistent are relative to the value of Both; the percent values for the rows
Opposite, PeerInA, and PeerInB are relative to the value of Inconsistent.
In Table 5.4 the cardinalities concerning peering relationships are omitted since
the DPP algorithm does not assign them. All the comparisons show that at
least 95% of the assigned relationships are consistent for consecutive data sets.

For the RV1 and RV2 data sets we consider the relationship assignments
computed using the DPP algorithm and, for each data set, we evaluate the his-
torical measures defined in Section 5.4.2. The results are shown in Figures 5.6
to 5.8. Table 5.6 reports the size of the graph G̃.

Figure 5.6 shows a distribution that helps us in evaluating the goodness of

83

5. Inference of Commercial Relationships between Autonomous
Systems

A: 04/18/2001
B: 01/29/2002,

02/04/2002

A: 01/29/2002,
02/04/2002

B: 04/06/2002
A: 04/06/2002
B: 07/29/2002

A: 07/29/2002
B: 08/09/2002

OnlyInA 86 109 96 80

OnlyInB 77 111 87 94

Both 15749 24472 23407 27789

Consistent 15056 (96%) 23713 (97%) 22517 (96%) 27343 (98%)

Inconsistent 693 (5%) 759 (3%) 890 (3%) 446 (2%)

Opposite 55 (8%) 33 (4%) 55 (6%) 14 (3%)

PeerInA 350 (51%) 383 (50%) 358 (40%) 257 (57%)

PeerInB 288 (41%) 343 (46%) 477 (54%) 175 (40%)

A: 08/09/2002
B: 10/19/2002

A: 10/29/2003
B: 11/13/2003

A: 11/13/2003
B: 11/28/2003

A: 11/28/2003
B: 12/12/2003

OnlyInA 111 103 613 64

OnlyInB 89 157 58 599

Both 25224 34542 29099 29482

Consistent 24425 (97%) 33812 (98%) 28748 (99%) 29146 (99%)

Inconsistent 799 (3%) 730 (2%) 351 (1%) 336 (1%)

Opposite 44 (6%) 21 (3%) 8 (2%) 2 (1%)

PeerInA 367 (46%) 376 (52%) 237 (68%) 103 (31%)

PeerInB 388 (48%) 333 (45%) 106 (30%) 231 (68%)

A: 12/12/2003
B: 12/29/2003

A: 12/29/2003
B: 01/13/2004

OnlyInA 157 111
OnlyInB 168 177
Both 35739 35642
Consistent 35100 (98%) 35172 (99%)
Inconsistent 639 (2%) 470 (1%)
Opposite 10 (2%) 14 (3%)
PeerInA 346 (54%) 233 (50%)
PeerInB 283 (44%) 223 (47%)

Table 5.5: Comparison of the results produced by the SARK algo-
rithm [115] over pairs of consecutive snapshots (A, B) (data set MVP).
Values represent the cardinalities of the sets in the leftmost column. Per-
centages in rows Consistent, Inconsistent are relative to the value of Both;
other percentages are relative to the value of Inconsistent.

84

Experimental Results

the inference as far as edge coverage is concerned. An edge e ∈ Ẽ may appear
in a number Occurrences(e) ≤ n of snapshots and be assigned a relationship
in Assignments(e) ≤ Occurrences(e) of them. The Figure shows the number
of edges having a certain fraction of successfully assigned relationships. There
are 32446 edges for RV1 and 27235 for RV2 to which the inference assigned a
relationship in all the snapshots. That is, for at least 99% of the edges of G̃
the assignment always succeeds.

In order to further assess the quality of the assignment, Figure 5.7 shows
the evolution over time of the fraction of the edges of each snapshot which have
an assigned relationship. The values are fairly constant around 99% for every
snapshot. The spike of value 100% on 10/03/2001 at 14:00 for RV2 is due to
the presence of an incomplete BGP dump in the Oregon Route Views Archive
(see Figure 5.5).

Figure 5.8 shows a distribution that allows to understand how stable the
relationship assignment is. Each edge e of G̃ may change its assignment a
number Changes(e) of times over the observation period. The Figure shows
the distribution of edges showing a certain number of Changes(·). There are
31766 edges for which the assignment never changes in RV1 and 25968 in RV2.
This means that more than 94% of the edges of G̃ never change the assignment.

Interestingly, Figure 5.8 puts in evidence a scale free behavior [6, 5, 4] of
the distribution of the values of Changes(e). As far as we know, this is the
first time that a scale free distribution is observed in this type of phenomenon.

5.6.3 Independence of Inference Results from the Algorithm

We now use our methodology to evaluate to what extent the inferred relation-
ships are independent from the specific algorithm used to compute them.

For each of the snapshots listed in Table 5.3, we compare the relationships
inferred by the DPP and SARK algorithms, and use the cardinalities of the
sets defined in Section 5.4.1 to estimate their level of similarity. The compared
assignments, RA(·) and RB(·), are both defined on the same graph G.

|Ṽ | |Ẽ|
RV1 15150 32534
RV2 12317 27490

Table 5.6: Size of the graph eG.

85

5. Inference of Commercial Relationships between Autonomous
Systems

 1

 10

 100

 1000

 10000

 100000

0 % 20 % 40 % 60 % 80 % 100 %

of

 e
dg

es
 (

lo
gs

ca
le

)

% of successful relationship assignments

 1

 10

 100

 1000

 10000

 100000

0 % 20 % 40 % 60 % 80 % 100 %

of

 e
dg

es
 (

lo
g

sc
al

e)

% of successful relationship assignments

Figure 5.6: Distribution of the fraction of the edges of eG with an assigned
relationship for the data sets RV1 (left) and RV2 (right).

99.92 %

99.93 %

99.94 %

99.95 %

99.96 %

99.97 %

99.98 %

99.99 %

25
 M

ar
 2

00
3

26
 M

ar
 2

00
3

27
 M

ar
 2

00
3

28
 M

ar
 2

00
3

29
 M

ar
 2

00
3

30
 M

ar
 2

00
3

31
 M

ar
 2

00
3

%
 o

f a
ss

ig
ne

d
re

la
tio

ns
hi

ps

Snapshot

99.8 %

99.82 %

99.84 %

99.86 %

99.88 %

99.9 %

99.92 %

99.94 %

99.96 %

99.98 %

100 %

26
 S

ep
 2

00
1

28
 S

ep
 2

00
1

30
 S

ep
 2

00
1

02
 O

ct
 2

00
1

04
 O

ct
 2

00
1

06
 O

ct
 2

00
1

08
 O

ct
 2

00
1

%
 o

f a
ss

ig
ne

d
re

la
tio

ns
hi

ps

Snapshot

Figure 5.7: Evolution over time of the fraction of the edges of eG that have
been assigned a relationship for the data sets RV1 (left) and RV2 (right).

 1

 10

 100

 1000

 1 10 100

of

 e
dg

es
 (

lo
g

sc
al

e)

of changes (log scale; max=83)

 1

 10

 100

 1000

 1 10 100

of

 e
dg

es
 (

lo
g

sc
al

e)

of changes (log scale; max=167)

Figure 5.8: Distribution of the number of assignment changes for the

edges of eG for the data sets RV1 (left) and RV2 (right).

86

Conclusions

The results are shown in Table 5.7. The row PeerInA has been skipped
because DPP does not infer peering relationships. The edges in Consistent are
always more than 90% of those in Both, which means that the two algorithms
almost produce the same solution. Inconsistencies are equally shared between
Opposite and PeerInB.

5.7 Conclusions

In this Chapter we analyze the results produced by state of the art algorithms
for the inference of the commercial relationships between Autonomous Systems.
We perform two kinds of analysis: the first evaluates the degree of independence
of the inferred relationships from routing changes that have nothing to do with
the alteration of commercial agreements. The second kind of analysis is aimed
at determining whether the results are independent from the specific algorithm
being used. We describe a methodology and a software toolkit [237] to perform
the analyses.

The methodology is used to evaluate the results produced by two well known
inference algorithms [64, 115] over publicly available data from various looking
glasses [116] and from the Oregon Route Views archive [198].

We find that the two algorithms produce highly stable results. In particular,
using data from looking glasses [116], the percentage of AS pairs that have
the same assigned relationship when using the same algorithm on two time
adjacent snapshots is above 95% for both the algorithms. Using data from
Route Views [198] and considering the algorithm by Di Battista et al. [64], this
percentage slightly reduces to 94%.

The results also show that the two inference algorithms almost produce the
same assignments: among the AS pairs to which both the algorithms assigned
a relationship, more than 90% have the same assignment.

These conclusions led us to think that the valley-free approach, on which
inference algorithms are based, leads to results that are of practical interest.

Dealing with the problem of evaluating the quality of the results produced
by inference algorithms has also opened other interesting perspectives which
we consider relevant and worth being further analyzed:

• It would be interesting to extend the presented analysis to take into
account the results obtained by the algorithm by Gao [122] and Dim-
itropoulos et al. [248, 251, 249].

87

5. Inference of Commercial Relationships between Autonomous
Systems

04/18/2001
01/29/2002,
02/04/2002 04/06/2002 07/29/2002

OnlyInA 192 213 197 200

OnlyInB 39 21 6 6

Both 23584 27317 28106 28866

Consistent 21487 (91%) 24991 (91%) 25631 (91%) 26261 (91%)

Inconsistent 2097 (9%) 2326 (9%) 2475 (9%) 2605 (9%)

Opposite 993 (47%) 1047 (45%) 1217 (49%) 1176 (45%)

PeerInB 1104 (53%) 1279 (55%) 1258 (51%) 1429 (55%)

08/09/2002 10/19/2002 10/29/2003 11/13/2003

OnlyInA 179 196 1205 1173

OnlyInB 9 14 28 25

Both 28819 29212 36235 36208

Consistent 26348 (91%) 26659 (91%) 32683 (90%) 32651 (90%)

Inconsistent 2471 (9%) 2553 (9%) 3552 (10%) 3557 (10%)

Opposite 1165 (47%) 1247 (49%) 1689 (48%) 1738 (49%)

PeerInB 1306 (53%) 1306 (51%) 1863 (52%) 1819 (51%)

11/28/2003 12/12/2003 12/29/2003 01/13/2004

OnlyInA 1548 1367 1194 1118

OnlyInB 5 12 37 22

Both 29866 36409 36930 37063

Consistent 28332 (95%) 32754 (90%) 33321 (90%) 33557 (91%)

Inconsistent 1534 (5%) 3655 (10%) 3609 (10%) 3506 (9%)

Opposite 829 (54%) 1783 (49%) 1795 (50%) 1711 (49%)

PeerInB 705 (46%) 1872 (51%) 1814 (50%) 1795 (51%)

Table 5.7: Comparison of the relationship assignments RA(·) computed by
the DPP [64] algorithm and RB(·) computed by the SARK [115] algorithm
on the data set MVP. Values represent the cardinalities of the sets in the
leftmost column. Percentages in the Consistent and Inconsistent rows re-
fer to the value of Both, while the others refer to the value of Inconsistent.

88

Conclusions

• The space of the solutions of the relationship assignment problem is still
missing a rigorous characterization. Up to now, research has focused
on the identification of just one relationship assignment, yet it would be
valuable to have a complete view of the degrees of freedom of the problem.

• Other papers tackled the problem of studying the Internet as a com-
puter system by a fusion of algorithmic ideas and principles borrowed
from game theory [29]. It would be interesting to examine possible con-
tact points between game-theoretic approaches and the algorithms for
inferring commercial relationships.

• Once a relationship assignment has been computed, it would be inter-
esting to obtain a classification of the Autonomous Systems into hierar-
chical levels. Techniques for doing this have already been proposed by
Ge et al. [260], by Subramanian et al. [115], and by Dimitropoulos et
al. [251, 248, 205]. However, it would be interesting to know which is the
best and most realistic way of obtaining hierarchy.

89

Chapter 6

Policy-Based Interdomain Traffic
Engineering

She will bring, in spite of frost,
Beauties that the earth hath lost;
She will bring thee, all together,
All delights of summer weather.

Fancy
John Keats

R
outing policies are an effective means to force traffic flows to obey con-
straints that have nothing to do with the optimization of routing perfor-
mance and operation. For example, they can be used to make upstream

links robust to failures by deploying configurations that automatically switch to
alternative backup connections [125]. Appropriate routing policies are also used to
ensure the correct fulfillment of commercial agreements between Internet Service
Providers [122, 115, 64, 248], as also discussed in Chapter 5.

There is also another point in using routing policies: traffic engineering re-
quirements can in some cases be achieved by taking advantage of standard BGP
configuration atoms [21, 152, 19, 151, 132]. For example, due to performance and
cost issues, optimizing the distribution of network traffic among upstream links is
one of the main concerns for an Internet Service Provider. This Chapter presents
an approach to pursue optimal inbound traffic distribution by exploiting a tech-
nique to artificially extend the length of AS-paths that is known as prepending.
Even though a similar approach has already been proposed [175], this Chapter

91

6. Policy-Based Interdomain Traffic Engineering

introduces a reformulation in terms of an Integer Linear Programming and a Com-
putational Geometry problem. The goal is to propose a theoretical framework to
determine the optimal amount of prepending to be used for achieving different opti-
mization objectives, and therefore to eliminate the need to resort to trial-and-error
approaches.

6.1 Background

An Internet Service Provider (ISP) interacts with the rest of the Internet using
the Border Gateway Protocol (BGP). For each of its IP prefixes P , it announces
P to its neighboring ISPs. In turn, these neighbors pass the announcement
of P to their neighbors, etc. At each step, every ISP receiving an instance
of the announcement checks it against its policies, compares it against other
instances of the same announcement received from other neighbors, selects the
best according to the BGP metrics, and sends to its neighbors only the selected
one.

In this propagation process the ISP originating P progressively loses control
of what happens. The “control” is quite strong in the interaction with the
immediate upstreams. It is regulated by a contract and enforced with several
BGP features, like communities, prepending, etc. However, starting from the
second-third step what happens to the announcement of P is, up to a large
extent, uncontrolled by the original ISP. Since the traffic takes the opposite
direction with respect to the one of the announcements, not controlling the
propagation of the announcements means not being able to control incoming
traffic flows.

Up to now, this topic attracted limited research interest for several reasons.
First, up to a few years ago, ISPs at the lower level of the Internet hierarchy
often had one upstream only, and in this case it is hard to influence the prop-
agation of the announcements. Even for multi-homed ISPs, stable routing was
often considered much more important than optimal traffic flow distribution.
Last, the knowledge of the rest of the Internet by an ISP was somewhat poor.

These obstacles are now less relevant than in the past. Most ISPs are now
multi-homed. Stability is always a problem but also competition is, and it is
crucial to offer better services at a lower cost. Many resources are available to
explore the structure of the Internet [173, 198, 33, 32, 39, 34].

Even a limited control on the propagation of the announcements could be
used for:

92

Related Work

• balancing the incoming traffic from the upstream providers, to improve
performance or to shape the traffic according to the cost of the links;

• forcing a large portion of the incoming traffic to use a specific transit
Autonomous System (AS) that is known to be reliable and/or with high
bandwidth availability;

• improving the distribution of the internal traffic flows of an ISP.

The length of the AS-path is one of the main factors used to select the best
path to reach the ISP’s prefix P . Therefore, one possibility for the ISP to affect
incoming traffic flows is to apply to the announcements of P an appropriate
amount of AS-path prepending.

This Chapter addresses the problem of determining the optimal amount
of prepending to be used in the announcements made by the ISP in order
to achieve different traffic engineering requirements. The proposed approach
relies on the formulation of an Integer Linear Programming problem or, as
an alternative, a Computational Geometry one. We also show how efficient
algorithms for computing the optimal amount of prepending can be devised
based on these two formulations.

6.2 Related Work

The following brief survey on the state of the art in the field of traffic engi-
neering puts in evidence that only a few works address the optimal prepending
problem directly.

An introduction to the basic principles of traffic engineering is made by
Awduche et al. in [43]. This work mainly focuses on intradomain traffic engi-
neering, but it also presents some considerations about interdomain routing.

Feamster et al. propose in [151] some objectives and guidelines for inter-
domain traffic engineering using BGP. They show how data from BGP tables
and from NetFlow [225] archives can be used to predict traffic flow changes, to
limit the influence of neighboring ASes on the routing choices, and to reduce
the overhead of routing changes.

Some BGP based techniques for traffic engineering are presented in [19] by
Quoitin et al. This work describes how to control both the incoming and the
outgoing traffic of an ISP, but does not present an experimental study.

Another description of BGP based techniques for traffic engineering is made
by Swinnen et al. in [132]. This work also contains an experimental study of the

93

6. Policy-Based Interdomain Traffic Engineering

impact of AS-path prepending on incoming traffic volumes. In their study, they
use the Javasim [219] event-driven simulator for running a BGP model over a
topology built with the topology generator BRITE [13]. They show that the
distribution of interdomain paths is actually affected by AS-path prepending.

Chang and Lo [175] approach the problem of finding the optimal prepending
by using two kinds of measurements on the network. They collect NetFlow [225]
data (passive measurements) and probe the network with ping packets in order
to discover the upstream ISPs’ routing policies with respect to the AS-path
length (active measurements). Both kinds of measurements are used to predict
the impact of prepending variations on network routing. They also test their
methodology on a dual-homed AS. This approach, although effective, does not
efficiently scale with the number of upstreams. The same paper shows that
prepending based techniques favorably compare with alternative methods.

Other contributions focus on the impact of routing policies on the length
of the AS-paths [73, 123].

It is also worth mentioning that several “route control” tools are available
to automatically perform traffic engineering [229, 211, 202]. These solutions
consist of devices and/or software tools that analyze live data flows and, if
needed, adjust the network configuration according to user defined policies
(application priorities, expected network behavior, performance, etc.). Some
route control tools also claim to perform incoming traffic optimization by tuning
BGP announcements of local prefixes [229]. In our opinion, such tools would
benefit from theoretically sound formulations of incoming traffic engineering
by prepending.

6.3 Traffic Engineering by Using Prepending

In this Section we define a model to describe the prepending choices of an ISP
and their effects on Internet routing. This model is then used as a starting
point to compute the optimal amount of prepending to be used to achieve
different traffic engineering requirements.

Let A be the set of all the ASes in the Internet. Consider a specific AS
t, called target, announcing a prefix P to its peers. We call upstreams these
peers, denote them by U (U ⊂ A), and number them in 1, . . . , |U |. Each AS
a ∈ A−{t} receives one or more announcements about P and chooses one based
on the length of the AS-path associated with them. We assume that policies
allow announcements to traverse the network without constraints. Further, we
assume that ASes choose the best announcement concerning P on the basis of

94

Traffic Engineering by Using Prepending

ASes in A0 ASes in A1 ASes in A2 ASes in A3 ASes in A4

(b)

2
1

3

4

t

1

1

1

3

2
1

3

t

4

(a)

1

1
1

1

Figure 6.1: (a) The network model used for studying the effect of AS-path
prepending. t is the target AS originating prefix P . ASes 1, . . . , 4 are its
upstreams. (b) The effect of prepending applied by t. Edge labels represent
prepending amounts. The figure shows the sets A0, . . . , A4 after applying
prepending.

the sole AS-path length. We refer to a simple model where attributes such as
Local-Preference, MED, etc. are not used.

We define a partition of the ASes of A − {t} into sets A0, A1, . . . , A|U |,
where Ai is the set of the ASes that reach P through upstream i. Set A0 is
used to denote the ASes that have two (or more) shortest paths to reach P .
More formally, if a has exactly one shortest AS-path to reach P , we say that a
belongs to Ai, where i ∈ U is the last AS occurring in the AS-path before t. If
a has two or more shortest paths to reach P , each using a different upstream
link of t, we say that a belongs to A0. Essentially, A0 contains the ASes whose
choice cannot be predicted by simply looking at the length of the AS-path.

Figure 6.1(a) shows a simple network illustrating the model. Nodes repre-
sent ASes and edges represent BGP peerings. The figure describes the partition
of A into the sets A0, . . . , A4.

By using prepending, AS t can try to affect the way in which the other ASes
reach P . AS t uses a prepending wi ≥ 1 when announcing P to AS i, i ∈ U if
it inserts its identifier in the AS-path wi times.

Consider again the network of Figure 6.1(a). Suppose that t wants to

95

6. Policy-Based Interdomain Traffic Engineering

decrease the number of ASes that reach P through AS 2 (i.e., it wants to
decrease the size of A2). It can apply prepending w1 = 1, w2 = 3, w3 = 1, and
w4 = 1. The resulting sets Ai are shown in Figure 6.1(b).

An administrator of t could use prepending for different purposes. This list
shows some examples, which are used as possible objectives for the algorithms
presented in this Chapter.

• Equal-Cardinality. The first possibility is to balance as much as
possible the cardinalities of the sets Ai. This, to a first approximation,
corresponds to balancing traffic to t coming from its upstream links.

• Equal-Load. Another possibility is to take into account the amount of
traffic sent by each AS to t, so that the load on each upstream link is
balanced.

• Shape-Bandwidth. Bandwidth requirements can be considered as well.
The aim then becomes to compute a prepending assignment such that
the load on the upstream links conforms to bandwidth availability.

• Equal-Cost. It is also possible to introduce a cost model for the up-
stream links, which takes into account their usage. This leads to search
for the prepending assignment that ensures the best cost sharing.

• Equal-Cost-Threshold. The cost model can be refined to introduce
a fixed base cost and a threshold, so that additional charges are only
applied when the threshold is exceeded. ISPs often apply this kind of
charging in their contracts.

Observe that a näıve approach to find the optimal prepending could consist
of trying every possible combination of prepending amounts and choosing the
combination that minimizes a specific objective function. This could require
a great number of attempts, and for each attempt a considerable amount of
time. Actually, after a fault, the network is known to converge within few
minutes [41, 40]. However, many consecutive routing updates can easily trigger
route flap damping [257, 24]. Experimental settings which need to repeatedly
send updates at fixed rates adopt time intervals of 2 hours [258]. Furthermore,
ISPs may deprecate a great amount of configuration changes on the part of
their peers. This is why we consider approaches that can achieve optimality
with a limited number of attempts.

96

Traffic Engineering by Using Prepending

6.3.1 Computing Prepending by Integer Linear
Programming

We now propose an Integer Linear Programming (ILP) formulation of the prob-
lem of finding the best combination of prepending amounts to be used in the
announcements of P . The ILP formulation consists of the following ingredients:

• Constants dai are an input of the problem, and the ISP t is supposed
to know them (we shall see in Section 6.5 which is the practical impact
of this assumption). They represent the length of the shortest AS-path
from a to t’s upstream i when P is announced to i only.

• wj represents the amount of prepending through upstream j.

• Variables cai are used to model how the ASes choose to reach prefix P .
Namely, cai is 1 if AS a uses upstream link i to reach P ; 0 otherwise.

• We consider the following generic objective function, that will be refined
later on.

min f(cai) (6.1)

There are two main types of constraints: Choice-Constraints and Tie-
Constraints.

Choice-Constraints (Equation 6.2) model the choice of an AS that has
only one shortest AS-path to reach P . In particular, if AS a chooses upstream
link i (cai = 1), then the corresponding AS-path is the shortest one and there
is no other path with the same length involving a different upstream link:

∀a ∈ A− {t}, i ∈ U : cai = 1⇒ ∀j ∈ U − {i} : wj + daj > wi + dai

In order to write this implication in the form of a set of linear constraints,
we introduce a constant M . We choose M large enough to ensure that con-
straints 6.2 are satisfied whenever cai = 0.

∀a ∈ A− {t},∀i, j ∈ U, i 6= j : wj + daj > wi + dai + (cai − 1)M (6.2)

Tie-Constraints (Equations 6.3, 6.4, and 6.5) model the case in which AS
a knows at least two shortest paths to reach P through two different upstreams
i and j. When this happens, eaij is 1. Otherwise, eaij is 0:

Obviously, the two paths through i and j have the same length:

∀a ∈ A− {t},∀i, j ∈ U, i 6= j : eaij = 1⇒ wi + dai = wj + daj

97

6. Policy-Based Interdomain Traffic Engineering

And their length is that of a shortest path:

∀a ∈ A− {t},∀i, j ∈ U, i 6= j : eaij = 1⇒ ∀k ∈ U : wi + dai ≤ wk + dak

Again, we use a constant M that is large enough to satisfy constraints 6.3, 6.4,
and 6.5 when eaij = 0.

∀a ∈ A− {t},∀i, j ∈ U, i 6= j :
wi + dai ≥ wj + daj + (eaij − 1) M (6.3)
wj + daj ≥ wi + dai + (eaij − 1) M (6.4)

∀a ∈ A− {t},∀i, j, k ∈ U, i 6= j :
wi + dai + (eaij − 1) M ≤ wk + dak (6.5)

Constraint 6.6 is introduced to ensure that each AS a either belongs to one
Ai or belongs to A0. Note that, if a ∈ A0, there can be more than one eaij that
is set to 1. Observe that constraints 6.2, 6.3, and 6.4 prevent the two situations
from happening simultaneously.

∀a ∈ A− {t} :
∑
i∈U

cai +
∑

i,j∈U,i6=j

eaij > 0 (6.6)

Constraints 6.7 to 6.10 are used to define the domains of the variables.

∀a ∈ A− {t}, i ∈ U : cai ∈ {0, 1} (6.7)
∀a ∈ A− {t},∀i, j ∈ U, i 6= j : eaij ∈ {0, 1} (6.8)

∀i ∈ U : wi ∈ N, (6.9)
wi > 0 (6.10)

Let n = |A| and m = |U |. The size of the problem is dominated by con-
straints 6.5, which give raise to (n− 1)m2(m− 1) inequalities.

Objective function 6.1 can be used to implement several requirements, as
follows. Standard operations research techniques can be used to plug all the
following objective functions in the ILP formulation.

• Equal-Cardinality.

f(cai) = max
i,j∈U

 ∑
a∈A−{t}

cai −
∑

a∈A−{t}

caj

 (6.11)

98

Traffic Engineering by Using Prepending

• Equal-Load. Let la, a ∈ A − {t} be the amount of traffic that AS a
sends to P .

f(cai) = max
i,j∈U

 ∑
a∈A−{t}

caila −
∑

a∈A−{t}

caj la

 (6.12)

• Shape-Bandwidth. Let bi, i ∈ U be the available bandwidth on up-
stream link i.

f(cai) = max
i∈U

∣∣∣∣∣∣
∑

a∈A−{t}

caila − bi

∣∣∣∣∣∣ (6.13)

Minimizing this function corresponds to limiting traffic bursts and, at the
same time, maximizing link usage.

• Equal-Cost. Let costi be the cost that AS t has to pay for the upstream
link i.

f(cai) = max
i,j∈U

(costi − costj) (6.14)

Function 6.14 can be used in conjunction with different cost models (i.e.,
different definitions of costi). For example, let uniti be the cost for the
unit of traffic that flows through upstream link i. The following constraint
defines a simple linear cost model:

∀i ∈ U : costi = uniti

∑
a∈A−{t}

caila (6.15)

• Equal-Cost-Threshold. A more realistic cost model that can be used
with objective function 6.14 takes into account the fixed costs of link
maintenance. Upstream links may have a fixed base cost basei and traffic
exceeding a threshold threshi may be charged uniti per unit:

∀i ∈ U : costi = max

 ∑
a∈A−{t}

caila − threshi, 0

 uniti + basei

How to Break Ties

As already discussed, given a prepending assignment, an AS a can have two
or more shortest AS-paths to reach P , each using a different upstream link of

99

6. Policy-Based Interdomain Traffic Engineering

1

3 4 5

2

7

t

6

Figure 6.2: A network for which ties can only be avoided with trivial
prepending assignments (e.g., w1 = 5 and w2 = 1 or w1 = 1 and w2 = 5).

t. In this case we say that there is a tie at AS a: the AS-path chosen by a
to reach P cannot be predicted on the basis of the sole AS-path length. Since
ties correspond to unpredictable choices, we would like not to introduce them
at all.

Observe that a prepending assignment that does not give rise to ties always
exists (just set w1 = 1 and wi = n, i = 2, . . . ,m), but it can be easily shown
that such an assignment can be arbitrarily bad.

As an example, consider the network in Figure 6.2 and suppose to rule out
those prepending assignments that introduce ties. In this network, there are
two AS-paths between AS 1 and AS 2: one of odd length (1 3 4 5 2) and one of
even length (1 6 7 2). Every prepending assignment such that |w1 − w2| = 2k,
k = 0, 1 introduces a tie at one of the ASes in the path 1 3 4 5 2. On the other
hand, every prepending assignment such that |w1 − w2| = 2k + 1, k = 0, 1
introduces a tie at one of the ASes in the path 1 6 7 2. Therefore, ties are only
avoided by using prepending amounts such that |w1 − w2| ≥ 4. In this way,
all the ASes would fall into either A1 or A2 and, for example, the objective
function Equal-Cardinality would assume high (i.e., bad) values, which is
undesirable. Consider that a configuration similar to the one in Figure 6.2 is
likely to appear in real world instances.

In conclusion, looking for solutions that do not introduce ties can lead to
very poor prepending assignments.

This is the reason why objective functions do not consider ASes in A0.
However, once an optimal prepending assignment has been found by using
the ILP, the number of ASes in A0 provides an estimate of the quality of the
assignment itself: assignments with a low number of ties should be preferred.
All the ASes in A0 may then be arbitrarily assigned to one of the A1, . . . , Am

(i.e., the corresponding cai can be set to 1). By doing so, it is possible to
explore the range of values that objective functions can assume, thus deriving
bounds on the quality of the assignment.

100

Traffic Engineering by Using Prepending

Accommodating Multiple Prefixes in the Formulation

The model we have introduced assumes that AS t announces a single prefix P .
However, an AS typically announces many prefixes to its neighbors. Both the
model and the ILP formulation can be modified to consider multiple prefixes.

Since different policies can be applied for each prefix, the input values dai

are depend on the specific prefix being considered. In particular, suppose that
t announces p prefixes P1, P2, . . . , Pp. We can introduce vectors dai, such that
the k-th component (dai[k]) of vector dai is the length of the shortest path
from a to i when t announces Pk to upstream i only. Similarly, variables wi,
cai, eaij can be replaced by vectors, and the sets Ai can be organized in a
vector as well. When using objective functions Equal-Load, the quantities
la become vectors too.

Constraints 6.2 to 6.10 must be written for each prefix Pk, and they must
use the values wi[k], dai[k], cai[k], and eaij [k].

Objective functions should be modified to consider all the prefixes. For
example, function Equal-Cardinality (6.11) can be replaced with the fol-
lowing:

f(cai) = max
i,j∈U

 1≤k≤p∑
a∈A−{t}

cai[k]−
1≤k≤p∑

a∈A−{t}

caj [k]

Also, the cost models should be rewritten. For example, the linear cost

model 6.15 can be replaced by the following:

∀i ∈ U : costi = uniti

1≤k≤p∑
a∈A−{t}

cai[k]la[k]

6.3.2 Computing Prepending by Computational Geometry

We now show how approaching the optimal prepending problem by Computa-
tional Geometry instruments can lead to efficient algorithms. For simplicity, we
focus on the case in which t has 3 upstreams (i.e., m = 3). Our considerations
can be generalized to a greater number of upstreams.

For any choice of prepending, it is possible to map each AS a ∈ A − {t}
to a point in a 3-dimensional Euclidean space, parametrically with respect to
the amount of prepending. In particular, if we consider a coordinate system
OX1X2X3, this point has coordinates [x1, x2, x3]

T , where xi = dai + wi, i =
1, 2, 3.

101

6. Policy-Based Interdomain Traffic Engineering

This space can be partitioned into regions so that all the points falling in
the same region correspond to ASes in the same Ai, i = 1, 2, 3. Points belonging
to A0 fall on the border between regions. Changing the prepending amounts
results in translating all the points or, equivalently, the coordinate system. As
a consequence, points can shift from one region to another.

More precisely, the regions and the sets Ai, i = 1, 2, 3 are put in correspon-
dence in the following way:

A1 ↔
{

x1 < x2

x1 < x3
A2 ↔

{
x2 < x1

x2 < x3
A3 ↔

{
x3 < x1

x3 < x2
(6.16)

Each pair of regions corresponding to (Ai, Aj), i, j = 1, 2, 3, i 6= j is sepa-
rated by a border Bij :

B12 :
{

x1 = x2

x3 ≥ x1
B23 :

{
x2 = x3

x1 ≥ x2
B13 :

{
x1 = x3

x2 ≥ x1
(6.17)

The union of B12, B13, and B23 corresponds to the set A0. The intersection
of B12, B13, and B23 defines a straight line r : x1 = x2 = x3.

Let Ai [A′
i] i = 1, 2, 3 be the set of ASes a ∈ A − {t} that use upstream

i to reach P when using prepending amounts wi [w′
i]. The following property

holds.
∀k > 0, i = 1, 2, 3 : w′

i = wi + k ⇒ A′
j = Aj , j = 1, 2, 3 (6.18)

This property can be proved by showing that using prepending w′
i = wi + k is

equivalent to translating points in the same direction as r.
As a consequence of Property 6.18, studying the effect of prepending does

not require considering all the combinations of prepending amounts. For ex-
ample, it is possible to keep the prepending on an upstream i fixed while only
altering the others. Hence, the component xi is fixed as well, which corre-
sponds to projecting points on one of the coordinate planes. Consider that, if
we fix a prepending amount, others may become negative while searching for
optimal prepending. This can be amended by translating all the points in the
same direction as r in order to move them to the first octant without altering
the composition of the sets Ai, i = 0, 1, 2, 3.

To exploit the symmetry of our construction, we project the points on the
plane H : x1 + x2 + x3 = 0, which passes through origin O and whose normal
is r. After projection, borders 6.17 become half lines. In order to easily figure
out the disposition of the points and the shape of the regions after projection,
we now consider a coordinate system OX ′

1X
′
2 such that axis X ′

2 coincides with

102

Traffic Engineering by Using Prepending

2

X1X3

2X =X’

1X’

O

P(1,1)
A

1

A
2

A
3

Figure 6.3: Projection on plane H : x1 + x2 + x3 = 0 of the axes X1,
X2, X3, in the coordinate system OX ′

1X
′
2. Point P is the projection of the

straight line x1 = t, x2 = t +
√

6−
√

2
2

, x3 = t−
√

2.

the projection of X2 over H and axis X ′
1 also belongs to H and is orthogonal

to X2.
Using standard linear algebra, it’s easy to see that a point

[
x1 x2 x3

]T

becomes
[

x′1 x′2
]T =

[
x1−x3√

2
−x1+2x2−x3√

6

]T

in the coordinate system
OX ′

1X
′
2. Note that each point on H is the projection of a line parallel to r.

In Figure 6.3 half lines X1, X2, X3 represent the projection of the positive
half of the of axes X1, X2, X3, which partition the plane into three regions cor-
responding to A1, A2, A3. Points falling over X1, X2, or X3 correspond to A0.
Optimal prepending is obtained by placing origin O so that one of the objective
functions 6.11, 6.12, 6.13, 6.14 is minimized. Note that in 6.11, 6.12, 6.13, 6.14
the values of the cai can be easily computed on the basis of the disposition of
the points on H.

Let M = maxa∈A−{t},i=1,2,3 dai. The hexagon of side M lying on H and
centered in O contains all the points representing the ASes. Therefore, by
exploiting projection on H, we need 3M2 attempts to find the position of origin
O that gives optimal prepending. Figure 6.4 helps in intuitively understanding

103

6. Policy-Based Interdomain Traffic Engineering

M
M

M

X3 X1

X2

Figure 6.4: Points represent all the possible placements of origin O, cor-
responding to different prepending assignments. The drawing lies on plane
H : x1 + x2 + x3 = 0. Finding optimal prepending requires placing origin
O in 3M2 different points.

this. For each prepending choice, it takes O(n) time to compute the value of
any of the objective functions 6.11, 6.12, 6.13, 6.14. Since, in general, M is
O(n), this leads to the following conclusion:

Given a network with n ASes and a target AS announcing a
prefix to 3 upstream providers, the optimal amount of prepending
to be used in the announcements can be found in O(n3) time.

This holds for any of the objective functions Equal-Cardinality, Equal-
Load, Shape-Bandwidth, Equal-Cost, Equal-Cost-Threshold described
in Section 6.3. This result can be generalized to an arbitrary number m of up-
streams, thus leading to computational complexity O(nm).

6.4 Remarks about Computational Complexity

Section 6.3.2 proposes an algorithm to compute the optimal amount of prepend-
ing in O(n3) time for the case of an ISP with 3 upstream providers. One can
argue that more clever techniques can lead to better results.

Exploring the prepending space by local search techniques is hard due to lo-
cal minima. For example, consider a hill climbing search, in which it is possible

104

Remarks about Computational Complexity

O

O

O

O

(a) (b) (c) (d)

Figure 6.5: Example of situation in which using hill climbing search is
not effective for pursuing Equal-Cardinality.

2

X1X3

2X =X’

1X’

P’’’

P’

O

P’’

A
1

A
2

A
3

Figure 6.6: A configuration of points (P ′, P ′′, P ′′′) after projection on H.
The drawing lies on plane H. Shaded areas represent equivalence areas.

to move from one prepending configuration by changing only one wi, i = 1, 2, 3
of one unit. Figure 6.5 shows a situation in which this kind of search is not effec-
tive for pursuing Equal-Cardinality. Figure 6.5(a) shows a local minimum
with f(cai) = 5; by moving against hill climbing, in 6.5(b) we get f(cai) = 6;
then f(cai) = 5 in 6.5(c) and a better solution with f(cai) = 4 in 6.5(d).

105

6. Policy-Based Interdomain Traffic Engineering

An alternative approach consists in trying to avoid all the prepending as-
signments that lead to the same composition of the sets Ai, i = 0, 1, 2, 3. For
this purpose, plane H can be considered partitioned in equivalence areas, so
that placing O in any of the points of an area leads to the same sets Ai. These
areas are represented with different gray tones in Figure 6.6.

Let R be the set of all equivalence areas and n = |A|. Suppose to add one
point at a time. Since each point introduces (n− 1)+2 new equivalence areas,
we have |R|n = |R|n−1 + n + 1, and |R|1 = 3. This leads to |R|n = n2+3n+2

2 .
In real settings it is not unusual that a small set of ASes is responsible

for a large amount of the ISP incoming traffic [132]. In these situations we
can consider only those ASes that generate most of the traffic, and hence we
can have n << M (i.e., even with a small number of ASes we may have large
distance values). In this case, exploiting equivalence areas can lead to a great
speedup.

The set of all the equivalence areas is described by an arrangement of 3n
half lines. In [72] is presented an algorithm for describing and enumerating
such an arrangement in O(n2) time, and this is shown to be optimal. This
result is also valid for an arbitrary dimension. To be rigorous, the algorithm
works with straight lines. However, considering the arrangement with straight
lines instead of half lines does not increase the complexity of the arrangement
itself. In fact, suppose to replace half lines with straight lines. Then we have
|R|n = |R|n−1 + 6n− 1 and |R|1 = 3, which leads to |R|n = 3n2 + 2n + 1.

6.5 Applicability Considerations

In our model the lengths of the shortest AS-paths from each AS to each up-
stream are supposed to be known. However, we believe that this assumption
does not prevent the approach to have a practical impact.

First, observe that in order to compute shortest AS-path lengths the knowl-
edge of the whole network is not required. On the contrary, it is possible to
announce a prefix to one upstream at a time and to measure how it reaches the
remote ASes. Such preliminary measurement may also be performed using a
test prefix which does not carry production traffic. As already pointed out in
Chapter 3, most routing policies do not discriminate between different prefixes
originating in the same AS, and therefore the use of a test prefix is unlikely to
affect the measurement.

Second, the amount of information needed in practical cases is far smaller
than the theoretical bound. A few ASes can be responsible for a large amount of

106

Conclusions

incoming traffic. Restricting to these critical ASes, which can be automatically
identified by exploiting widely adopted tools such as NetFlow [225], would
provide a reasonable solution with a limited amount of input data.

Finally, the AS-paths of the announcements reaching the remote ASes may
be retrieved from several sources. The Oregon Route Views Project [198] and
the RIPE NCC RIS [173] collectors cumulatively offer a view of hundreds of
ASes. Also, traceroute servers and BGP looking glasses [188] provide a long
list of ASes for which such information is available. As a last resort, for those
critical ASes not covered by these sources, an assumption of symmetric routing
may be tried, and the reverse AS-paths may be considered where necessary.

Despite the above considerations, and due to behaviors that are not ac-
counted for in our model (local preferences, “prefer customer” policies, etc.),
the computed prepending amounts may still be suboptimal and local search,
as described in [175], may be required to refine them.

6.6 Conclusions

This Section focuses on the problem of optimizing the distribution of the in-
coming traffic of an ISP. In particular, we introduce a model to compute the
optimal prepending that the ISP should use in its BGP announcements. Sev-
eral optimality criteria are proposed, and we show how to compute optimal
prepending both by using an Integer Linear Programming formulation and by
exploiting Computational Geometry techniques.

We also show that computing the optimal prepending amounts requires
knowing network information that can be obtained from publicly available data
sources.

The model and the approaches introduced in this Chapter still leave room
for improvements.

A valuable complement to the presented analysis would come from deter-
mining bounds on the algorithmic complexity of the problem of determining
optimal prepending. This would give a more accurate view of the tractability of
the problem, and would possibly reveal the need of other heuristic approaches.

The techniques presented in this Chapter still miss a case study. Experi-
menting these techniques would help in better assessing their applicability and
effectiveness.

It would also be interesting to investigate the impact of prepending choices
on the stability of the Internet. Suppose that the interest for interdomain traffic
engineering increases and suppose that several ISPs start performing aggressive

107

6. Policy-Based Interdomain Traffic Engineering

routing control based on prepending. That is, suppose that ISPs systematically
“play” the game of influencing routing using prepending. By applying game
theory techniques, it would be possible to study whether this game admits a
(Nash) equilibrium. Interesting studies about the influence of selfish routing
and traffic engineering on routing stability have been proposed in [119, 69, 253,
70]. However, these works use different traffic engineering objective functions
and do not consider the effect of applying AS-path prepending.

108

Chapter 7

Interplay of Routing Policies at
different Autonomous Systems

Day after day, day after day,
We stuck, nor breath nor motion;
As idle as a painted ship
Upon a painted ocean.

Rime of the Ancient Mariner
Samuel Taylor Coleridge

A
dministrators managing an Autonomous System usually have an interest
in deploying BGP configuration policies that implement specific require-
ments to ensure the correct operation of the AS. These requirements may

span from traffic engineering to connection robustness, and from the enforcement
of commercial agreements to the sharing of load over multiple links.

The widespread use of BGP configuration policies in the Internet globally affects
the way traffic is routed to its destination [123, 73], often violating the shortest path
rule. This effect on routing paths is the consequence of the complex interactions of
routing policies at several sites. While network administrators have some degree of
freedom on the choice of the routing policies to use within the ISP they operate,
there is no guarantee that these policies will achieve the desired requirements.
In fact, administrators of neighboring ASes may deploy polices that clash with
and prevent the enforcement of the ones of the ISP. It may also be the case that
conflicting policies lead to persistent routing oscillations [194, 124, 125, 191], which
may affect the reachability of some destinations and is therefore undesirable.

109

7. Interplay of Routing Policies at different Autonomous Systems

This Chapter presents methods to analyze the interaction of routing polices at
different Autonomous Systems. In particular, it describes a methodology to verify
whether traffic to a certain destination prefix can traverse an arbitrarily chosen
sequence of ASes (feasibility of an AS-path). It also presents an approach to
determine the level of preference assigned by an AS to two equally long AS-paths
(path preference comparison). Independently from this, it presents a theoretical
model and some interesting properties to study scenarios in which persistent routing
oscillations may occur. This model is partly based on the Stable Paths Problem
formalism as proposed in [125].

7.1 Checking the Feasibility of AS-paths

This Section proposes a methodology that, based on the probing primitives
presented in Chapter 3, allows to determine whether an arbitrarily chosen se-
quence of ASes (AS-path) could be traversed by traffic to a specific destination.
This property of an AS-path has already been addressed as feasibility in Sec-
tion 3.1: an AS-path An . . . A2A1, where A1 is the origin AS, is feasible for a
prefix p if the policies of each Ai permit Ai to announce p to Ai+1 with AS-path
Ai . . . A1. Observe that the successful delivery of a packet to p depends on the
interaction of interdomain routing policies at ASes An . . . A1 along the chosen
AS-path. Also consider that feasible AS-paths are not necessarily observed in
BGP routing tables obtained from collection points [173, 198], for example be-
cause some of them may only take over in case of link faults. In the following
we also make use of the notion of level of an AS defined in Chapter 3: the
level of an AS X is the length of the shortest directed path from AS Z, the
originator of p, to X.

Suppose that we are interested in knowing whether a certain AS-path P is
feasible for a prefix p. For this purpose, we may use the following algorithm,
which we name the nailed-path algorithm.

Assume P ends at an AS A containing a collector-peer or looking glass C
and consider a feasibility graph obtained using one of the methods described
in Section 3.4.1. Prohibit all the ASes in levels up to and including the level
of A except for the ASes in P. Now observe the AS-path Q seen by C: it is
likely that either Q = P and the path is feasible, or C does not see the prefix
and the path is not feasible. If Q 6= P (i.e., ASes or peerings that were not in
the initial feasibility graph have been revealed), we repeat the above procedure
after including the newly discovered ASes in the prohibited set. If Q reveals a
shortcut between two ASes in P, then the feasibility of P cannot be determined

110

Checking the Feasibility of AS-paths

Z

C

A

B D

Figure 7.1: A topology in which the shortcut between A and D impairs the
ability to determine the feasibility of path ZABDC using AS-set stuffing.

(see Figure 7.1).
If P ends at an AS A that is not a collector-peer a simple approach might

be the following:

1. Prohibit all ASes in levels up to and including the level of A except for
the ASes in P.

2. Check whether P is a subpath of one of the paths seen by the route
collectors. If this is true, P is feasible otherwise the feasibility of P is
unknown.

Unfortunately, the first step can prohibit ASes that are eligible for connecting
AS A to one of the collectors, thus limiting the effectiveness of this approach.
The following algorithm provides a more effective solution.

1. Select any collector-peer or looking glass C. Announce prefix p with no
prohibited ASes. Let S be an empty set of ASes.

2. While C sees an AS-path for p, do

a) Let Q be the AS-path for p seen by to C.

b) If Q matches P, starting from the origin AS, return feasible.

c) Compare the ASes in P and Q in order, starting from the origin AS,
and let i be the position where the two paths differ. If Q[i] appears
in P, return unknown.

d) Let S = S ∪ {Q[i]}.

111

7. Interplay of Routing Policies at different Autonomous Systems

e) Announce prefix p prohibiting ASes in S.

3. Return unknown.

This algorithm is more accurate than the simple approach shown above
since it incrementally prohibits ASes and cannot accidentally cut a feasible
path from A to C. Nevertheless, its capability to recognize the feasibility of P
still depends on the choice of C, therefore performing one execution for each
possible choice of C may improve effectiveness. However, even for a single
choice of C, this algorithm may require many more announcements than the
simple approach.

To verify our path feasibility determination techniques we obtained an ini-
tial feasibility graph using withdrawal observation, chose arbitrary paths on
the graph starting from the origin AS and ending in a route collector, and ap-
plied the nailed-path algorithm to determine which of the paths were feasible.
Examples are shown in Table 7.1. Column “Prefix” shows the prefix we tested
and thus whether the test was performed in the IPv6 or IPv4 network. Column
“Path” shows the path we tested. Column “UTC Time” specifies the time at
which the BGP announcement was sent and column “AS-set” shows the AS-set
announced. Column “Observed Path” shows the path that was observed after
BGP propagation and column “Feasible” shows whether the path was feasible.
Remember that if no AS-path was observed then we can affirm that a path is
not feasible; if another AS-path was observed, it is not possible to determine
the feasibility.

7.2 Revealing the Preference Associated to AS-paths

Given two feasible AS-paths P1 and P2 ending at the same observation point
(a collector-peer or looking glass) C in AS A, we may use AS-set stuffing to
determine which of the two AS-paths is preferred by C.

To determine which path C prefers, we obtain a feasibility graph as de-
scribed in Section 3.4.1 and attempt to ensure that the only announcements
received by C for p have the paths P1 and P2. Namely, we prohibit all the
ASes in all levels up to the level of A except the ASes in P1 ∪P2. This may be
enough for C to see either P1 or P2. If not, the announcement may lead to the
discovery of new ASes which are not in P1 or in P2 and were not previously
visible in the feasibility graph. In this case it is sufficient to prohibit the new
ASes and repeat the announcement until no new ASes are discovered.

112

Revealing the Preference Associated to AS-paths

Prefix UTC Time Path AS-set Observed Path Feasible

2001:a30::/32 2005-02-03
18:43:40

3257 2497
2500 4691 33
15589 5397

{4725, 5511, 7660, 18084, 7684,
6939, 10566, 1275, 3320, 5609,
2914, 14277, 6175, 5623, 278,
4697, 3549, 13944, 4555, 15897,
680, 31103, 1299, 5539, 9112,
3246, 8657, 8447, 1257, 4725,
17715, 6435, 145, 12779, 25358,
20965, 1853, 3265, 16713, 109,
6762, 559, 29686, 3344, 8664,
12968, 13110, 8763}

3257 2497 2500
4691 33 15589
15589 5397

Yes

2001:a30::/32 2005-02-21
17:02:27

3333 3265
6175 13977
6939 15589
5397

{10566, 33, 1275, 3320, 5623,
7580, 6435, 5539, 12477, 4716,
15897, 4697, 5609, 1299, 2607,
31103, 293, 4555, 2042, 8175, 145,
6342, 8447, 3549, 12779, 1257,
3257, 8763, 1752, 2500, 4725,
25358, 3246, 20965, 1853, 559,
1103, 29686, 3245, 513}

3333 3265 6175
13977 6939 6939
15589 15589
5397

Yes

2001:a30::/32 2005-02-21
16:18:25

3333 1103
2607 1275
15589 5397

{6939, 10566, 33, 3320, 5623,
13944, 7580, 6435, 6175, 5539,
14277, 4716, 15897, 4697, 5609,
2914, 1299, 31103, 293, 4555,
2042, 8175, 145, 6342, 8447,
3549, 12779, 3265, 1257, 3257,
8763, 1752, 2500, 4725, 25358,
3246, 20965, 1853, 559, 29686,
3425, 513, 278, 12859, 8472, 6830,
18084, 2497, 7684, 29377, 1930,
11537, 7660, 5511}

3333 1103 2607
1275 15589
15589 5397

Yes

2001:a30::/32 2005-02-23
15:27:39

6175 4555
13944 6939
15589 5397

{1275, 3320, 33, 10566, 2607, 109,
5609, 293, 513, 31103, 1299, 2497,
5623, 4725, 17715, 3549, 5539,
14277, 2914, 4697, 4716, 6435,
7580, 3748, 2042, 15897, 2549,
6762, 3425, 9264, 5430, 20965,
1103, 29686, 1752, 1853, 25358,
6830, 559, 3257, 12779, 3265,
2500, 145, 8763, 4691, 3786}

— No

2001:a30::/32 2005-02-23
15:38:30

6175 145
7580 10566
15589 5397

{1275, 3320, 6939, 33, 2607, 109,
5609, 293, 513, 31103, 1299, 2497,
5623, 4725, 17715, 3549, 5539,
14277, 2914, 4697, 4716, 6435,
13944, 3748, 2042, 15897}

— No

2001:a30::/32 2005-04-19
13:56:56

559 1299
3320 1275
15589 15589
5397

{33, 109,145, 278, 293, 513, 559,
1103, 1257, 1752, 1853, 2042,
2497, 2500, 2607, 2914, 3257,
3265, 3292, 3352, 3425, 3549,
3748, 3786, 4691, 4697, 4716,
4725, 5609, 5623, 6175, 6320,
6342, 6435, 6830, 6939, 7033,
8447, 10566, 12779, 13944, 14277,
17715, 17965, 20965, 24136,
24895, 29686, 31103, 32266}

559 1299 3320
15589 15589
5397

Unknown

84.205.89.0/24 2005-07-05
11:31:44

8468 6461
701 702
13030 12654
12654

{8210, 8220, 3320, 286, 8447,
20932, 9044, 12793, 13237, 2497,
8434, 513, 8289, 8342, 16034,
1239, 209, 3561, 6762, 2914, 1299,
3356}

8468 6461 13030
12654 12654

Unknown

84.205.89.0/24 2005-07-05
11:36:01

8468 6461
13030 12654
12654

{8210, 8220, 3320, 286, 8447,
20932, 9044, 12793, 13237, 2497,
8434, 513, 8289, 8342, 16034,
1239, 209, 3561, 6762, 2914, 1299,
3356, 701, 702}

8468 6461 13030
12654 12654

Yes

84.205.89.0/24 2005-07-05
12:31:01

8468 9044
13030 12654
12654

{8210, 8220, 3320, 286, 8447,
20932, 12793, 13237, 2497, 8434,
513, 8289, 8342, 16034, 1239, 209,
3561, 6762, 2914, 1299, 3356, 701,
702, 6461}

8468 9044 13030
12654 12654

Yes

84.205.73.0/24 2005-07-05
13:29:29

2116 1299
1239 13030
12654 12654

{209, 286, 513, 701, 702, 2497,
2914, 3320, 3356, 3561, 6461,
6762, 8210, 8220, 8289, 8342,
8434, 8447, 8468, 9044, 12793,
13237, 16034, 20932}

— No

Table 7.1: Path feasibility determination results.

113

7. Interplay of Routing Policies at different Autonomous Systems

12654

13030

8210 8220 28613237 702 24972093290443320 127938447 6461

8434 513 83427018468 160348289

1299 3356 2091239 2914 35616762

Figure 7.2: Experiment setting for comparing the preference assigned by
AS8468 to paths 8468 6461 13030 12654 (dashed) and 8468 9044 13030
12654 (solid). ASes in gray are prohibited.

The announcement may also lead to the observation of another path made
up exclusively of ASes which belong to either P1 or P2. In this case it is not
possible to determine whether C prefers P1 or P2. This may occur only if there
is a feasible peering between an AS in P1 and an AS in P2. Furthermore, if P1

and P2 have ASes in common in addition to A, it is not possible to determine
which AS-path is preferred by C, since routers in one of the common ASes
may have chosen between the two paths and only re-announced one of them,
resulting in only one of them reaching A. Finally, since this technique requires
us to determine whether P1 and P2 are feasible, it cannot be applied if it is not
possible to determine the feasibility of the paths as described in Section 7.1.

We tested our path preference comparison technique on various paths end-
ing in route collectors. Table 7.2 shows some of our results.

Figure 7.2 shows the setting used for the experiment in the third row.
The graph was obtained using withdrawal observation. The aim is to deter-
mine whether the collector-peer in AS8468 prefers the path through AS6461 or
AS9044. All the ASes that are not part of the two paths (shown in gray) are

114

Revealing the Preference Associated to AS-paths

P
re

fi
x

U
T

C
T

im
e

C
o
ll
ec

to
r

A
S
-p

a
th

P
1

A
S
-p

a
th

P
2

O
b
se

rv
ed

p
a
th

P
re

fe
rr

ed
p
a
th

2
0
0
1
:a

3
0
::
/
3
2

2
0
0
5
-0

2
-2

1
1
6
:3

0
:2

8
3
3
3
3

3
3
3
3

3
2
6
5

6
1
7
5

1
3
9
4
4

6
9
3
9

1
5
5
8
9

5
3
9
7

3
3
3
3

1
1
0
3

3
4
2
5

2
9
3

3
3
2
0

1
5
5
8
9

5
3
9
7

3
3
3
3

1
1
0
3

3
4
2
5

2
9
3

3
3
2
0

1
5
5
8
9

5
3
9
7

P
2

2
0
0
1
:a

3
0
::
/
3
2

2
0
0
5
-0

4
-1

9
1
2
:3

8
:0

9
1
1
0
3

1
1
0
3

2
6
0
7

1
2
7
5

1
5
5
8
9

5
3
9
7

1
1
0
3

2
0
9
6
5

1
2
9
9

3
3
2
0

1
5
5
8
9

5
3
9
7

1
1
0
3

2
0
9
6
5

1
2
9
9

3
3
2
0

1
5
5
8
9

1
5
5
8
9

5
3
9
7

P
2

8
4
.2

0
5
.8

9
.0

/
2
4

2
0
0
5
-0

7
-0

5
1
2
:3

1
:0

1
8
4
6
8

8
4
6
8

6
4
6
1

1
3
0
3
0

1
2
6
5
4

1
2
6
5
4

8
4
6
8

9
0
4
4

1
3
0
3
0

1
2
6
5
4

1
2
6
5
4

8
4
6
8

9
0
4
4

1
3
0
3
0

1
2
6
5
4

1
2
6
5
4

P
2

Table 7.2: Path preference comparison results. 115

7. Interplay of Routing Policies at different Autonomous Systems

prohibited, therefore the preferred path is the one seen by AS8468.
The second example in the table is particularly interesting because it shows

an AS preferring a longer path over a shorter one: between 1103 2607 1275
15589 5397 and 1103 20965 1299 3320 15589 15589 5397, AS1103 (SURFnet,
the Dutch research network) prefers the latter. This suggests that AS1103 is
explicitly configuring its routers to prefer paths coming from AS20965 (the
Géant European research network).

7.3 Instabilities Caused by Routing Policies

This Section introduces a model that can be used to study abnormal routing
scenarios in which bad interactions of routing policies deployed at different
Autonomous Systems result in routing choices changing indefinitely. This kind
of problem is not unlikely to happen in real networks because, for example,
link or device failures may lead to unexpected policy interactions [185].

Approaches to study configurations leading to persistent oscillations have
already been presented in works by Griffin, Gao et al. [190, 192, 194, 124,
125, 191] and, independently, by Varadhan et al. [102]. Based on some of the
conclusions drawn in [102], the works by Griffin, Gao et al. take advantage of
a modelling of the unstable routing system via a formalism known as Stable
Paths Problem to formally prove convergence properties. The authors describe
several sample routing policy scenarios that, if accidentally implemented on a
live network, lead to persistent oscillations. They characterize the likelihood
of a network incurring oscillations in terms of the presence or absence of a
generalized structure (the dispute wheel) that models bad policy interactions.
They also prove that checking for the existence of a stable routing state is
NP-complete. Many of the works studying routing instabilities also rely on the
Stable Paths Problem model.

Several authors have proposed improvements to the currently running BGP
version 4 [252] in the intent to make it robust against routing oscillations.
Varadhan et al. [102] suggested the use of provably safe procedures, such as
shortest path routing, to prevent instabilities, and proposed to rely on informa-
tion from the Internet Routing Registry [216, 60, 66] in order to detect policies
that would bring about oscillations.

Griffin et al. [194, 191] have introduced a simple path vector protocol (SPVP)
which, in its safe variant, suppresses cycling messages and prevents instabilities
from happening based on the collection of a history of the announcements.

116

Instabilities Caused by Routing Policies

The authors also discuss possible extensions to BGP that accommodate the
stabilizing properties of SPVP.

Gao and Rexford have described in [124] a set of guidelines for deploying
policies that ensure the convergence of a routing system while preserving typ-
ical traffic engineering choices of ISPs. The idea is to impose a partial order
on the routes to a certain destination by relying on a hierarchical model of the
Internet [260, 122, 115, 187, 64]. The same authors have proposed in [125] a
model for backup routing that preserves routing stability under any combina-
tion of link or router failures. They show how to implement this model in BGP
by using a new attribute that conveys the avoidance level of a route.

Griffin et al. in [189] and Sobrinho in [97, 98] have introduced models to
capture the characteristics of path vector protocols and to abstract them from
the implementation. The work by Griffin et al. [189] addresses issues related to
the design of policy specification languages. They argue that policy languages
should prevent operators from being able to deploy configurations that lead to
unexpected routing anomalies, and they clearly define and explore the dimen-
sions of the design space of these languages. Sobrinho [97, 98] introduces a
solid theoretical model based on an algebraic framework which allows to study
the convergence properties of path vector protocols. Conditions ensuring con-
vergence are presented and proved. The author also describes several scenarios
that can be implemented with BGP, including policies that provide for the
enforcement of commercial relationships or backup routing. He reformulates
the guidelines from [124] and proves their validity in the algebraic framework.

In more recent times, Sobrinho and Griffin [193] have collaborated to define
a theoretical model that allows to describe routing protocols while applying a
clear separation of routing protocol mechanisms from routing policies. Based
on Sobrinho’s algebraic framework [97], they introduce a Routing Algebra Meta-
Language (RAML), which potentially allows an operator to implement an ar-
bitrary routing protocol on a RAML-enabled device. The use of an underlying
routing algebra allows to derive convergence conditions for a genering routing
protocol in a straightforward way, once a RAML description is available.

Cobb et al. [101] have proposed a routing model in which the participant
entities have freedom of choice on routing policies, provided that each node
selects a path that is consistent with those chosen by its descendants in the
routing tree. Stability of the routing system is ensured by handling tentative
paths via diffusing computations, and by appropriately eliminating nodes from
the routing tree in case faulty conditions occur.

Subramanian et al. have introduced in [113, 114] a hybrid link-state and
path-vector routing protocol which overcomes some of the major shortcomings

117

7. Interplay of Routing Policies at different Autonomous Systems

of BGP. The hybrid protocol, named HLP, provides for better scalability, limits
the global impact of local network faults, and achieves linear-time convergence
by constraining the path exploration process.

Wang et al. in [68] have relaxed the constraints on route selection algo-
rithms by considering an entire class of algorithms they call rational, which
choose better routes whenever available. They extend the usual routing model
which accommodates ranks for egress routes only, with a model that takes
into account routing choices based on inbound traffic. They show that, under
this model, even configurations that obey restrictions imposed by commercial
agreements may lead to oscillating routing.

7.3.1 The Stable Paths Problem Model

This Section briefly describes the model that is most used in the literature to
identify and examine BGP routing instabilities.

An instance of the Stable Paths Problem (SPP) model consists of a triple
S = (G,P, λ) where:

• G = (V,E) is a simple graph (i.e., an undirected graph with no loops
or multiple edges). Node 0 ∈ E is special in that all the other nodes
attempt to establish a path towards it.

• P =
⋃

v∈V Pv, where Pv is the set of permitted paths from v to 0. Node v
can only use paths in Pv to reach 0. Paths in Pv have distinct next hops
(that is, the second node u differs in every path (v u . . . w 0) ∈ Pv).

• Λ = {λv|v ∈ V − {0}}, where λv : Pv → N is a nonnegative integer-
valued ranking function that represents the level of preference assigned
by v to its permitted paths.

A path assignment function π : V → P describes the path π(v) that node v has
selected, among its permitted paths Pv, to reach node 0. Informally, a path
assignment is stable if every node has chosen the highest ranked path that is
coherent with the choice made by the next hop. More formally, a stable path
assignment is such that ∀v ∈ V : π(v) = best(choices(π, v), v), where:

choices(π, v) =
{
{(v u)π(u)|{v, u} ∈ E} ∩ Pv if v 6= 0
{(0)} if v = 0

best(P, v) =
{

p ∈ P such that λv(p) is maximal if P 6= ∅
ε if P = ∅

118

Instabilities Caused by Routing Policies

(v u)π(u) denotes a path that is the concatenation of edge {v, u} ∈ E with
path π(v) chosen by v. The symbol ε denotes the empty path, which indicates
that a node is unable to reach 0. Also, the following assumptions hold:

• ∀v ∈ V − {0} : ε ∈ Pv: the empty path is always permitted.

• ∀v ∈ V −{0}, p ∈ Pv −{ε} : λv(ε) < λv(p): the empty path is the lowest
ranked.

• ∀v ∈ V − {0}, p1, p2 ∈ Pv, p1 6= p2 : λv(p1) = λv(p2) ⇒ p1 = (v u)p′1 ∧
p2 = (v u)p′2: same rank implies same next hop; paths using different
next hops must be assigned different ranks.

• ∀p ∈ P : p is simple: paths cannot have repeated nodes.

• P0 = {(0)}; π(0) = (0).

A solution to the Stable Paths Problem is a stable path assignment. Griffin
et al. have proved [191] that checking whether a solution to an instance of SPP
exists is an NP-complete problem.

Observe that the Stable Paths Problem is a good abstraction of an inter-
domain routing system:

• The nodes and edges of G may correspond to Autonomous Systems and to
the BGP peerings existing between pairs of them. Node 0 may represent
an AS that originates a specific network prefix: all the other nodes search
for a path to reach it.

• Permitted paths at each node may describe BGP filters (prefix-lists,
route-maps, etc.) that selectively discard announcements and, therefore,
make the corresponding paths unusable.

• The ranking of paths at each node may be representative of the level of
preference assigned by routing policies to paths using different next hops.
This may be implemented in BGP by means of local-preferences,
metrics, and so on.

• The empty path ε corresponds to a node having no more alternatives to
reach the prefix originator in its routing table, and thus being unable to
send traffic to node 0.

119

7. Interplay of Routing Policies at different Autonomous Systems

DISAGREE BAD GADGET

2

0

1
20

210

120

10

(a)

2

0

1
20

210120

10

(b)

0

1

2 3
230

20
310

30

120

10

(c)

Figure 7.3: (a) An instance of SPP that admits a solution. (b) An instance
of SPP with multiple stable states. (c) An instance of SPP that does not
admit any stable path assignment, regardless of the initial state.

It is possible to completely describe an instance of SPP via an intuitive
drawing. Figure 7.3(a) shows an instance that admits a stable path assignment.
Nodes and edges describe the graph G = (V,E). Permitted paths are listed
beside each node. The rank assigned to each of them is implicitly coded in
the ordering of the paths: less preferred paths come after the more preferred.
For the instance of Figure 7.3(a), the solution to SPP is given by the path
assignment π(1) = (1 2 0), π(2) = (2 0).

By simply reversing the ranking function at node 2 it is possible to build
an instance that, depending on the timing of events, admits more than one
solution or even incurs permanent instability. Figure 7.3(b) shows an instance
that is known in the literature as Disagree. If node 1 chooses path (1 0) before
any other event occurs, the system stabilizes on the assignment π(1) = (1 0),
π(2) = (2 1 0). If, instead, node 2 selects path (2 0) before node 1 performs its
choice, the stable assignment is π(1) = (1 2 0), π(2) = (2 0). If nodes 1 and 2
perform their choices synchronously, the system keeps oscillating between the
assignments π(1) = (1 2 0), π(2) = (2 1 0) and π(1) = (1 0), π(2) = (2 0). In
fact, whenever nodes 1 and 2 select the direct path to 0, a better indirect path
through the neighboring node becomes available and is chosen. Yet, at the very
same time at which the indirect path is selected, it becomes unavailable because
it is not consistent with the choice of the neighboring node. For example, node
1 cannot keep the assignment π(1) = (1 2 0) because it is not consistent with
the path chosen by node 2, that is (2 1 0).

The SPP instance in Figure 7.3(c), that is commonly known as Bad Gad-
get, admits no solution, and path assignments indefinitely keep cycling. For

120

Instabilities Caused by Routing Policies

example, consider the following sequence of events:

1. At first, every node chooses a direct path, so that π(1) = (1 0), π(2) = (2 0),
and π(3) = (3 0).

2. Node 1 then detects that a better path through 2 is available, and changes
its assignment to π(1) = (1 2 0). Nodes 2 and 3 keep their current as-
signment.

3. Node 2 now switches to a better path through 3, and changes its assign-
ment to π(2) = (2 3 0). Nodes 1 and 3 keep their assignment unchanged.

4. Path (1 2 0) is no longer available at node 1 because of the change per-
formed by 2. Node 1 therefore switches to π(1) = (1 0). Nodes 2 and 3
keep their current assignment.

5. A better path through 1 is now available for node 3, which changes its
assignment to π(3) = (3 1 0). Nodes 1 and 2 keep their assignment un-
changed.

6. Node 2 loses its best path because of the modified assignment at 3, and
switches to π(2) = (2 0). Nodes 1 and 3 keep their assignment unchanged.

7. Node 1 can now switch back to its best path, and turn its assignment
into π(1) = (1 2 0). Nodes 2 and 3 keep their current assignment.

8. The best path through 1 at node 3 is no longer available, and the assign-
ment becomes π(3) = (3 0). Nodes 1 and 3 keep their current assignment.

9. Continue from step 2.

Note that, regardless of the sequence with which events occur, every assign-
ment eventually leads to a change on the part of some other node. This is a
typical example of persistent instability. A generalization of the Bad Gadget
structure has been introduced in [190] under the name of dispute wheel, and
the absence of any such pattern of policies in a network has been proved to be
a sufficient condition for the SPP instance to admit a solution [190, 191].

Also observe that abnormal settings such as the ones in Figure 7.3(b)
and 7.3(c) are not unlikely to happen in real world. Figure 7.4 shows a possible
description in RPSL [22, 44, 111] of the Disagree scenario.

Other kinds of interactions may lead to triggering of previously unfeasible
path assignments. There is a class of configurations for which only one stable

121

7. Interplay of Routing Policies at different Autonomous Systems

aut-num: AS0
as-name: THE-ORIGIN
export: to AS1 action aspath.prepend(AS0,AS0,AS0); announce AS0
export: to AS2 announce AS0

aut-num: AS1
as-name: POOR-PROVIDER
import: from AS-ANY accept ANY
export: to AS-ANY announce ANY

aut-num: AS2
as-name: GOOD-PROVIDER
import: from AS1 action pref = 0; accept ANY
import: from AS0 action pref = 10; accept ANY
export: to AS1 announce ANY

Figure 7.4: RPSL code describing a configuration of policies that imple-
ments the Disagree structure. Remember that lower values of the RPSL
pref attribute correspond to more preferred routes [22].

state is possible, until a network event (such as a link failure) triggers a different
stable path assignment that was originally unintended. Even if the event is
recovered (the link is repaired), the configurations are such that the system does
not revert to the original state. Such configurations are termed BGP Wedgies
in [185]. Figure 7.5 shows a simple example of this kind of configuration.
Underlined paths represent path assignments at each node. The initial state (a)
is such that the backup link directly connecting 3 to 0 is intentionally unused.
After a failure of the primary link between 1 and 0, the system switches to a
different stable path assignment (b) that utilizes the backup link. Note that
the path assignment in Figure 7.5(b) would not have been stable if the primary
link had still been available, as the direct path from 1 to 0 is preferred by node
1. After recovering from the fault (c), the system settles to a new stable state,
different from the initial one. There is no way of getting out of this state unless
other events occur, such as a fault of the backup link.

122

Instabilities Caused by Routing Policies

prim
ary ba

ck
up

prim
ary ba

ck
up

prim
ary ba

ck
up

0

1

10

1230

2

230

210

3

3210

30

(b)

0

1

10

1230

2

230

210

3

3210

30

(a)

0

1

10

1230

2

230

210

3

3210

30

(c)

Figure 7.5: An example of BGP wedgie: an instance of SPP in which a
network failure reveals a previously unfeasible stable path assignment which
is kept even after recovering from the fault.

7.3.2 An Alternative Model to Investigate BGP Routing
Instabilities

This Section introduces a variant of the Stable Paths Problem model that
takes into account the timing with which events take place. The goal is to
attempt to answer a question that is similar to that addressed by the Stable
Paths Problem: given a scenario consisting of a network and a configuration
of routing policies, is the resulting routing system stable? Yet, we would like
to answer this question inside a framework that is general enough to relax any
constraint on the sequencing of information exchanged between the nodes of
the network and to capture all the possible timings of routing events.

We believe this is very important for understanding routing dynamics and
policy interactions. In fact, while there are configurations that reach a stable
state regardless of the sequence of events (see Figure 7.3(a)) and others in
which any sequencing of message exchanges leads to persistent instability (see
Figure 7.3(c)), there exist structures in which timings play an important role.
The Disagree structure in Figure 7.3(b) and the wedgie of Figure 7.5 are
examples of situations in which this is especially true.

Our model of BGP routing is based on the definition of instance of Stable
Paths Problem introduced in Section 7.3.1. We slightly change this definition to
model other aspects of the routing system. Even if we use terms and definitions
that come from the BGP world (for example, we refer to the nodes as “routers”
and assume that they exchange “update” messages), the model can still be
considered a reasonable abstraction of a generic path vector protocol.

We replace the concept of path assignment with that of routing state. The

123

7. Interplay of Routing Policies at different Autonomous Systems

routing state of a router i is an (n + 1)-uple si =< pi0, pi1, . . . , pin > where:

n = |V | − 1 (7.1)
p00 = (0) (7.2)

∀j ∈ V − {0} : p0j = ε (7.3)
∀j ∈ V : pij ∈ Pi (7.4)
∀i, j ∈ V : {i, j} /∈ E ⇒ pij = ε (7.5)

∀i ∈ V − {0} : pii = ε (7.6)

Path pij represents how i can reach through its neighbor j the prefix announced
by 0.

The initial routing state of router 0 is < 0, ε, . . . , ε >; the initial routing
state of any other router is < ε, ε, . . . , ε >.

The path that router i is currently using to reach 0 is the highest ranked
among the pij and is identified by best(i). This function roughly corresponds
to the path assignment π of the standard Stable Paths Problem formulation.

The routing state S of the system is an (n + 1)-uple S =< s0, s1, . . . , sn >,
where si is the state of router i. In the initial routing state of the system all the
routers are in an initial state. Since S is an (n + 1)-uple of (n + 1)-uples, it can
be represented in a compact way by an (n + 1)× (n + 1) matrix of paths, where
each row represents the state of a router. We call this matrix the state matrix
of the system. With reference to the example in figure 7.5(a), the following are
two possible, randomly chosen, state matrices:

(0) ε ε ε
(1 0) ε ε ε

ε (2 1 0) ε ε
ε ε (3 2 1 0) ε

(0) ε ε ε
(1 0) ε (1 2 3 0) ε

ε (2 1 0) ε (2 3 0)
(3 0) ε ε ε

In the following we use a different epsilon symbol ε to indicate matrix coeffi-
cients that are forcedly set to ε as imposed by conditions 7.3, 7.5, and 7.6.

Our following findings are based on the observation that best(i) is the only
portion of the state of the system that actually influences the paths used by
packets to 0.

As routers exchange update messages, the system can change its current
state. We indicate with bestS(i) the path that is highest ranked at router i in
state S. A valid transition T : S′ → S′′ from state S′ to state S′′ is such that,
∀i ∈ V − {0}, j ∈ V, {i, j} ∈ E:

124

Instabilities Caused by Routing Policies

(a) (b)

(c) (d)

2

0 1

3

30

340

4

123400

234040

0

2

0 1

3

30

340

4

123400

234040

2

0 1

3

30

340

4

123400

234040

30
2

0 1

3

30

340

4

123400

234040

∋

Figure 7.6: An example showing how transitions can change the state of
a routing system.

• either p′′ij = p′ij (i has not received any update from j)

• or let k be a router in V such that bestS′(j) = p′jk:

– if p′jk = ε, then p′′ij = ε (i has received a withdrawal from j)

– else (i has received an announcement from j):

∗ if ip′jk ∈ Pi, then p′′ij = ip′jk

∗ else p′′ij = ε.

Observe that this definition of valid transition allows to consider a wide variety
of event timings in the system. Also consider that a transition might bring a
router in a state such that its best choice is worse than the one in the previous
state.

Figure 7.6 shows an example of transitions taking place in a routing system.
The best paths at each router are underlined.

125

7. Interplay of Routing Policies at different Autonomous Systems

(a). We start from state (a), described by the following matrix:
0 ε ε ε ε
ε ε (1 2 3 4 0) ε ε
ε ε ε (2 3 4 0) ε
ε ε ε ε (3 4 0)

(4 0) ε ε ε ε

(b). Now, suppose that router 3 receives an announcement directly from 0.

Since path (3 0) is permitted at 3, the announcement is accepted and p30

is updated in the state matrix. Moreover, path (3 0) is the highest ranked
at router 3, therefore best(3) is also updated. After this transition, state
(b) is described by the following matrix:

0 ε ε ε ε
ε ε (1 2 3 4 0) ε ε
ε ε ε (2 3 4 0) ε

(3 0) ε ε ε (3 4 0)
(4 0) ε ε ε ε

(c). At this point, router 3 propagates its newly selected best path (3 0) to

its neighbor 2. As path (2 3 0) is not permitted at node 2, ε is stored
in p23 in the state matrix. Also, since router 2 does not know any other
path to reach 0 (i.e., ∀j ∈ V : p2j = ε), its connectivity to 0 is disrupted.
After this change has taken place, state (c) is described by the following
matrix:

0 ε ε ε ε
ε ε (1 2 3 4 0) ε ε
ε ε ε ε ε

(3 0) ε ε ε (3 4 0)
(4 0) ε ε ε ε

(d). The event that triggers the last transition in this example is a withdrawal

issued by router 2 to router 1. Upon receiving it, router 1 replaces p12

with the empty path ε. As a consequence, also router 1 loses its connec-
tivity to 0. The matrix that describes state (d) is the following:

0 ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

(3 0) ε ε ε (3 4 0)
(4 0) ε ε ε ε

126

Instabilities Caused by Routing Policies

1 0

2

120

10
0

20 0 ε ε
ε ε (1 2 0)

(2 0) ε ε

Figure 7.7: An example of forwarding stable routing state that is not
strictly stable.

Stable Routing States

We now define the notion of stable routing state and introduce some properties
that are valid in our model.

A routing state S is strictly stable if, for any valid transition T : S → S′,
we have that S = S′. Even if the the state matrix does not change, transitions
can still occur in a strictly stable state, either because of absence of updates
(trivial transition) or because of repeated updates.

A routing state S is (forwarding) stable if, for any valid transition T : S → S′,
we have that bestS′(i) = bestS(i) for any i ∈ V .

The following Lemma trivially stems from the above definitions.

Lemma 7.1 If a routing state is strictly stable, then it is also forwarding sta-
ble.

Observe that the opposite does not hold. Figure 7.7 shows an example of
routing state that is forwarding stable but not strictly stable. Forwarding sta-
bility can be easily checked. Strict stability does not hold because, at the very
least, router 0 may announce the path (0) to router 1. Since (1 0) is permitted
at 1, this announcement updates p10 with the new path, thus changing the
state matrix to the following: 0 ε ε

(1 0) ε (1 2 0)
(2 0) ε ε

Yet, node 1 does not change its best choice because (1 2 0) is still the highest
ranked available path.

It is also interesting to notice that, in a strictly stable state, not all the paths
of a router are necessarily consistent with the best paths of its neighbors. For

127

7. Interplay of Routing Policies at different Autonomous Systems

1 0

2

10 0

20 0 ε ε
(1 0) ε ε
(2 0) ε ε

Figure 7.8: A strictly stable state for which not all the paths in the state
matrix are consistent with the best choices of the routers.

example, in Figure 7.8, p12 = ε is not consistent with best(2) = (2 0). This is
due to the restrictions imposed by permitted paths.

Lemma 7.2 ∀i ∈ V − {0}, j, k ∈ V : pij 6= ε ∨ pik 6= ε ⇒ pij 6= pik. The
property remains valid also if pij and pik are considered in two different states
of the system.

The above Lemma easily follows from the fact that paths using a different
next hop must necessarily be different.

We now prove a Lemma that will be useful to assert an interesting property
of forwarding stable states.

Lemma 7.3 If S is a forwarding stable state, then no pair of consecutive
transitions T ′ : S → S′, T ′′ : S′ → S′′ exists such that bestS′′(i) 6= bestS′(i) for
some i ∈ V .

Proof. We proceed by contradiction. Suppose, ab absurdo, that the transitions
T ′ and T ′′ do exist, and they are valid. Since S is forwarding stable, S′ must
be such that ∀i ∈ V : bestS(i) = bestS′(i). Therefore, there must be (at least)
one router j for which bestS′′(j) 6= bestS′(j). Assume, without restriction,
that bestS(j) = bestS′(j) = p′jh and bestS′′(j) = p′′jk. Also consider that the
following straightforward properties hold:

bestS(h) = bestS′(h)⇒ jbestS(h) = jbestS′(h) (7.7)
bestS(k) = bestS′(k)⇒ jbestS(k) = jbestS′(k) (7.8)
λj(p′′jk) > λj(p′′jh) (7.9)

Property 7.9 is true because j changes its choice in state S′′ from h to k.
We now have three possibilities to satisfy 7.9, which we prove separately:

128

Instabilities Caused by Routing Policies

• p′′jh = p′jh ∧ p′′jk 6= p′jk

We know from 7.9 that λj(p′′jk) > λj(p′′jh). Since all the transitions are
valid and p′′jk has been updated, it must also be that p′′jk = jbestS′(k)
(note that p′′jk cannot be the empty path as it is higher ranked than
p′′jh; this also ensures that jbestS′(k) ∈ Pj). Because of 7.8 and of
the hypotheses made in this branch of the proof, we can rewrite the
inequality as λj(jbestS(k)) > λj(p′jh). Therefore, there exists a transition
T ∗ : S → S∗ such that:

– ∀m 6= j, n 6= k : p∗mn = p′mn; in particular, p∗jh = p′jh, which implies
that λj(jbestS(k)) > λj(p∗jh).

– p∗jk = jbestS(k) (we know that jbestS′(k) ∈ Pj , hence from 7.8 we
also have that jbestS(k) ∈ Pj).

– bestS∗(j) 6= p∗jh because, at least, λj(jbestS(k)) > λj(p∗jh).

– bestS(j) = p′jh = p∗jh.

Therefore, S cannot be a forwarding stable state, which is a contradiction.

• p′′jh 6= p′jh ∧ p′′jk = p′jk

We proceed in the same way as in the first case. We know from 7.9 that
λj(p′′jh) < λj(p′′jk). Since all the transitions are valid and p′′jh has been
updated, we must have that p′′jh ∈ {jbestS′(h), ε}. Because of 7.7 and
of the hypotheses made in this branch of the proof, we can rewrite the
inequality as λj(jbestS(h)) < λj(p′jk) (the case for ε is trivial). Therefore,
there exists a transition T ∗ : S → S∗ such that:

– ∀m 6= j, n 6= h : p∗mn = p′mn; in particular, p∗jk = p′jk, which implies
that λj(jbestS(h)) < λj(p∗jk).

– p∗jh ∈ {jbestS(h), ε} (ε accounts both for the case in which jbestS(h)
is not permitted at j and for the case in which j has received an
empty path from h).

– bestS∗(j) 6= p∗jh because:

∗ if p∗jh = ε it trivially follows that p∗jk is more preferred (observe
that p∗jk = p′jk cannot be empty too because it also holds that
λj(p′′jh) < λj(p′jk));

∗ if p∗jh = jbestS(h) then, at least, λj(jbestS(h)) < λj(p∗jk).

Therefore, ∃g ∈ V, g 6= h : bestS∗(j) = p∗jg and p∗jg 6= ε.

129

7. Interplay of Routing Policies at different Autonomous Systems

– bestS(j) = p′jh 6= p∗jg from Lemma 7.2.

Hence, S cannot be a forwarding stable state, which is a contradiction.

• p′′jh 6= p′jh ∧ p′′jk 6= p′jk

In analogy with the previous cases, we know from 7.9 that λj(p′′jh) <

λj(p′′jk). Since all the transitions are valid and both p′′jh and p′′jk have been
updated, we must have that p′′jh ∈ {jbestS′(h), ε} and p′′jk = jbestS′(k)
(note that p′′jk cannot be the empty path as it is higher ranked than p′′jh;
this also ensures that jbestS′(k) ∈ Pj). Because of 7.7 and 7.8 and of the
hypotheses made in this branch of the proof, we can rewrite the inequality
as λj(jbestS(h)) < λj(jbestS(k)) (the case for ε is trivial). Therefore,
there exists a transition T ∗ : S → S∗ such that:

– ∀m 6= j, n 6= h, n 6= k : p∗mn = p′mn.

– p∗jh ∈ {jbestS(h), ε} (ε accounts both for the case in which jbestS(h)
is not permitted at j and for the case in which j has received an
empty path from h).

– p∗jk = jbestS(k) (we know that jbestS′(k) ∈ Pj , hence from 7.8 we
also have that jbestS(k) ∈ Pj).

– bestS∗(j) 6= p∗jh because:

∗ if p∗jh = ε it trivially follows that p∗jk = jbestS(k) is more pre-
ferred (observe that p∗jk cannot be empty too because p′′jk =
jbestS′(k) = jbestS(k) is not empty);

∗ if p∗jh = jbestS(h) then, at least, λj(jbestS(h)) < λj(jbestS(k)).

Therefore, ∃g ∈ V, g 6= h : bestS∗(j) = p∗jg and p∗jg 6= ε.

– bestS(j) = p′jh 6= p∗jg from Lemma 7.2.

In both cases, S cannot be a forwarding stable state, which again is a
contradiction. �

Intuitively, the idea on which this proof is based is that, if two transitions
T ′ : S → S′, T ′′ : S′ → S′′ exist such that bestS′′(i) 6= bestS′(i) for some i ∈ V ,
then the changes introduced by T ′ and T ′′ that alter the best choice at i can be
“anticipated” in an appropriately made transition T ∗ : S → S∗, the existence
of which makes state S not forwarding stable.

Based on Lemma 7.3, we can now prove the following Theorem:

130

Conclusions

Theorem 7.1 If S is a forwarding stable state, then no finite sequence of valid
transitions exists that brings the system into a state S′ such that bestS′(i) 6=
bestS(i) for some i ∈ V .

Proof. The proof consists in iteratively identifying the first intermediate tran-
sition that changes a best choice and applying Lemma 7.3.

By contradiction, assume that a sequence of valid transitions

T =
〈
T 1 : S0 → S1, T 2 : S1 → S2, . . . , Tn : Sn−1 → Sn

〉
, S = S0, S′ = Sn

with n > 2 exists such that bestS′(i) 6= bestS(i) for some i ∈ V . Let(
T k, T k+1

)
, 1 ≤ k ≤ n − 1 be a pair of transitions such that, for some j ∈ V :

bestSk+1(j) 6= bestSk−1 . Then, for Lemma 7.3, state Sk−1 cannot be forwarding
stable, which means that there must be a transition T ∗ : Sk−1 → S∗ such that
bestS∗(m) 6= bestSk−1(m) for some m ∈ V . Replace

(
T k, T k+1

)
in sequence T

with T ∗. By iteratively applying this argument, eventually a single transition
T : S → S is left in T such that bestS(h) 6= bestS(h) for some h ∈ V , which
means that S was not forwarding stable. �

Observe that the proof works correctly even for the case in which only one
transition in the sequence T changes a best choice: such a transition may be
simply coupled with the preceding one in order to apply Lemma 7.3.

Even if stable states are equipped with very nice properties, the system
may still be unable to reach them. We say that a state S′′ is reachable from a
state S′ if there exists a sequence of valid transitions〈

T 1 : S0 → S1, T 2 : S1 → S2, . . . , Tn : Sn−1 → Sn
〉

such that S0 = S′ and Sn = S′′.
Figure 7.9(a) shows an example of state that cannot be reached from the

initial state. This is due do the fact that the state of router 1 is not reachable
unless 2 has chosen (2 0) as its best, even temporarily. Yet, if this happened,
then 2 would never turn to its worse choice (2 3 0). Observe that, by simply
reversing the preference function at router 2, the same state becomes reachable.
In fact, in the system of Figure 7.9(b), router 3 may have announced its path
(3 0) to router 2 only after the latter has propagated its choice (2 0) to 1.

7.4 Conclusions

In this Chapter we present some effective approaches to study the interaction
of routing policies deployed at different Autonomous Systems.

131

7. Interplay of Routing Policies at different Autonomous Systems

(a)

0

1

0

120

2

20

230

3

30

0 ε ε ε
ε ε (1 2 0) ε
ε ε ε (2 3 0)

(3 0) ε ε ε

(b)

0

1

0

120

2 3

30

230

20

Figure 7.9: Example of a routing state that is unreachable (a) or reachable
(b) from the initial state.

We show how to check whether an arbitrarily chosen AS-path can be tra-
versed by the announcements of a specific BGP prefix, and also propose a
methodology to check what is the preference assigned by a router to two dis-
tinct equally long AS-paths. While these are very powerful applications of the
primitives described in Chapter 3, we believe there is still room for improve-
ments. In particular, the probing algorithms in Sections 7.1 and 7.2 could still
be tuned to minimize the number of necessary announcements and to provide
more accurate results in the case in which the investigated paths do not end
at a collector-peer.

We also introduce a model to study interdomain routing instabilities which
is a variant of the well known Stable Paths Problem formalism. Our model
takes into account all the possible timings of message exchanges among routers
and easily accommodates two different notions of stability. We also prove
interesting properties that relate the two kinds of stable state and introduce
the concept of reachability between states. Our model is still incomplete in
that it lacks conclusions about the way to identify stable states in a system
and to determine whether they are reachable. Among these yet unexplored
conclusions we could search for properties that allow to simplify the network
instance under consideration in order to make the model scale better to large
Internet-like instances. However, we believe this approach provides valuable
and, to a certain extent, novel instruments to study routing instabilities, and
is therefore worth being kept into account within future research to propose
extensions and to apply it to case studies from the real world.

132

Part IV

Experimenting Routing by
Emulation

Chapter 8

Emulation of Computer Networks with
Netkit

The one who could repeat the summer day
Were greater than itself, though he
Minutest of mankind might be.

The One who could repeat the Summer Day
Emily Dickinson

T
esting configurations is a common need both for network administrators
and for computer scientists interested in networking. The first can take
advantage of a testing phase for preventing trouble from happening on a

live network, while the latter can exploit test results in order to validate theoretical
models with practical experimentation. Ideally, testing should take place under
the very same conditions in which the configuration is to be eventually deployed.
However, this often means injecting artificially generated, potentially harmful traffic
into a live network, which may cause damage to it.

An effective alternative to live testing consists in implementing the network
configuration of interest inside a safe, isolated software environment which closely
reproduces the real target setting. Such environments are usually available in two
flavors:

• Simulation environments allow to compute the outcome of running a set of
network devices on a complex network by carrying into effect a black-boxed
set of procedures that are specific to the simulator. With the network as an

135

8. Emulation of Computer Networks with Netkit

input and the outcome (possibly a network state) as an output, simulators
do not necessarily reproduce the same sequence of events that would take
place in the real system, but rather apply an internal set of transformation
routines that brings the network to a final state that is as close as possible
to the one the real system would evolve to.

As this approach can be optimized in performance, the simulated network
can typically scale well in size. The drawback is that the simulated devices
may have limited functionalities and their behavior may not closely resemble
that of real world devices. The following is a list of some of the most
representative network simulators.

C-BGP [17, 20, 18] is a routing solver that computes the outcome of the
decision process of the BGP protocol [252] on a topology that may consist
of several routers. While it does provide complete support for policy routing
(see Part III), session establishment and routing timers are not modelled.

NS-2 [227] is an object oriented network simulator supporting both C++
and OTcl. It provides a very comprehensive interface for describing network
models which is based on an event-driven approach. Events are fired by a user
selectable scheduler and are managed by a user defined handler. Nodes in
the simulated network can use a variety of routing agents to forward packets
over links that simulate different types of media. Traffic generators can be
configured to inject the desired packet patterns into the network. Thanks to
a modular structure, a number of extensions is continuously being provided
by researchers. NS-2 is typically used in conjunction with topology generators
which allow to quickly build large realistic networks.

SSFNet [235] provides open source implementations of several network pro-
tocols and network devices based on a standardized API. A network described
in the Domain Modeling Language (DML) can be submitted to the simula-
tion kernel, which computes its evolution over a time interval with a fixed
discrete time resolution. Measurements can be performed on the nodes to ob-
serve their behavior during the simulation (for example, the status of packet
queues) and, based on them, an animated view of the network displaying
network states or packet transmissions that are of interest for the user can
be obtained.

• Emulation environments aim at closely reproducing the features and be-
havior of real world devices. For this reason, they often consist of a software
or hardware platform that allows to run the same pieces of software that
would be used on real devices. Differently from simulation systems, in an

136

An Overview of Emulation Environments

emulator the network being tested undergoes the same packet exchanges and
state changes that would occur in real world.

The real advantage of this approach comes out when the emulator itself is a
software piece, as this allows much higher flexibility in carrying out network
tests. Since emulation makes use of real routing software, every aspect of the
network can be influenced and monitored like it could be in a real network.
While this ensures very high accuracy, the computational resources needed
to run an emulated device are typically higher than those available in the
device itself. Hence, the performance of an emulated device is, in general,
lower than that of the real one, and this often poses limits on the scalability
of the size of the emulated network.

Since emulation environments are the focus of this Chapter, examples of
them are presented in the following Sections.

This Chapter introduces to the fundamental concepts of emulation environ-
ments and presents Netkit [35], a lightweight product based on open source soft-
ware that enables experimenting networking on a personal computer. After de-
scribing the architecture and some internals of Netkit, we show how it is possible
to easily prepare and run complex network experiences, which can also be facilely
packaged and redistributed. An example case study is also presented to show the
capabilities of Netkit.

8.1 An Overview of Emulation Environments

An emulator is a software or hardware environment that aims at closely repro-
ducing the features and behavior of a real device or system, usually making
it possible to use software products unaltered inside a system they were not
designed for.

There are a lot of emulation products available, which can be distinguished
on the basis of the emulation technique adopted, of the type of device they
emulate, and of the license with which they are distributed. This Section
attempts to provide a taxonomy of a number of emulators, with the twofold
purpose of outlining the landscape of available alternatives and of pointing out
those products that are more network oriented.

Table 8.1 shows a fairly comprehensive list of the existing emulation prod-
ucts. The proposed classification coordinates have the following meaning:

• The scale ranges from small to large, and describes the number of virtual
entities (hosts, routers, switches, or whatever else) each emulator allows

137

8. Emulation of Computer Networks with Netkit

S
c
a
le

E
m

u
la

t
io

n
ty

p
e

E
m

u
la

t
e
d

d
e
v
ic

e
L
ic

e
n
s
e

L
in

k

B
o
ch

s
S
m

a
ll

F
u
ll

e
m

u
la

ti
o
n

IA
-3

2
x
8
6

G
P
L

[2
0
4
]

C
o
o
p
e
ra

ti
v
e

L
in

u
x

M
e
d
iu

m
K

e
rn

e
l
p
o
rt

L
in

u
x

b
o
x

F
re

e
[2

0
6
]

C
ro

ss
O

v
e
r

M
e
d
iu

m
C

o
m

p
a
ti

b
il
it
y

la
y
e
r

W
in

d
o
w

s
A

P
Is

C
o
m

m
e
rc

ia
l

[2
4
5
]

D
o
sB

o
x

S
m

a
ll

F
u
ll

e
m

u
la

ti
o
n

x
8
6

D
O

S
b
o
x

G
P
L

[2
0
8
]

D
o
sE

M
U

S
m

a
ll

C
o
m

p
a
ti

b
il
it
y

la
y
e
r

D
O

S
b
o
x

G
P
L

[2
0
9
]

E
in

a
r

L
a
rg

e
R

o
u
te

r
e
m

u
la

ti
o
n

Q
u
a
g
g
a

b
a
se

d
ro

u
te

r
G

P
L

[2
1
0
]

E
m

u
la

b
L
a
rg

e
T
e
st

b
e
d

—
P
ro

je
c
t

b
a
se

d
[1

9
9
]

F
A

U
m

a
ch

in
e

M
e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

x
8
6

b
o
x

G
P
L

[4
7
]

IM
U

N
E
S

M
e
d
iu

m
V

ir
tu

a
l
im

a
g
e

L
in

u
x

b
o
x

F
re

e
[5

0
]

K
V

M
M

e
d
iu

m
N

a
ti

v
e

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

G
P
L

[2
2
1
]

M
L
N

M
e
d
iu

m
P
a
ra

v
ir

tu
a
li
z
a
ti

o
n
/
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

F
re

e
[2

2
2
]

M
o
d
e
ln

e
t

L
a
rg

e
T
e
st

b
e
d

L
in

u
x

b
o
x

G
P
L
/
B

S
D

[4
8
]

N
C

T
U

n
s

M
e
d
iu

m
S
im

u
la

ti
o
n

H
o
st

/
R

o
u
te

r
F
re

e
[1

8
2
]

N
e
tk

it
M

e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

G
P
L

[3
5
]

P
a
ra

ll
e
ls

M
e
d
iu

m
F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

C
o
m

m
e
rc

ia
l

[1
5
6
]

P
e
a
rP

C
S
m

a
ll

F
u
ll

e
m

u
la

ti
o
n

P
o
w

e
rP

C
b
o
x

G
P
L

[2
2
8
]

P
la

n
e
tl

a
b

L
a
rg

e
O

v
e
rl

a
y

n
e
tw

o
rk

—
M

e
m

b
e
rs

h
ip

[1
6
1
]

P
le

x
8
6

M
e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

F
re

e
[2

3
1
]

Q
S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

F
re

e
[2

3
2
]

Q
E
M

U
S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

G
P
L

[5
1
]

S
V

IS
T
A

S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

C
o
m

m
e
rc

ia
l

[2
3
6
]

U
M

L
M

e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

G
P
L

[2
3
8
]

U
M

L
M

O
N

M
e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

G
P
L

[6
2
]

v
B

E
T

M
e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

N
/
A

[4
9
]

V
D

E
L
a
rg

e
O

v
e
rl

a
y

n
e
tw

o
rk

—
G

P
L

[1
6
6
]

V
IN

I
L
a
rg

e
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

M
e
m

b
e
rs

h
ip

[2
4
1
]

V
ir

tu
a
lB

o
x

S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

G
P
L
/
C

o
m

m
e
rc

ia
l

[8
0
]

V
ir

tu
a
l
P
C

S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

F
re

e
[1

4
6
]

V
ir

tu
o
z
z
o

S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

C
o
m

m
e
rc

ia
l

[2
4
2
]

V
M

w
a
re

S
m

a
ll

F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

C
o
m

m
e
rc

ia
l

[2
4
3
]

V
N

U
M

L
M

e
d
iu

m
U

se
r-

m
o
d
e

k
e
rn

e
l

L
in

u
x

b
o
x

G
P
L

[1
8
6
]

W
in

4
L
in

M
e
d
iu

m
F
u
ll

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

C
o
m

m
e
rc

ia
l

[2
4
4
]

W
in

e
M

e
d
iu

m
C

o
m

p
a
ti

b
il
it
y

la
y
e
r

W
in

d
o
w

s
A

P
Is

G
L
P
L

[2
4
5
]

X
e
n

M
e
d
iu

m
P
a
ra

v
ir

tu
a
li
z
a
ti

o
n

x
8
6

b
o
x

G
P
L
/
C

o
m

m
e
rc

ia
l

[1
4
9
]

Table 8.1: A taxonomy of emulation-related products.

138

An Overview of Emulation Environments

to start on the platform it is intended to be used on (typically a standard
workstation). A small scale emulator is usually conceived for running
very few instances of virtual machines, as their resource requirements
may be rather high. A large scale emulator is usually designed to run on
a distributed architecture (possibly a cluster of geographically distributed
workstations connected by an overlay network), which allows to perform
arbitrarily wide-ranging experiments. Medium scale emulators typically
allow to run around tens of virtual machines on a single workstation.

• Emulation type specifies the technique used for virtualizing resources.
Full virtualization indicates that the emulated entity is a full-fledged sys-
tem consisting of system buses, CPU, memory, disk, and other devices,
and that optimization techniques are used to improve the performance
of the emulation. Among these techniques dynamic translation is often
used, which consists in translating blocks of binary code being executed
in the emulated machine into instructions for the real host, and in caching
the translated pieces of code for future execution.
Full emulation adopts a complementary approach, in which every in-
struction of the emulated CPU is implemented as an entire function or
procedure in the emulator. While this ensures compatibility and makes
it easier to debug the code of the emulator, performance is severely im-
pacted by this technique, and a high-end workstation is usually needed
to achieve nearly native speed emulation.
Native virtualization takes place whenever the emulator takes advantage
of extensions available on recent families of processors (Intel R©VT [81],
AMD-VTM [3]), which allow a more effective distribution of resources
between the emulated machine and the host it runs on, thus achieving
much better performance.
In a paravirtualization environment each virtual entity is presented a
special hardware abstraction layer. Virtual machines must run slightly
modified versions of the standard operating systems, so that system calls
are submitted to this abstraction layer (called hypervisor or virtual ma-
chine monitor) instead of the host operating system.
Emulation environments using a virtual image are based on virtualization
extensions to the FreeBSD kernel [212] which allow to maintain multi-
ple independent network stack instances within a single operating system
kernel.
Some products exploit a user-mode kernel, often called User-Mode Linux
(UML) [238, 92, 91], which is a slightly modified version of a standard

139

8. Emulation of Computer Networks with Netkit

Linux kernel that is compiled to run as a userspace process. An instance
of User-Mode Linux uses its own filesystem image and allocates a sub-
set of the memory available on the hosting machine. A UML kernel can
start and schedule processes on its own and has its own virtual mem-
ory manager as well as every other kernel subsystem. Device drivers are
suitably rewritten so that UML can provide some support for virtualized
hardware (disks, network interfaces, consoles). Differently from other
emulation systems, User-Mode Linux does not directly interface with the
hardware but achieves virtualization based on the system calls interface
provided by the standard kernel.
A compatibility layer is not a real emulator, but rather a porting of a
system call interface and a set of libraries on a different platform. In this
case there is no hardware being emulated. However, programs that solely
perform standard system calls and invoke library functions can run un-
modified because they are presented the same software interface as that
of their native system.
Testbeds and overlay networks are large scale environments consisting of
tens or hundreds of servers that can be geographically distributed (in
which case they are often connected so as to form an overlay network).
Such large scale architectures can be typically accessed by research insti-
tutions to perform controlled experiments on a realistic setting.
Last, simulation has already been defined and described in the introduc-
tion of this Chapter.

• The emulated device specifies the machine whose features are repro-
duced by the emulator. In most cases it is a standard PC which, by
running suitable pieces of software, can be turned to a router, switch, or
other network device.

• License specifies the license agreement under which the emulator is being
distributed.

Not all the products listed in Table 8.1 are tailored for performing network-
ing experiments. Some of them are general purpose, often small scale emulators
that allow to run entire operating systems. We are more interested in the en-
vironments that provide configuration capabilities and tools to ease building
and running emulated networks.

VDE and Xen are components that are often used in emulation environ-
ments. Virtual Distributed Ethernet (VDE) [166, 169, 168] is a set of tools to
create and manage a virtual network that can be spawned over a set of arbi-

140

An Overview of Emulation Environments

trarily distributed physical computers (see [167]). VDE can be used to handle
tunnels that separate actual connectivity from the topology established by
VDE virtual cables, thus providing with the ability to transparently distribute
local network experiences on different nodes. Xen [149, 79, 78, 77, 107, 159]
is a virtual machine monitor or hypervisor, that is, a software that provides
an abstraction of hardware resources. It consists of a kernel patch and some
userspace tools. Because it directly interfaces with hardware resources, using a
Xen enabled kernel allows to run virtual machines (also called domains) with
very high performance levels. Operating systems cannot run unmodified in-
side Xen domains, as the system calls they make must be mapped to software
traps to the hypervisor. Yet, there are plans to extend Xen to support virtu-
alization technologies found on recent processors (Intel R©VT [81] and, in the
future, AMD-VTM [3]), which would provide with the ability to run unmodified
software.

Einar [210] is a live CD router emulator based on the Xen hypervisor [149]
and developed by a team of 5 students at the Stockholm KTH Royal Institute
of Technology. It provides a wizard interface to quickly set up and run experi-
ences consisting of several switches, routers, and computers, possibly running
some services. Each virtual machine is implemented as a Xen domain, and it
possible to configure bandwidth and delay limits on network interfaces. The
traffic exchanged among the virtual machines can be investigated by using the
Ethereal network sniffer. As it runs from a live CD, the product requires no
installation.

Emulab, Modelnet, PlanetLab, and VINI share similar purposes and ar-
chitecture. They all are large scale testbeds which allow to run experiments
involving a set of geographically distributed nodes. The University of Utah
makes available to researchers Emulab [199, 87, 87], a cluster of networked
high-end workstations that can be configured to run fully customizable tests.
Faculty or senior staff members coordinating an experiment have fine grained
control on the software running on workstation nodes, from the operating sys-
tem to user level applications, and get exclusive administrator level access
during the time interval they are assigned. This allows to configure each node
to act as an arbitrary network device. Modelnet [48, 162, 86, 7] is a software
emulator developed at the University of California, San Diego, that allows to
build distributed network experiences running on an Internet-like environment.
PlanetLab [161, 2, 118, 117, 183] is an overlay testbed conceived to allow re-
searchers to perform controlled experiments that would benefit from running
on geographically distributed nodes. The PlanetLab network consists of more
than 350 nodes at the time this Chapter is being written, and is managed by a

141

8. Emulation of Computer Networks with Netkit

consortium of academic, industrial, and government institutions. Experiments
are initiated on the basis of an Acceptable Use Policy [230] that defines the rules
for determining whether they are considered as appropriate. VINI [241, 10] is
a virtual network infrastructure running on about 15 PlanetLab nodes. It
exploits User-Mode Linux [238] to provide a realistic test environment while
keeping the network conditions under control.

IMUNES [50] is a software emulator that takes advantage of an extension of
the FreeBSD kernel providing with the ability of running multiple independent
network stack instances on a single operating system kernel [138, 212]. A
graphical topology editor allows to quickly prepare experiments consisting of
hubs, switches, routers, and hosts. Intermediate systems can arbitrarily use
Quagga [233] or XORP [82] as routing software. The product is available in
the form of a live CD, which takes off the burden of having to deploy a modified
kernel on the host machine.

MLN [222] is a Perl script that can be used to quickly create a network
consisting of Xen [149] and User-Mode Linux [238] based virtual machines. By
means of an ad-hoc language (MLN), it is possible to specify the configuration
of each device participating in the virtual network, including the emulation type
(Xen or UML), the filesystem being used, the amount of available memory, the
startup commands to be executed, and, of course, the topology of the network.

NCTUns [182, 176, 181, 177, 1, 178] is rather a simulator than an emulator.
After defining a topology with the integrated graphical editor, it is possible
to launch traffic generators and sinks at a given time during the simulation.
The resulting traffic flows can then be investigated either by looking at sniffer
traces or by displaying an easy to read animation of the edges on the graphical
topological map.

Netkit, UMLMON, and VNUML are all medium scale software emulators
that utilize a User-Mode Linux [238] kernel to run the emulated network ex-
periences. Netkit is extensively described in the following of this Chapter.
UMLMON [62] is a solution for managing a set of User-Mode Linux virtual
machines. It comes in the form of a daemon written in Objective Caml and
acts as a supervisor that allows to configure and run UML instances by us-
ing a Remote Procedure Call interface. Interaction between the end user and
the daemon is possible by means of a command line or a web based interface.
VNUML [186, 54, 53] consists of an XML based language and an interpreter
that can be used to describe and run an emulated network of User-Mode Linux
virtual machines. VNUML developers also propose an interesting set of ready
to use examples that implement some typical networking case studies.

142

The Architecture of Netkit

NIC

NIC

RAM

Virtual hub
RAM

DISK

DISK

Figure 8.1: Resources of a Netkit virtual machine. Entities enclosed in
the thick dashed box are virtualized, while all the others correspond to
devices or processes on the host machine.

8.2 The Architecture of Netkit

In the rest of this Chapter we describe in detail Netkit [35], a lightweight
network emulator developed by people at the University of Roma Tre [240],
including myself. Netkit consists of two main components: a set of scripts
and tools that ease setting up complex network scenarios consisting of several
virtual devices, and a set of ready-to-use virtual experiences that can be used
to analyze typical case studies. Netkit is conceived for easy installation and
usage and does not require administrative privileges for either one of these
operations.

As time goes on, old bugs are fixed and new features are introduced into
Netkit. This Chapter refers to the version of Netkit available at the time of
writing, which is 2.4, filesystem F2.2, kernel K2.2 (User-Mode Linux kernel
2.6.11.7). Further information and documentation about Netkit can be found
in the Netkit man pages, in the on-line tutorials [36], and in Netkit related
publications [140, 37].

The emulation approach adopted in Netkit is simple. Basically, every device
that makes up a network is implemented inside Netkit as a virtual machine.
Each virtual machine owns a set of virtual resources that are mapped to por-
tions of the corresponding resources on the host. Figure 8.1 shows how this
mapping takes place. Virtual machines are equipped with a disk, whose raw

143

8. Emulation of Computer Networks with Netkit

NIC

NIC NIC

NIC

VM2

VM1

VM3
RAM

RAM

Virtual hub

Virtual hub

RAM

DISK

DISK

DISK

Figure 8.2: Sample Netkit emulated network.

image is a file in the host machine; they have their own memory region, whose
size can be established upon startup; and they can be configured with an ar-
bitrary number of virtual network interfaces which are connected to a virtual
hub. The thick dashed box in Figure 8.1 encloses virtualized resources, while
everything outside of that box is a device or process on the host. It is possible
to observe that the virtual hub lives on the real host: indeed, it is a special
process that replicates packets on all the connected interfaces. If requested,
the virtual hub can be connected to a network interface of the host machine,
so that a virtual machine can reach an external network such as the Internet.

To make a clear distinction between an emulated device and the real ma-
chine it is running on, in the following we label Netkit virtual machines and the
software they run as guest, and we refer to the real machine and the software
it runs as host.

Netkit virtual machines can be networked by means of the virtual hub. In

144

The Architecture of Netkit

practice, a hub works as a sort of cable that connects multiple guests. Notice
that a guest must always connect to a virtual hub, and cannot be directly
connected to another guest. Figure 8.2 shows an example of how a typical
Netkit network looks like. VM1, VM2, and VM3 are virtual machines and they
make up a simple topology consisting of two collision domains: one including
VM1 and VM2 and the other including VM2 and VM3. In this topology VM2 operates
as a virtual switch that forwards traffic only on the ports connected to the
LAN segment containing the destination host. For this purpose, VM2 has been
equipped with two network interfaces.

The example in Figure 8.2 also introduces another principle of the Netkit
emulation approach: the functionalities of an emulated device depend on the
software installed in the virtual machine that implements it. For instance, VM2
can be turned to a switch by running standard ethernet bridge administration
software such as brctl.

Netkit virtual machines are based on the User-Mode Linux kernel [238],
which is described in more detail in Section 8.2.1. Starting a virtual machine
means starting a UML instance, which often requires dealing with somewhat
complex command line arguments. For this reason Netkit supports straight-
forward configuration and management of virtual machines by means of an
intuitive interface consisting of several scripts.

Figure 8.3 synthetically describes the architecture of Netkit, consisting of
the blocks inside the dashed box. Each block represents a piece of software
that runs on top of the ones beneath and is controlled by the tools on its left.
Virtual machines are UML instances that directly run on the host kernel and
are managed by a set of commands whose names are l-prefixed (ltools) and
v-prefixed (vtools). Virtual machines can run routing software, as well as other
tools. Virtual hubs are implemented as processes running on the host kernel.

It is interesting to observe that there is no need for the end user to directly
interact with UML kernels or virtual hubs. On the other hand, both the ltools
and the vtools are accessible to the user. The difference between the two is
that the ltools provide a higher level interface to virtual machines and therefore
exploit the vtools in order to implement their functionalities.

Because of its architecture, taking advantage of Netkit can be beneficial in
several contexts. The most common application is within didactics: as it gives
students the feeling of what is actually going on inside a network, Netkit has
been successfully used to teach networking protocols within University level
degree courses. This is further supported by the fact that Netkit comes with a
set of ready to use network experiences that implement case studies spanning
from routing protocols (TCP, RIP, BGP, etc.) to application level services

145

8. Emulation of Computer Networks with Netkit

User−Mode Linux

vtools

ltools

Routing software

Other processes

Virtual hub

Other processes

U
s
e
r

in
te

rf
a
c
e

Host kernel

Netkit

Figure 8.3: Architecture of Netkit. Each software runs on top of the ones
beneath and is controlled by the tools on its left.

(DNS, e-mail, etc.) [36]. Another valuable application consists in preparing
virtual networks that act as sandboxes for safe debugging purposes: this spares
the need to perform potentially harmful tests on a live network. The ability
to carry out experiments in a safe environment, combined with the easiness of
maintaining a one-to-one reproduction of a real network, also comes handy for
testing a configuration before deploying it. For example, Netkit has been used
for helping in determining the OSPF weights to be assigned within portions of
the GARR Italian Academic Research Network [213].

With respect to the other available network emulators, Netkit has the ad-
vantage of being lightweight and easy to install and run. It is possible to
launch a complex network experience consisting of 200 virtual machines in
about 30 minutes on a typical workstation (Pentium IV 3.2GHz 2MB cache,
2GB RAM)1. Netkit fully runs in userspace and has no dependencies on other
software pieces. It natively uses state of the art routing software [233, 108]
and comes with most of the commonly used networking tools (sniffers, servers,
etc.). Should it be needed, it is possible to also install additional packets inside
virtual machines. As detailed in Section 8.3, emulated network experiences

1This test has been performed on a SKAS enabled host kernel. For more details about
this, see Section 8.2.1

146

The Architecture of Netkit

can be easily redistributed in a preconfigured, ready to use, and automatically
starting up package without the need to carry any heavy filesystem image.

On the other side, Netkit only works on top of Linux hosts and provides
emulated Linux virtual machines. While preliminary versions for the Windows
OS are being released, and a live CD [179] is also available to make it easier to
play around with Netkit, the second restriction is inherent in Netkit and cannot
therefore be overcome. Also, at present Netkit provides a somewhat fixed
implementation of the link-level network layer which does not provide support
for the emulation of physical link properties (latency, packet loss, reordering,
etc.) or the behavior of wireless mobile stations. However, there are plans
to implement some of these features in future releases. Moreover, being an
emulator, Netkit is not suited for reproducing real time performance of network
protocols and services.

There are a couple of projects that propose XML based languages for de-
scribing networks and can therefore be exploited to delineate and implement
emulated scenarios. NetML [38, 84] is a project carried on by the same group
that maintains Netkit, and for this reason it is strongly integrated with the
emulator. Besides an XML Schema, NetML consists of a set of tools that al-
low to turn a vendor independent description of a network into configuration
statements for specific routing software (Cisco, Juniper, Zebra) or, optionally,
a package implementing a Netkit network. NDL [197, 95, 94, 93] is a language
based on the Resource Description Framework (RDF) and a set of tools that
ease producing network descriptions. While NetML is conceived to describe
small as well as broad networks, NDL is more suitable for large scenarios, as it
also takes into account the geographical location of network nodes. NDL tools
also allow to automatically sketch visual representations of a network.

8.2.1 User-Mode Linux: a Kernel in the Kernel

In an emulation environment virtual machines have nearly the same charac-
teristics of a real host, including their own operating system running on top
of their own kernel. Netkit exploits User-Mode Linux as kernel for the virtual
machines. User-Mode Linux is widely used by kernel hackers, who are doing
filesystem and memory management development and debugging, as well as by
hardware developers, who are prototyping new types of device in software. It
also meets the interests of the security community, as it fits well the creation
of jails and honeypots, and is often employed by the hosting industry to run
virtual servers [120, 110]. The fundamentals of UML are illustrated by its de-

147

8. Emulation of Computer Networks with Netkit

signer Jeff Dike in some publications [92, 88] which the following description is
based on.

User-Mode Linux [238, 92, 52, 109, 91, 14, 90, 89] is a port of the standard
Linux kernel [220] which is designed to run as a userspace process. Being a
kernel in itself, UML comes with its own kernel subsystems, including scheduler,
memory manager, filesystem, network, and devices. In this sense an instance
of UML provides a virtualized environment in which everything (processes,
memory, filesystem, etc.) is controlled by itself instead of the host kernel. In
practice, UML appears as a userspace process on the hosting machine and acts
as a kernel for its own processes.

Virtual machine settings can be passed to UML via a command line inter-
face. While this is an effective way of specifying configuration parameters, it
is often the case that users interested in just emulating networks are not will-
ing to deal with complex kernel invocation commands. For this reason, Netkit
provides a higher level user interface to UML which is described in more detail
in Section 8.2.4.

There is an important difference in the approach adopted by full emula-
tion/virtualization products and that adopted in Netkit. Full emulation prod-
ucts usually attain virtualization by directly interfacing with the host hardware,
and provide an abstraction layer implementing an architecture that may also
be different from the one of the host they are running on. In the case of UML,
virtualization takes place within the host kernel rather than at the hardware
layer. In other words, UML provides simulated hardware constructed on the
basis of services provided by the host kernel. Essentially, UML is a port of
the Linux kernel to the Linux system call interface rather than to a specific
hardware interface. User space code simply runs natively (no emulation), while
processes in kernel mode see a special environment which limits access to host
resources. This makes the emulation faster and more responsive, and is the
reason why Netkit is considered a lightweight emulator. The drawback of this
approach is that it only allows to run emulated Linux boxes.

Basically, what UML does is to provide virtualization for system calls. Nor-
mally, a process in the virtual machine doing a system call is trapped directly
into the host kernel. Instead, UML intercepts system calls so that they are run
in virtual kernel mode. This is implemented by using threads and the ptrace
system call. ptrace allows one process to control the execution of another,
as well as change its core image and be notified when it receives a signal. In
UML a special thread called tracing thread makes use of ptrace to intercept
and dispatch to the virtual kernel the system calls issued by processes in the
virtual machine. Other traps caused by pieces of hardware (clock, I/O devices,

148

The Architecture of Netkit

Host console
max@foo:~$ ps -o pid,command

PID COMMAND

12959 /bin/bash

12987 /bin/sh /usr/local/netkit/netkit2/bin/vstart pc1

12990 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(tracing thread)]

12991 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

12998 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13000 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13002 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13004 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13006 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13007 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13009 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13011 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13013 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13015 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13016 xterm -T Virtual Console #0 (pc1) -e port-helper -uml-socket

/tmp/xterm-pipexvvhYG

13018 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [(kernel thread)]

13021 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [/sbin/init]

13696 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [/sbin/klogd]

13792 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [/sbin/syslogd]

13834 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [-bash]

13836 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [-bash]

13868 /usr/local/netkit/netkit2/kernel/netkit-kernel (pc1) [tcpdump]

13895 ps -o pid,command

Figure 8.4: Processes and threads in a UML virtual machine are imple-
mented as processes on the host.

etc.) are implemented in UML by using signals.
For each process or thread running inside the UML virtual machine, the

tracing thread creates a new process on the host. Figure 8.4 shows a process
listing on the host while tcpdump is running inside a virtual machine. It can be
easily seen that tcpdump appears as a process entry (pid 13868) on the host.

After performing preliminary initializations, UML mounts a virtual disk
device provided by the user and boots the Linux distribution it finds inside
it. Virtual disks are managed by a User-mode Block Device (UBD) driver,
which uses a standard file (called backing file) on the host filesystem as storage
area. The backing file can be filled with Linux software in a way that is very
similar to what would happen on a real host. Indeed, the backing file can be
made available as a loopback device on the host machine by using the losetup

149

8. Emulation of Computer Networks with Netkit

command. Once done, it can be initialized by using mkfs and populated by
using tools such as debootstrap. In order to support hassle free usage, Netkit
comes with a ready to use filesystem containing most state of the art networking
tools. For more details, see Section 8.2.3.

UML supports the emulation of an arbitrary number of network interfaces.
This aspect is discussed in more detail in Section 8.2.2.

Being a lightweight environment, it is possible to implement complex se-
tups consisting of several instances of UML based virtual machines. Since each
virtual machine writes on its own filesystem, this potentially implies using sev-
eral backing files, which size is often not negligible (hundreds of megabytes).
However, the ubd block driver is able to support sharing of a filesystem among
different virtual machines. This is achieved by writing changes to the back-
ing file into a different file, a technique that is also known as Copy-On-Write
(COW). Therefore, a typical setup of a complex emulated scenario consists of a
single large backing file containing a model filesystem and several small (typi-
cally less than 10MB) COW files that store the changes to the model filesystem.
Thus, filesystem information for a virtual machine can only be reconstructed
based on both its own COW file and the backing file. Each COW file can only
be used together with the backing file it was created from. However, by using
the UML utility uml_moo [239, 155], it is also possible to merge the two and get
a standalone backing file that contains all the filesystem information for that
virtual machine. COW files are implemented as sparse files. A sparse file is
one which efficiently uses the filesystem by allocating space only when data is
actually written to the file. Figure 8.5 shows an example of the space allocation
strategy for a sparse file. Apparently, the size of pc1.disk is 602MB (output
of ls), but the actual disk space consumption for this file is of 620KB (first
column of the output of ls and output of du). This means that pc1.disk has
a lot of contiguous empty regions which are not actually written to disk: this
is often the case for COW files, as the filesystem of an only just started virtual
machine only slightly strays from the initial status.

Once a UML virtual machine has started, it is possible to interact with it
by means of a terminal interface. The interface can be attached to arbitrary
file descriptors, pty pseudo terminal devices, or to a user space application like
xterm or a server like telnetd. This is possible thanks to the port-helper
tool, that is part of the UML utilities [239, 155]. Essentially, port-helper uses
a UNIX socket to pass to the UML kernel a file descriptor obtained from an
application (like xterm) and used to perform input/output. This allows UML
to directly interface with the application.

UML instances can be managed from the host machine by means of the

150

The Architecture of Netkit

Host console
max@foo:~$ ls -ls --block-size=1 pc1.disk

634880 -rw-r--r-- 1 max max 630358016 2007-01-19 18:24 pc1.disk

max@foo:~$ du --block-size=1 pc1.disk

634880 pc1.disk

Figure 8.5: Size and actual disk space consumption of sparse files.
|pc1.disk— takes about 620KB of disk space, but is apparently as large
as 602MB.

uml_mconsole utility [239, 155], which allows to halt or reboot a virtual ma-
chine, to send it magic SysRq sequences, to configure emulated devices on the
fly, and to pause or continue its execution. uml_mconsole is used in the Netkit
scripts to manage running virtual machines.

In the past UML used to be available in the form of a patch to a standard
Linux kernel [238, 220]. Most recent kernels already include user-mode code,
thus a UML kernel can be simply built by specifying um as target architecture
while compiling a vanilla kernel. Starting from 2002, Paolo Giarrusso [154]
maintains a set of patches called SKAS that can be optionally applied to the
host kernel to change the way UML behaves. The patches have beneficial
effects in terms of both security and performance. Essentially, when using
the standard technique with tracing thread, the address space of each virtual
machine contains the image of the UML kernel, and can have write access to it.
Since UML runs on the host, this also means gaining access to the host machine,
which affects security. On the other hand, UML takes advantage of signals in
order to implement system call dispatching, and this affects performance. A
SKAS (Separate Kernel Address Space) enabled host kernel allows to overcome
both these issues. As for security, SKAS makes UML run in a different address
space from the processes it controls. In turn, this limits the number of signals to
deliver, as fewer context switches are needed within this rearranged setting, and
this improves performance. Benchmarks have shown that starting 100 virtual
machines with the default configuration (8MB, minimal services running) on
a Pentium IV 3.2GHz with 2MB of cache and 2GB of RAM takes about 30
minutes with a plain 2.6.16.16 host kernel. The time required to start the
same set of virtual machines on the same workstation running a 2.6.16.16 SKAS
enabled kernel dramatically reduces to about 10 minutes, and starting 100 more
virtual machines in this setting takes less than 30 more minutes, thus having a
scenario consisting of 200 devices running on a single workstation within less

151

8. Emulation of Computer Networks with Netkit

Processes

Processes

Memory manager

Filesystem Network

Scheduler

UML kernel

NetworkFilesystem Host kernelMemory manager Scheduler

Tracing thread

xterm port−helper uml_mconsole uml_switch

COW

file

Backing

file

Figure 8.6: Architecture of a User-Mode Linux kernel. Boxes represent
kernel entities (subsystems, interfaces, or processes). Dashed boxes repre-
sent virtualized resources, while gray filled ones are instantiations of kernel
entities (processes or files).

than 40 minutes.2 Even though the SKAS patch improves security and boosts
performance, Netkit still scales rather well without the need to replace the host
kernel.

Figure 8.6 provides a sketch of the architecture of the UML kernel described
in this Section. Boxes represent kernel entities (subsystems, interfaces, or pro-
cesses). Dashed boxes represent virtualized resources, while gray filled ones
are instantiations of kernel entities (processes or files). A virtual machine is a
set of processes. The tracing thread takes care of mapping processes inside the
virtual machine to real processes on the host. The virtual machine kernel has
its own subsystems that are independent from those of the host kernel. The
virtual machine filesystem is implemented in terms of files on the host. Other
processes running on the host provide a user interface to the virtual machine
(xterm) or are used for its management (uml_mconsole). The uml_switch is
a user space utility to support networking whose functionalities are explained
in Section 8.2.2.

2In order not to overload the host with several virtual machines booting up at the same
time, Netkit adopts an optimization technique that ensures that no more than a fixed number
of virtual machines are booting simultaneously at any given time. For the case of these
performance tests the number has been always set to 3. For more details about this feature,
see Section 8.2.4.

152

The Architecture of Netkit

Host kernel

UML kernelUML kernel

UNIX socket

uml_switch

Forwarding process

Physical
network

interface

network

interface

tap

Network
interface

Network
interface

Figure 8.7: This diagram shows how Netkit virtual machines are net-
worked, possibly with a connection to an external network.

8.2.2 Networking Support in Netkit

Communication between different virtual machines is made possible in Netkit
by emulated networking. Figure 8.7 describes graphically how this emulation
takes place.

UML allows to configure virtual machines with an arbitrary number of
network interfaces. By using appropriate UML command line arguments, these
interfaces can be attached to a uml_switch process [239, 155] running on the
host, which simulates the behavior of a network switch or hub. In this way,
different virtual machines attached to the same switch can exchange data with
each other.

More specifically, UML virtual network interfaces can be attached to a
UNIX socket. In turn, a uml_switch can be attached to the same socket and
forward packets among the virtual machines that are connected to that socket.
Netkit scripts take care of automatically setting up uml_switches according to
user’s needs.

From the point of view of the network stack, Netkit provides implementa-
tions of the ISO-OSI layers as described in Figure 8.8.

153

8. Emulation of Computer Networks with Netkit

− Virtual hub daemon (uml_switch)

− Communication over UNIX sockets

− No delay, loss, reordering

Physical layer

− Ethernet

− No collisions

Data−link layer

Network layer
− IPv4/IPv6

UML kernel

Figure 8.8: The emulated network stack in Netkit.

• The physical layer is implemented by a set of uml_switch processes run-
ning on the host. They are configured to behave as hubs, and packets are
forwarded to interfaces of other virtual machines by using UNIX sockets.
For this reason, in this Chapter we also refer to the uml_switch as virtual
hub. At present this mechanism does not provide support for simulating
delay, packet loss, and reordering.

• The data link layer supports the Ethernet protocol, but collisions cannot
happen because the uml_switch avoids them. Unless differently speci-
fied, emulated network interfaces are assigned an automatically generated
MAC address.

• The network layer supports both IPv4 and IPv6 by means of kernel code
and user space utilities.

• What happens on upper layers is up to the specific software being run
inside virtual machines. For example, running a web server would intro-
duce support to HTTP.

Notice that layers from data-link through transport are (at least partly)
implemented inside the UML kernel. Therefore, changing the kernel results in
making new implementations and features available.

The configuration of network interfaces in Netkit is straightforward thanks
to the existence of scripts set up for the purpose. In order to slightly ab-
stract from the technicalities of how networking is implemented, Netkit presents
uml_switches as virtual collision domains. Each virtual network interface must

154

The Architecture of Netkit

be attached to a collision domain that is identified by an arbitrary name. There-
fore, connecting virtual machines is simply a matter of attaching their interfaces
on the same collision domain.

For example, the following command line starts up a virtual machine named
foo with a single network interface attached to collision domain COLL-DOM-A.

vstart foo --eth0=COLL-DOM-A

IP addresses for the interfaces can then be configured in the usual way by
using ifconfig inside virtual machines.

Configuring a virtual machine to reach an external network requires setting
up a TAP device. TUN/TAP is a device driver inside the Linux kernel that sets
up a special network interface connected to a user space application instead
of a physical medium. Packets sent to a TUN/TAP interface are written to the
underlying application, while information generated by the application appears
as it were received from the interface. The only difference between TUN and
TAP is that the former expects the application to handle IP packets, while the
latter allows to directly transfer Ethernet frames.

As shown in Figure 8.7, the setup for an external connection involves con-
figuring a TAP device on the host and using an uml_switch as application that
sends and receives data from it. Since the uml_switch can still be attached
to virtual machines via UNIX sockets, this allows to connect a virtual network
segment to a real network one. Depending on the specific configuration set up
on the host, the two segments can be bridged or routed. In order to prevent IP
addresses used for experiments from leaking on a real network, Netkit enables
routing instead of bridging, and uses Masquerading to hide addresses assigned
to emulated network interfaces. Masquerading is a variant of port-based NAT
in which outgoing packets are mangled to appear as originated from the in-
terface they are sent through; incoming response packets are forwarded to the
interface that had actually initiated the network transfer. Masquerading can
be enabled in Linux by taking advantage of the netfilter framework [224] inside
the kernel. This can be achieved by using iptables to configure an appropriate
rule with target MASQUERADE in the POSTROUTING chain of the nat table.

Netkit scripts take care of automatically setting interfaces connected to an
external network, so that configuring them is as easy as configuring standard
interfaces. The following is a command line that configures virtual machine
foo to have a TAP (LAN or Internet connected) interface:

vstart foo --eth0=tap,10.0.0.1,10.0.0.2

155

8. Emulation of Computer Networks with Netkit

The two IP addresses are automatically assigned to the TAP interface on the host
and to the emulated interface inside the guest, respectively. These addresses are
also used to set a proper routing table inside the guest. Both addresses must
be provided so that, once the virtual machine has started up, it is already
able to reach the external network. Notice that the configuration of a TAP
interface requires administrative privileges, therefore Netkit will ask for the
root password when the above command is executed.

8.2.3 A Filesystem of Networking Tools

Netkit is meant to be an environment that makes it easy and quick to set up
complex network experiences. For this reason, virtual machines are equipped
with a filesystem that contains most well known servers and tools for network
analysis.

The Netkit filesystem contains a full-fledged Debian GNU/Linux distribu-
tion [207] which has been suitably tuned to run inside UML. This provides
users with a familiar environment and allows to quickly grab new software
pieces that might be needed for specific experimentation purposes, or to flexi-
bly upgrade currently installed tools. Actually, installing or upgrading software
pieces is simply a matter of starting an Internet connected virtual machine (see
Section 8.2.2) and running the apt tools [46].

Among the network services available in Netkit there are the apache web
server, the bind Domain Name Server, a DHCP server, the exim4 Mail Trans-
port Agent, an FTP server, the netfilter configuration tool iptables, an NFS
server, and a Samba server. Utilities include traceroute, ping, arping,
netcat, tcpdump. For a complete list of installed packages, see [226].

Netkit makes use of the Copy-On-Write technique described in Section 8.2.1
to save disk space when multiple virtual machines are run. In this way there
is only one shared backing file containing the model filesystem downloaded
with Netkit, and each virtual machine stores changes to that filesystem inside
its own COW file. In this way, not only the filesystem is shared among all
the virtual machines, so that they see completely aligned tools and services,
but it is also possible to easily revert to the original filesystem contents by
simply deleting a COW file in case things mess up. There is also an option
of the Netkit commands that allows to write changes to the model filesystem
permanently, which comes handy for example when installing new packages
which are supposed to be available inside all virtual machines.

In order to facilitate the transfer of files between the host and a virtual
machine, the special directory /hosthome inside a virtual machine makes the

156

The Architecture of Netkit

ripd ospfd bgpd

Kernel

zebra

conflog conflog conflog

conflog

Routing updates

Telnet connections

Connections and routing updates from other devices/daemons

RIB

FIB

RIB

FIB

RIB

FIB

RIB

FIB

FIB

Figure 8.9: An abstraction of the architecture of the Zebra routing soft-
ware.

user’s home directory on the host always accessible. The same technique of
providing special directories pointing to the host filesystem is also used by
Netkit to automatically transfer settings for preconfigured network experiences.
For more details about this, see Section 8.3.

The Zebra Routing Software Suite

A special mention is due to the routing software installed in the Netkit filesys-
tem. In order to experiment with routing protocols, Netkit comes with an
installed release of the Zebra routing software [108]. Zebra is a suite of dae-
mons that provide support for several routing protocols, including RIP [55],
OSPF [85], and BGP [252]. Routing protocols take care of spreading informa-
tion about available destinations on a network in order to automatically update
the routing tables of each device.

Figure 8.9 describes an abstraction of the architecture of Zebra and of the

157

8. Emulation of Computer Networks with Netkit

way in which it injects information in the kernel routing table. Each Zebra
routing daemon manages a specific routing protocol, has its own configura-
tion file, and writes to its own log. They listen on different TCP ports, so
that messages of a particular routing protocol can be sent to the appropriate
daemon. For each routing protocol, a Routing Information Base (RIB) and a
Forwarding Information Base (FIB) are maintained. The RIB is the set of all
destinations known to that protocol, together with the path to reach them and
some additional reachability information. The FIB contains, for each possible
destination on the network, only the alternative that is considered the best
one to reach it. Zebra in itself is a routing daemon: it receives information
from the FIBs of the other daemons and, for each destination, selects the best
alternative among those made available by different routing protocols. Zebra’s
best routes are finally injected into the routing table of the kernel, which is
used to actually forward packets.

All the routing daemons, including Zebra, can be contacted via telnet on
a dedicated TCP port to check the status of routing protocols and perform “on
the fly” configuration. The daemons provide a command line interface which
closely resembles that of Cisco routers. Most of the commands available on
real devices can be used, but each daemon only provides those commands that
are specifically oriented to the routing protocol it manages. For example, ripd
does not provide the show ip bgp command, and bgpd must be contacted in
order to be able to issue it. However, the Zebra suite also comes with vtysh, an
integrated shell that provides a unique interface to all the daemons. Figure 8.10
shows a sample session of usage of the bgpd prompt inside a virtual machine.

Unfortunately, Zebra development is somewhat slow. For this reason, and
also in order to create a community that does not rely on a centralized model,
the Quagga project has been started [233]. Quagga is essentially a fork of
Zebra in which proposals from a community of users are usually discussed
and more quickly acknowledged. As a result, Quagga provides bug fixes and
functionalities that are missing in Zebra, sometimes at the expense of stability
(both stable and unstable releases of Quagga are available). At present, Netkit
does not provide the Quagga routing suite. However, it can be easily installed
in case it is needed, and there are plans to include it in future releases.

An alternative routing software suite is XORP [82, 136, 137, 134], an exten-
sible routing platform that overcomes some of the limitations of Zebra/Quagga.
XORP leverages a framework for abstracting and decoupling routing policies
from protocols [8]. This allows a greater degree of flexibility than in prod-
ucts like Zebra/Quagga, where policy constructions are hardwired: for exam-
ple, there is no way to express a matching condition like metric < 3 in Ze-

158

The Architecture of Netkit

Virtual machine console
router:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to router.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> enable

bgpd# configure terminal

bgpd(config)# router bgp 1

bgpd(config-router)# network 10.0.0.0/8

bgpd(config-router)# neighbor 192.168.0.1 remote-as 2

bgpd(config-router)# end

bgpd# disable

bgpd> show ip bgp

BGP table version is 0, local router ID is 0.0.0.0

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 10.0.0.0 0.0.0.0 0 32768 i

Total number of prefixes 1

bgpd> exit

Figure 8.10: Session of usage of the bgpd daemon. Available commands
closely resemble those of Cisco routers.

bra/Quagga. Another difference is that the Zebra/Quagga interface supports
Cisco IOS-like commands, while XORP’s interface is quite similar to that of
Juniper JunOS platforms. XORP intends to be an attractive alternative both
for researchers and for hardware vendors, as stability for mission-critical pro-
duction use is one of the main goals of the project. The current version of the
Netkit filesystem does not include XORP. Yet, it can be installed in case it is
needed.

159

8. Emulation of Computer Networks with Netkit

8.2.4 User Interface

One of the most interesting features of Netkit is the user interface, which
includes tools for quickly and easily setting up complex and redistributable
network experiences. Netkit virtual machines can be managed by means of a set
of commands consisting of v-prefixed (ltools) and l-prefixed (vtools) utilities.
All these commands must be run on the host machine and are implemented as
shell scripts.

vtools are conceived to configure and manage single virtual machines, and
they provide the following functionalities:

vstart can be used to configure and start a new virtual machine, identified
by an arbitrary name. It allows to set parameters such as the amount
of available memory, the kernel and filesystem to be used, the type of
terminal device to make available, as well as the network interfaces and
the collision domains they are attached to. Netkit’s default settings usu-
ally fit most of the needs, so that starting a virtual network device often
simply consists in specifying the network interfaces it should be equipped
with.

For example, the following command starts a new virtual machine named
pc1, with no network interfaces.

vstart pc1

If Netkit is properly installed, the above command prints some informa-
tive messages on the host terminal and boots pc1 inside a new terminal
window. Figure 8.11 shows the booting phase of pc1. It is possible to
notice that boot time messages are exactly those that would be observed
on a standard Debian system, and that at the end the user is presented
a shell prompt as root in the virtual machine.

The following commands start two virtual machines, pc2 and pc3, with
two network interfaces each. Notice that pc2’s eth0 and pc3’s eth0 are
attached to the same collision domain COLL-DOM-A, therefore the two
virtual machines will be able to communicate with each other.

vstart pc2 --eth0=COLL-DOM-A --eth1=COLL-DOM-B
vstart pc3 --eth0=COLL-DOM-A --eth1=COLL-DOM-C

Once they have finished booting, pc2 and pc3’s network interfaces can
be configured by using ifconfig as shown in Figure 8.12, so that the

160

The Architecture of Netkit

Figure 8.11: A Netkit virtual machine starting up. The window with
black background is a terminal on the host, while the other one is the
virtual machine terminal.

two machines can reach each other. Also notice that informational mes-
sages on the host terminal show that the necessary uml_switches have
automatically been started without any need for user intervention.

vconfig can be used to attach a network interface “on the fly” to a running
virtual machine. This is useful to alter the configuration of an already
running scenario or just to avoid having to reboot some machine because
one of its interfaces has been forgotten.

The syntax of this command is analogous to that of vstart, so that the
following command adds to pc2 an interface eth2 attached to collision
domain COLL-DOM-D:

vconfig pc2 --eth2=COLL-DOM-D

161

8. Emulation of Computer Networks with Netkit

Figure 8.12: A simple Netkit experiment consisting of two directly con-
nected virtual machines.

vlist is a command that provides information about currently running vir-
tual machines. If invoked with no arguments, it produces a list of virtual
machines, including the user that has started them, the PID of the trac-
ing thread, the amount of consumed memory, and the list of network
interfaces with the collision domains they are attached to (see, e.g., Fig-
ure 8.13). If a virtual machine name is provided as argument, vlist
provides detailed information about it, as shown in Figure 8.14.

vhalt is exactly the equivalent of running halt inside a virtual machine. It
gracefully stops the machine by running its shutdown scripts, properly

162

The Architecture of Netkit

Host console
max@foo:~$ vlist

USER VHOST PID SIZE INTERFACES

max pc2 920 13140 eth0 @ COLL-DOM-A,

eth1 @ COLL-DOM-B

max pc3 1124 12380 eth0 @ COLL-DOM-A,

eth1 @ COLL-DOM-C

Total virtual machines: 2 (you), 2 (all users).

Total consumed memory: 25520 KB (you), 25520 KB (all users).

Figure 8.13: Sample output of vlist. The command shows that there
are two virtual machines running and reports their owner, the PID of the
tracing thread, the amount of consumed memory, and a list of network
interfaces, together with the collision domains they are attached to.

Host console
max@foo:~$ vlist pc3

============= Information for virtual machine "pc3" =============

--- Accounting information ---

PID: 1124

Owner: max

Used mem: 12380 KB

--- Emulation parameters ---

Kernel: /home/max/netkit2/kernel/netkit-kernel

Modules: /home/max/netkit2/kernel/modules

Memory: 8 MB

Model fs: /home/max/netkit2/fs/netkit-fs

Filesystem: /home/max/pc3.disk

Interfaces: eth0 @ COLL-DOM-A (/home/max/.netkit/hubs/

vhub_max_COLL-DOM-A.cnct)

eth1 @ COLL-DOM-C (/home/max/.netkit/hubs/

vhub_max_COLL-DOM-C.cnct)

Hostfs at: /home/max

Console 1: terminal emulator

Console 2: disabled

Other args: umid=pc3 root=98:1 uml_dir=/home/max/.netkit/mconsole quiet

Mconsole: /home/max/.netkit/mconsole/pc3/mconsole

Figure 8.14: Usage of vlist to get detailed information about a running
virtual machine.

163

8. Emulation of Computer Networks with Netkit

Figure 8.15: Shutdown of a virtual machine by using vhalt.

unmounting the filesystem and stopping it. vhalt is provided on the host
as a convenient tool for performing the shutdown of multiple virtual ma-
chines within a script. Figure 8.15 shows the usage of vhalt for stopping
pc3.

Host console
max@foo:~$ vclean

Killing unusued virtual hubs owned by user max:

/home/max/.netkit/hubs/vhub_max_COLL-DOM-D.cnct (PID 4168): Killing... done.

Figure 8.16: Usage of vclean to kill unused virtual hubs.

vcrash provides a method to immediately stop a running virtual machine.
Actually, using vcrash is equivalent to abruptly unplugging the virtual
machine power cord. This is achieved by first asking the UML kernel to
stop itself through a special UNIX management socket. The UML util-
ity [155, 239] uml_mconsole is used for the purpose. In case this attempt
fails, for example because UML is somewhy frozen, the virtual machine
processes are automatically killed by vcrash. Upon the subsequent boot,
a crashed virtual machine will run a filesystem check to recover inconsis-

164

The Architecture of Netkit

tencies. This can be avoided, and the filesystem can be reverted to the
original contents, by simply removing the COW file.

vcrash is often used in networking experiments consisting of several ma-
chines, as it is much faster than vhalt.

vclean is the Netkit “panic button”. Should things mess up, some virtual ma-
chine be stuck, or tunnel configurations be left on the host, vclean helps
in getting rid of all this with a single command. vclean can be invoked to
perform several operations: it can simply remove unused uml_switches,
kill all running virtual machines owned by a specific user, and remove
tunnels connecting to an external network. Figure 8.16 shows the usage
of vclean to kill unused virtual hubs.

vclean also comes handy when used in combination with vconfig. In
fact, due to the mechanism by which they are configured, network inter-
faces attached by vconfig do not show up in the output of vlist nor
the uml_switches they are attached to can be automatically killed when
the virtual machine stops: vclean must be used for the purpose.

vtools can be profitably used for configuring, starting, and managing few
virtual machines. In principle, if used within a suitably written shell script,
they could also be exploited to automatically start several virtual machines by
invoking a single command. However, the setup of a complex experience usually
involves lots of configurations not just of the emulated hardware but also of
the services that should be available on the emulated network. Also, it may be
difficult to translate the network topology in terms of vstart command line
options. For this reason, Netkit provides higher level ltools which allow to
easily set up, launch, or shutdown a complex scenario in a straightforward way.
The l in ltools stands for “laboratory” (in the following abbreviated as “lab”),
which is the name that is often associated to preconfigured redistributable
Netkit scenarios. ltools rely on functionalities provided by vtools and offer
the following interface:

lstart is the command that is used to start virtual machines that make up a
lab. Actually, starting all of them is as simple as issuing lstart alone in
a shell on the host. Details about how to prepare a self running scenario
are provided in Section 8.3. Optionally, lstart can be used to start only
a subset of the virtual machines that are part of the lab.

ltest supports the creation of redistributable self testing labs. Basically, the
principle behind ltest is that each virtual machine is automatically in-

165

8. Emulation of Computer Networks with Netkit

structed to perform a set of hardwired and user defined dumps of the
significant information that contributes to define its status. For example,
the dumps can include the contents of a routing table or the results of
a ping. These dumps can then be collected and saved as a signature of
a correctly running emulated network. Once the lab is moved to a dif-
ferent host, checking that it is still properly running is simply a matter
of running it in test mode and verifying that the obtained dumps match
the signature.

lhalt and lcrash behave like their counterparts vhalt and vcrash, but they
automatically perform the shutdown or crash operation on all the virtual
machines that make up a lab. Optionally, lhalt and lcrash can affect
only a subset of the machines of the lab, for example in case some of
them need to be rebooted without having to restart the whole lab.

linfo can be used to get basic information about a lab, including descriptive
data and a list of the virtual machines that make it up. Figure 8.17
shows an example of its usage. linfo can also be used to get a sketch
of the data-link topology of a lab, including hosts, interfaces, and col-
lision domains. This feature requires the Graphviz [214] graph drawing
library to be correctly installed. Figure 8.18 shows an example of topol-
ogy generated by linfo. Ellipses represent hosts and are surrounded by
integer values indicating network interfaces. Diamonds represent collision
domains (virtual hubs).

lclean just performs a cleanup of temporary files left over after running a lab
(COW files, logs, etc.). It has nothing to do with its counterpart vclean,
which instead performs cleanup on running processes.

Both the vtools and the ltools, as well as the other Netkit components,
are fully documented by means of man pages that are available with the Netkit
distribution.

8.3 Setting up a Virtual Lab

It has already been pointed out in this Chapter that setting up an emulated
network experiment involves dealing with lots of configuration files and a po-
tentially complex topology. Netkit provides tools to facilitate this task and
to support the creation of easily redistributable network scenarios that can be

166

Setting up a Virtual Lab

Host console
max@foo:~/netkit-lab_bgp-6-multi-homed-stub$ linfo

====================== Lab information ==========================

Lab directory: /home/max/netkit-lab_bgp-6-multi-homed-stub

Version: 1.0

Author: The Netkit Team

Email: netkit.users@list.dia.uniroma3.it

Web: <unknown>

Description:

<unknown>

The lab is made up of 4 virtual machines (as100r1 as200r1 as20r1 as20r2).

===

Figure 8.17: Sample usage of linfo to get basic information about a
Netkit lab.

as20r1

A

0

F

1

C

2

as20r2

1

E

0

as200r1

0

B

1

as100r1 1
0

J 2

Figure 8.18: A sketch of the data-link layer topology generated by
linfo. Ellipses represent hosts; diamonds represent collision domains (vir-
tual hubs); integers around ellipses indicate network interfaces.

167

8. Emulation of Computer Networks with Netkit

Directories: each directory specifies the existence of a virtual machine
named as the directory itself; files contained in a directory vm are auto-
matically copied to the root (/) of vm’s filesystem; files contained in the
shared directory are copied to the root (/) of every virtual machine.

lab.conf: a file describing the link-level topology and other configuration
parameters for virtual machines (amount of memory, etc.).

Startup and shutdown scripts: they can be used to apply some settings
(e.g., configure IP addresses, start services) during the boot phase; they
can be shared or specific to each virtual machine.

test: a directory that contains scripts for dumping the status of virtual
machines and that accommodates the dumps themselves.

lab.dep: a file describing dependencies in the boot order of virtual machines.

Figure 8.19: Summary of the components of a Netkit lab.

launched with a single command. This Section describes how to prepare such
a scenario and manage it with Netkit’s ltools.

A Netkit lab is a set of fully preconfigured virtual machines that can be
started or stopped together. Netkit comes with a set of ready to use labs imple-
menting interesting network scenarios involving bridging, transport level con-
gestion control algorithms, routing protocols (with special attention to BGP),
and application level services (DNS, E-mail). The labs can be downloaded
from [36]. Further labs are periodically added.

Figure 8.19 summarizes the components of a Netkit lab. Actually, a lab
consists of a hierarchy of files and directories having special roles. The following
Sections describe these roles in detail and explain how to create a custom Netkit
lab.

8.3.1 Defining the Topology

Before starting to configure a lab, it is strongly advised to prepare a detailed
map of the topology that is about to be implemented. We propose an effective
formalism to do this, which is also used in the documentation and examples
supplied with Netkit. Figure 8.20 shows an example of usage of this formalism.
As explained in the legend, router symbols represent emulated devices; they

168

Setting up a Virtual Lab

10.0.0.0/8 20.0.0.0/8

30.0.0.0/30

Device (router)

Collision domain

10.0.0.0/8 Network address

Interface

Last byte of the IP address

LAN segment

router1
A

router2

B C

eth1

1

eth0

2

eth0

1

router1

A

eth1

1

eth1

1

Figure 8.20: A possible formalism for describing the link-level topology
of a lab.

do not necessarily have to be routers but, since most of the labs are likely to
deal with routing issues, they are represented as such. Circled letters represent
collision domains; the letter serves as identifier for the collision domain, and
will be used by Netkit to associate a virtual hub to it. Each collision domain
is linked to a square box containing the address of the corresponding subnet.
Boxes surrounding devices detail information about their network interfaces:
the lower half contains the name of the interface and the upper half specifies
the last byte of its IP address on the subnet it is attached to. A thick line
represents a local network; the devices that are connected to it may be missing
in case there is no reason to emulate them (for example because they would be
standard PCs providing no particular service).

In the following we use the topology in Figure 8.20 as a reference for im-
plementing a sample Netkit lab. Collision domains B and C represent internal
LAN segments.

8.3.2 Implementing the Topology

The topology of a network can be specified in Netkit in two steps.

169

8. Emulation of Computer Networks with Netkit

Host console
max@foo:~/sample_lab$ ls -l

total 8

drwxr-xr-x 2 max max 4096 2007-01-20 15:49 router1

drwxr-xr-x 2 max max 4096 2007-01-20 15:49 router2

max@foo:~/sample_lab$ linfo

====================== Lab information ==========================

Lab directory: /home/max/sample_lab

Version: <unknown>

Author: <unknown>

Email: <unknown>

Web: <unknown>

Description:

<unknown>

The lab is made up of 2 virtual machines (router1 router2).

===

Figure 8.21: Sample Netkit lab made up of two virtual machines.

LAB_DESCRIPTION="Sample lab for testing purposes"

LAB_VERSION="0.1"

LAB_AUTHOR="Massimo Rimondini"

LAB_EMAIL="contact@netkit.org"

LAB_WEB="http://www.netkit.org/"

router1[0]=A

router1[1]=B

router2[0]=A

router2[1]=C

Figure 8.22: A sample lab.conf file.

First, Netkit needs to know the virtual machines that make up the lab.
Each directory in a lab represents a virtual machine named as the directory
itself. The sole existence of a directory tells Netkit to start a virtual machine
with that name. Figure 8.21 shows an example of lab consisting of two virtual
machines, router1 and router2, which is also confirmed by linfo.

Second, the link-level topology of the lab must be defined. The file lab.conf
contains the description of the topology of the lab in terms of connections

170

Setting up a Virtual Lab

ifconfig eth0 30.0.0.1 netmask 255.255.255.252 up

ifconfig eth1 10.0.0.1 netmask 255.0.0.0 up

/etc/init.d/zebra start

Figure 8.23: A startup file for router1 (router1.startup).

between different virtual machines. An example of lab.conf file is shown in
Figure 8.22. The first part of the file contains optional descriptive information
about the lab, which may be useful when the lab is redistributed to other
people. The rest of the file contains a mapping between network interfaces and
collision domains. For example, the line:

router1[0]=A

means that interface eth0 of router1 is attached to collision domain A.
Optionally, other configuration parameters can be put inside lab.conf.

For example, the amount of memory for a virtual machine can be increased to
accommodate larger routing tables with a line similar to the following:

router[mem]=128

Basically, any valid option to vstart can be used between square brackets and
assigned a value.

8.3.3 Setting Network Addresses and Startup Time Services

Virtual machines can be instructed to run specific commands on startup
and shutdown. During the startup phase, each virtual machine vm runs the
scripts shared.startup and vm.startup. These scripts must therefore con-
tain commands that are available in the virtual machine filesystem. Apart
from this restriction, almost anything can be put in the startup files. In prac-
tice they are generally used to set IP addresses for network interfaces and to
start network services. Hence, a typical startup file often looks like the one in
Figure 8.23, which tells router1 to self configure IP addresses for its network
interfaces and to enable the Zebra routing daemon. It comes straightforward
that router2.startup will look much similar.

In the same way, virtual machines can run user defined shutdown scripts.
Upon halting, a virtual machine vm first runs vm.shutdown and then shared.shutdown.

171

8. Emulation of Computer Networks with Netkit

Host console
max@foo:~/sample_lab$ tree -n

.

|-- lab.conf

|-- router1

| \-- etc

| \-- zebra

| |-- daemons

| \-- ospfd.conf

|-- router1.startup

|-- router2

| \-- etc

| \-- zebra

| |-- daemons

| \-- ospfd.conf

\-- router2.startup

Figure 8.24: A possible hierarchy of directories for a lab. Configuration
files are placed inside router1 and router2. All the files inside these two
directories are mirrored inside the homonymous virtual machines upon their
startup.

Consider that shutdown scripts are only executed if the lab is gracefully stopped
with lhalt.

8.3.4 Configuring Services

After specifying which services should be started at boot time, configuration
files for them must also be provided. In Netkit this is made possible by a
mechanism that automatically makes some of the files that are part of the lab
available inside a virtual machine.

In particular, upon starting up a virtual machine Netkit copies all the files
inside the directory associated with that machine inside its filesystem. For
example, if vm is a virtual machine, all the files inside directory vm/ on the
host are copied to the root directory (/) of vm’s filesystem during its boot
phase. If several machines need to access the same files, these can be placed
in a directory named shared: everything inside shared is copied to the root
(/) of any virtual machine upon its startup. Netkit recognizes shared to be a
special directory and does not start a virtual machine for it.

This approach of mirroring files from the host has a twofold advantage. It
does not add any overhead to the configuration, because the only files to be
prepared are those that will be actually fetched by the servers. Moreover, in

172

Setting up a Virtual Lab

This file tells the zebra package

which daemons to start.

Entries are in the format: <daemon>=(yes|no|priority)

where ’yes’ is equivalent to infinitely low priority, and

lower numbers mean higher priority. Read

/usr/doc/zebra/README.Debian for details.

Daemons are: bgpd zebra ospfd ospf6d ripd ripngd

zebra=yes

bgpd=no

ospfd=yes

ospf6d=no

ripd=no

ripngd=no

Figure 8.25: A sample daemons file, telling Zebra which routing daemons
to start.

hostname ospfd

password zebra

!

router ospf

network 30.0.0.0/30 area 0

redistribute connected

Figure 8.26: A sample ospfd.conf file.

this way there is no restriction on the number or type of services that can be
configured.

In the case of our example, we may have a hierarchy of files like the one in
Figure 8.24. It is possible to notice that we have provided two configuration
files for each router. daemons, shown in Figure 8.25, tells Zebra which routing
daemons should be activated. ospfd.conf, shown in Figure 8.26, enables basic
OSPF routing in order to make the internal LAN of router1 reachable from
router2 and vice versa. Due to the symmetrical nature of the example, the
two files daemons and ospfd.conf are identical on the two routers.

This configuration pattern is common when the Zebra routing daemon is be-
ing used: routing protocols to be supported are listed inside etc/zebra/daemons,
while protocol specific configurations go inside etc/zebra/daemon name.conf
files.

173

8. Emulation of Computer Networks with Netkit

8.3.5 Tuning Lab Startup

Once the lab has been prepared, it is possible to alter some other settings that
affect the way in which it will be started. By default, Netkit starts the virtual
machines of a lab one after the other, and waits for the previous one to end
the boot phase before starting the next one. This is done in order to prevent
overloading of the host machine. An option of lstart allows to disable this
precautionary measure and to start multiple virtual machines at the same time.
A variant of the same option also allows to ensure that at every time instant
no more than a fixed number of virtual machines is booting: this is a good
compromise between lab startup speed and host side load.

If Netkit is instructed to simultaneously start multiple virtual machines,
some of the services may not start up properly. This is usually the case when
a virtual machine attempts to initialize a service that depends on another one
hosted on a virtual machine that has not been started yet (for example, some
mail service relying on DNS). For this reason, the startup order of virtual
machines can be influenced in two ways. One possibility is to explicitly tell
Netkit the startup order. This can be done by either explicitly listing virtual
machines on the command line of lstart or by placing an assignment like the
following one inside lab.conf:

machines="first_vm second_vm third_vm fourth_vm fifth_vm"

A more flexible way to influence the startup order is to just specify depen-
dencies between virtual machines. This can be done by means of a file lab.dep
whose syntax is exactly the same used in Makefiles. For example, in Figure 8.27
line

pc2: router pc1

means that router and pc1 have no dependencies on each other and can there-
fore be started simultaneously (provided that the maximum number of boot-
ing machines is not exceeded). However, pc2 can only be started after both
router and pc1 have completed their boot phase. Observe that, according to
Figure 8.27, also pc2 and pc3 can start up at the same time after router and
pc1. Instead, pc4 cannot be started until all the other machines are running.

In the example of lab presented in these Sections we do not make use of the
lab.dep file.

174

Setting up a Virtual Lab

pc2: router pc1

pc3: router pc1

pc4: pc2 pc3

Figure 8.27: A sample lab.dep file specifying dependencies on the startup
order of virtual machines.

#!/bin/sh

Connectivity tests

ping -c 3 -i 0.3 195.11.14.1 | head -n -3 | sed ’s/time=.*//’

sleep 5

Inspect the arp cache (should be populated)

arp | sort

sleep 5

halt

Figure 8.28: A sample script for performing diagnoses when a lab is
launched in test mode.

8.3.6 Testing the Lab

Netkit labs are conceived to facilitate distribution and execution on any other
platform equipped with a release of Netkit. If things are configured properly,
network experiences should run in the same way and exhibit the same evolution
on any platform. However, there may still be particular settings that affect
the behavior of poorly configured labs or cause malfunctions of the emulation
environment. For this reason, a lab can be equipped with a special set of
scripts that instruct virtual machines to perform aimed self diagnoses. Once
the lab has been found to behave properly, the results of these diagnoses can be
collected and constitute a signature of a correctly running lab. When moving
it to a different platform, the lab can again be self tested and the results be
compared against the signature. If they match, the lab is running properly.

The scripts for self diagnosis must be placed inside the directory _test.
Netkit understands that this is a special directory and does not start a virtual
machine for it. The script vm.test inside _test is automatically executed by
virtual machine vm when the lab is in launched in test mode (see Section 8.2.4).

175

8. Emulation of Computer Networks with Netkit

Figure 8.29: Startup of the Netkit lab described in Section 8.3

The output of this script is stored in results/vm.user inside the _test di-
rectory. In addition, Netkit also performs some default diagnoses including
the status of network interfaces, the contents of the kernel forwarding table,
a summary of the ports in listening status, and a listing of running processes.
The results of these default diagnoses are stored inside results/vm.default
inside directory _test.

Figure 8.28 shows a possible example of script for self diagnosis. It reports
the success of a connectivity test and the contents of the ARP cache. Observe
that information that is subject to unpredictable changes (round-trip time for
the ping, ordering of the entries in the ARP cache) is filtered out, so that the
results of tests performed on different platforms can be immediately compared.

176

Managing a Virtual Lab

router1 console
router1:~# telnet localhost ospfd

Trying 127.0.0.1...

Connected to router1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

ospfd> show ip ospf database

OSPF Router with ID (30.0.0.1)

Router Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum Link count

30.0.0.1 30.0.0.1 1193 0x80000004 0x0abd 1

30.0.0.2 30.0.0.2 1194 0x80000003 0x0abb 1

Net Link States (Area 0.0.0.0)

Link ID ADV Router Age Seq# CkSum

30.0.0.2 30.0.0.2 1199 0x80000001 0xfce0

AS External Link States

Link ID ADV Router Age Seq# CkSum Route

10.0.0.0 30.0.0.1 1198 0x80000002 0x1282 E2 10.0.0.0/8 [0x0]

20.0.0.0 30.0.0.2 1198 0x80000002 0x89ff E2 20.0.0.0/8 [0x0]

Figure 8.30: A telnet session with ospfd showing the information col-
lected by OSPF.

8.4 Managing a Virtual Lab

Once a Netkit virtual lab has been set up, it can be easily managed by
means of the ltools. The lab can be simply started by issuing lstart on
the host, as demonstrated in Figure 8.29. The Figure also shows that, thanks
to OSPF, each router can also ping the LAN it is not directly connected to.
Other investigations can be performed on the running lab by simply interacting
with one of the virtual machine terminal windows. For example, Figure 8.30

177

8. Emulation of Computer Networks with Netkit

Figure 8.31: Shutdown of a Netkit lab by using lcrash.

shows the contents of the OSPF database.
Stopping a running lab is as simple as issuing lcrash or lhalt (slower)

on the host (see Figure 8.31). Optionally, lclean can be used to get rid of
temporary files (COW files, logs) left over after running the lab.

Netkit labs can be easily moved to another workstation by simply wrapping
them into an archive, typically a tar.gz. Notice that, as there is no need to
carry potentially large filesystem images, a lab can be packed into a very small
file and can therefore be also transferred very quickly on the Internet. Taking
advantage of this, lots of ready to use lab experiences are made available on
the Netkit web site [36].

Thanks to the architecture described in Section 8.2, Netkit makes it simple
to build even large network scenarios consisting of several virtual devices. In
theory there is no limit to the number of virtual machines that can compose a
lab. In practice, experiments have shown that it is possible to run experiences
consisting of more than 100 virtual machines on a typical workstation (see
Section 8.2.1).

178

A Case Study: Multihoming

AS20

AS100 AS200

p
rim

a
ry

b
a
ck

u
p

20.1.1.0/24

11.0.0.32/30

11.0.0.0/30

11.0.0.4/30

200.2.0.0/16100.1.0.0/16

as20r2 as20r1

C

eth1

2

eth2

1

eth0

34

eth0

2

eth1

6

A

E

F

as100r1

eth1

5

eth0

1

eth2

1

as200r1

eth1

1

BJ

eth0

33

Figure 8.32: The topology of the lab for studying multihomed stub net-
works.

8.5 A Case Study: Multihoming

This Section provides an example of usage of Netkit to study issues that may
arise in the interaction between routing protocols. We take as reference one of
the labs made available on the Netkit web site [36], which considers a multi-
homed stub network as case study for pointing out these issues.

Figure 8.32 shows the topology of the lab we are considering. It consists
of three Autonomous Systems: AS100 and AS200 are customers, while AS20

179

8. Emulation of Computer Networks with Netkit

as100r1 console
as100r1:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as100r1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> show ip bgp

BGP table version is 0, local router ID is 100.1.0.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*> 0.0.0.0 11.0.0.2 0 20 i

* 11.0.0.6 90 0 20 i

*> 100.1.0.0/16 0.0.0.0 0 32768 i

Total number of prefixes 2

Figure 8.33: The BGP routing table of as100r1.

is their provider. AS100 is a multihomed stub, meaning that it has multiple
connections to its ISP but does not provide transit service to its neighbors.
Instead, AS200 is single homed. As a provider, AS20 supplies transit service
to its customers. The Autonomous Systems in this topology exchange routing
information with each other by using BGP. In particular, AS100 exploits its
multiple connections to the provider AS20 to enforce a backup policy: the link
on collision domain F is never used unless link E fails. Keeping a link com-
pletely unused is of course an unrealistic situation. However, it is a reasonable
assumption for the purpose of showing an example of the effect of routing poli-
cies on the choice of routing paths. The two routers inside AS20 establish an
iBGP peering to exchange external routes they have learned via BGP.

Figure 8.34 shows the hierarchy of files and directories that make up the lab.
Apart from the file CHANGES, which is only a log of the fixes and changes made
to the lab, it can be easily seen from the configuration files that routers in this
lab run the BGP routing protocol. The topology of Figure 8.32 is implemented

180

A Case Study: Multihoming

Host console

max@foo:~/netkit-lab_bgp-6-multi-homed-stub$ tree -n
.
|-- CHANGES
|-- as100r1
| \-- etc
| \-- zebra
| |-- bgpd.conf
| \-- daemons
|-- as100r1.startup
|-- as200r1
| \-- etc
| \-- zebra
| |-- bgpd.conf
| \-- daemons
|-- as200r1.startup
|-- as20r1
| \-- etc
| \-- zebra
| |-- bgpd.conf
| \-- daemons
|-- as20r1.startup
|-- as20r2
| \-- etc
| \-- zebra
| |-- bgpd.conf
| \-- daemons
|-- as20r2.startup
\-- lab.conf

Figure 8.34: Directory structure for the multihoming lab.

as20r1[0]="A"
as20r1[1]="F"
as20r1[2]="C"

as20r2[0]="E"
as20r2[1]="C"

as200r1[0]="A"
as200r1[1]="B"

as100r1[0]="E"
as100r1[1]="F"
as100r1[2]="J"

Figure 8.35: lab.conf file describing the topology in Figure 8.32

181

8. Emulation of Computer Networks with Netkit

as100r1 console

as100r1:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as100r1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> enable

Password: zebra

bgpd# show running-config

Current configuration:

!

hostname bgpd

password zebra

enable password zebra

log file /var/log/zebra/bgpd.log

!

debug bgp

debug bgp events

debug bgp keepalives

debug bgp updates

debug bgp fsm

debug bgp filters

!

router bgp 100

network 100.1.0.0/16

neighbor 11.0.0.2 remote-as 20

neighbor 11.0.0.2 description Router as20r2 (primary)

neighbor 11.0.0.2 prefix-list defaultIn in

neighbor 11.0.0.2 prefix-list mineOutOnly out

neighbor 11.0.0.6 remote-as 20

neighbor 11.0.0.6 description Router as20r1 (backup)

neighbor 11.0.0.6 prefix-list defaultIn in

neighbor 11.0.0.6 prefix-list mineOutOnly out

neighbor 11.0.0.6 route-map localPrefIn in

neighbor 11.0.0.6 route-map metricOut out

!

access-list myAggregate permit 100.1.0.0/16

!

ip prefix-list defaultIn seq 5 permit 0.0.0.0/0

ip prefix-list mineOutOnly seq 5 permit 100.1.0.0/16

!

route-map metricOut permit 10

match ip address myAggregate

set metric 10

!

route-map localPrefIn permit 10

set local-preference 90

!

line vty

!

end

Figure 8.36: Configuration of BGP on router as100r1.

182

A Case Study: Multihoming

as100r1 console
as100r1:~# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

11.0.0.4 * 255.255.255.252 U 0 0 0 eth1

11.0.0.0 * 255.255.255.252 U 0 0 0 eth0

100.1.0.0 * 255.255.0.0 U 0 0 0 eth2

default 11.0.0.2 0.0.0.0 UG 0 0 0 eth0

Figure 8.37: Kernel forwarding table of as100r1.

inside the file lab.conf as shown in Figure 8.35.
It is interesting to investigate in the BGP configuration of the customer

as100r1. Figure 8.36 shows how to obtain this configuration through the com-
mand line interface of bgpd instead of the file bgpd.conf. Assuming that the
provider AS20 does not apply countermeasures, the backup policy is enforced
by the customer AS100 by using local-preference and metric. In particular, the
route-map localPrefIn lowers to 90 the local-preference on announcements
coming from neighbor as20r1 (link F, used as backup); for the announcements
received from link E the default value of 100 is fine. The other route-map,
metricOut, is used to increase to 10 the metric on outgoing announcements
made by as100r1 to its neighbor as20r1; as for outgoing announcements di-
rected to as20r2, the default metric value of 0 is retained. In this way, both the
outgoing and the incoming traffic are discouraged from taking a path through
link F. The other prefix-lists prevent transit traffic from traversing the customer
as100r1 by discarding announcements of extraneous prefixes.

By looking at the BGP routing table of as100r1 (Figure 8.33), it can be
easily seen that the chosen backup policy is actually being enforced. In fact,
due to the higher value of the local-preference, the instance of BGP running
on as100r1 has chosen the path through neighbor 11.0.0.2 (as20r2) as best
alternative to reach the default route announced by the provider. The “greater
than” symbol (>) indicates the currently selected route. This information is
further confirmed by the entry injected in the kernel forwarding table (see
Figure 8.37).

Figures 8.38 and 8.39 show the status (show ip bgp summary) and routing
table (show ip bgp) of BGP on as20r2 and as20r1, respectively. The status
confirms that the iBGP peering between 20.1.1.1 and 20.1.1.2 is active.
However, while as20r2 chooses 11.0.0.1 (link E, used as primary) as best
alternative to reach as100r1, the same does not happen on as20r1 despite

183

8. Emulation of Computer Networks with Netkit

as20r2 console
as20r2:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as20r2.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> show ip bgp summary

BGP router identifier 20.1.1.2, local AS number 20

3 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

11.0.0.1 4 100 116 117 0 0 0 01:53:34 1

20.1.1.1 4 20 118 118 0 0 0 01:53:39 6

Total number of neighbors 2

bgpd> show ip bgp

BGP table version is 0, local router ID is 20.1.1.2

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* i0.0.0.0 20.1.1.1 0 100 0 i

*> 0.0.0.0 0 32768 i

*> 11.0.0.0/30 0.0.0.0 0 32768 i

*>i11.0.0.4/30 20.1.1.1 0 100 0 i

*>i11.0.0.32/30 20.1.1.1 0 100 0 i

* i20.1.1.0/24 20.1.1.1 0 100 0 i

*> 0.0.0.0 0 32768 i

*> 100.1.0.0/16 11.0.0.1 0 0 100 i

* i 11.0.0.5 10 100 0 100 i

* i200.2.0.0/16 11.0.0.33 0 100 0 200 i

Total number of prefixes 7

Figure 8.38: Peering status and BGP routing table of as20r2.

184

A Case Study: Multihoming

as20r1 console
as20r1:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as20r1.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> show ip bgp summary

BGP router identifier 20.1.1.1, local AS number 20

3 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

11.0.0.5 4 100 118 121 0 0 0 01:56:49 1

11.0.0.33 4 200 118 120 0 0 0 01:56:50 1

20.1.1.2 4 20 119 122 0 0 0 01:56:41 4

Total number of neighbors 3

bgpd> show ip bgp

BGP table version is 0, local router ID is 20.1.1.1

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal

Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* i0.0.0.0 20.1.1.2 0 100 0 i

*> 0.0.0.0 0 32768 i

*>i11.0.0.0/30 20.1.1.2 0 100 0 i

*> 11.0.0.4/30 0.0.0.0 0 32768 i

*> 11.0.0.32/30 0.0.0.0 0 32768 i

* i20.1.1.0/24 20.1.1.2 0 100 0 i

*> 0.0.0.0 0 32768 i

* i100.1.0.0/16 11.0.0.1 0 100 0 100 i

*> 11.0.0.5 10 0 100 i

*> 200.2.0.0/16 11.0.0.33 0 0 200 i

Total number of prefixes 7

Figure 8.39: Peering status and BGP routing table of as20r1.

185

8. Emulation of Computer Networks with Netkit

as20r2 console
as20r2:~# ping 200.2.0.1

connect: Network is unreachable

Figure 8.40: A failed ping from as20r2.

as200r1 console
as200r1:~# traceroute 100.1.0.1

traceroute to 100.1.0.1 (100.1.0.1), 64 hops max, 40 byte packets

1 11.0.0.34 (11.0.0.34) 1 ms 2 ms 1 ms

2 100.1.0.1 (100.1.0.1) 2 ms 2 ms 2 ms

Figure 8.41: Traffic from as200r1 to 100.1.0.1 takes the path through
the backup link F, which is undesired.

the fact that the entry with next hop 11.0.0.1 is present in the routing table
of BGP, has lower metric and higher local-preference. Even more strangely,
Figure 8.38 shows that the only available alternative on as20r2 to reach prefix
200.2.0.0/16 has not been selected as best, and has therefore not been in-
jected in the kernel forwarding table. As a consequence, a ping from as20r2
to 200.2.0.1 unavoidably fails (see Figure 8.40). To complete the picture of
oddities, Figure 8.41 shows that a traceroute from as200r1 to 100.1.0.1
reveals that the backup link F is being used for traffic directed to as100r1,
which is undesired.

Obviously, something is going wrong with routing, even if the deployed
configuration is correct. The point here is that BGP only considers an entry of
the routing table as usable if the path to reach its next hop has been learned
by some IGP or is statically configured. In our case neither of the conditions
occurs, as as20r2 learns how to reach 11.0.0.33 only via iBGP and as20r1
learns how to reach 11.0.0.1 again only via iBGP. The origin of learned routes
can be checked by querying the Zebra daemon. For example, Figure 8.42 shows
that the route to 11.0.0.33 has been learned by BGP.

There are two possible fixes to this situation. The first one is to enable
some IGP inside AS20, so that information about directly connected networks
is propagated inside the AS and can be used by BGP to reach all the next
hops. The second one, which we apply here, is to configure two static entries
in the forwarding tables of as20r2 and as20r1 telling them how to reach the
next hops 11.0.0.33 and 11.0.0.1, respectively. The commands for doing
this are shown in Figures 8.44 and 8.45. The statically configured routes are

186

A Case Study: Multihoming

as20r2 console

as20r2:~# telnet localhost zebra
Trying 127.0.0.1...
Connected to as20r2.
Escape character is ’^]’.

Hello, this is zebra (version 0.94).
Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra
Router> show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

B - BGP, > - selected route, * - FIB route

C>* 11.0.0.0/30 is directly connected, eth0
B>* 11.0.0.4/30 [200/0] via 20.1.1.1, eth1, 03:19:58

B>* 11.0.0.32/30 [200/0] via 20.1.1.1, eth1, 03:19:58

C>* 20.1.1.0/24 is directly connected, eth1
B>* 100.1.0.0/16 [20/0] via 11.0.0.1, eth0, 03:19:53
C>* 127.0.0.0/8 is directly connected, lo

Figure 8.42: The protocol by which routes in the forwarding table have
been learned can be checked by querying the zebra routing daemon.

as20r2 console

as20r2:~# telnet localhost zebra
Trying 127.0.0.1...
Connected to as20r2.
Escape character is ’^]’.

Hello, this is zebra (version 0.94).
Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra
Router> show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF,

B - BGP, > - selected route, * - FIB route

C>* 11.0.0.0/30 is directly connected, eth0
B>* 11.0.0.4/30 [200/0] via 20.1.1.1, eth1, 00:00:43

K>* 11.0.0.32/30 via 20.1.1.1, eth1

B 11.0.0.32/30 [200/0] via 20.1.1.1, eth1, 00:00:43
C>* 20.1.1.0/24 is directly connected, eth1
B>* 100.1.0.0/16 [20/0] via 11.0.0.1, eth0, 00:00:41
C>* 127.0.0.0/8 is directly connected, lo

Figure 8.43: Statically configured routes are marked as kernel by Zebra
and are preferred over those learned via other routing protocols.

187

8. Emulation of Computer Networks with Netkit

as20r2 console
as20r2:~# route add -net 11.0.0.32/30 gw 20.1.1.1 dev eth1

Figure 8.44: Configuration of a static entry to reach 11.0.0.33 in the
forwarding table of as20r2.

as20r1 console
as20r1:~# route add -net 11.0.0.0/30 gw 20.1.1.2 dev eth2

Figure 8.45: Configuration of a static entry to reach 11.0.0.1 in the
forwarding table of as20r1.

as100r1 console
as100r1:~# traceroute 200.2.0.1

traceroute to 200.2.0.1 (200.2.0.1), 64 hops max, 40 byte packets

1 11.0.0.2 (11.0.0.2) 1 ms 1 ms 1 ms

2 20.1.1.1 (20.1.1.1) 1 ms 2 ms 1 ms

3 200.2.0.1 (200.2.0.1) 3 ms 2 ms 2 ms

Figure 8.46: After fixing the forwarding tables of routers in AS20, a
traceroute from as100r1 to 200.2.0.1 correctly uses as100r1’s primary
upstream link E.

marked by Zebra as being learned from the kernel (see Figure 8.43) and are
preferred over routes learned via other routing protocols.

After the fix has been applied, everything starts to work as desired. Fig-
ures 8.46 and 8.47 show that traceroutes actually use the primary link E.

Now that everything is working as expected, we can check that the backup
policy is operational: we intentionally break link E and check that the traffic
shifts to link F. Provided that we are inside an emulation environment, a link
can be broken in at least two ways. One is to simply bring down one of the
network interfaces attached to that link, by using the following command on
either as20r2 or as100r1:

ifconfig eth0 down

The other one is to administratively shutdown the BGP peering between
as20r2 and as100r1. We choose the latter alternative, which can be carried
into effect by issuing the commands shown in Figure 8.50. Notice that, since
a BGP peering must be explicitly configured by both participants, shutting it
down on just one side is enough to divert routing.

188

Conclusions

as200r1 console
as200r1:~# traceroute -n 100.1.0.1

traceroute to 100.1.0.1 (100.1.0.1), 64 hops max, 40 byte packets

1 11.0.0.34 1 ms 1 ms 1 ms

2 20.1.1.2 1 ms 1 ms 1 ms

3 100.1.0.1 2 ms 2 ms 2 ms

Figure 8.47: After fixing the forwarding tables of routers in AS20, a
traceroute from as200r1 to 100.1.0.1 correctly uses as100r1’s primary
upstream link E.

as100r1 console
as100r1:~# traceroute 200.2.0.1

traceroute to 200.2.0.1 (200.2.0.1), 64 hops max, 40 byte packets

1 11.0.0.6 (11.0.0.6) 1 ms 1 ms 1 ms

2 200.2.0.1 (200.2.0.1) 1 ms 2 ms 1 ms

Figure 8.48: After administratively shutting down the peering between
as20r2 and as100r1, traffic goes through the backup link F.

as200r1 console
as200r1:~# traceroute -n 100.1.0.1

traceroute to 100.1.0.1 (100.1.0.1), 64 hops max, 40 byte packets

1 11.0.0.34 2 ms 1 ms 1 ms

2 100.1.0.1 1 ms 1 ms 1 ms

Figure 8.49: After administratively shutting down the peering between
as20r2 and as100r1, traffic goes through the backup link F.

After waiting some time for the routing updates to propagate, we fall into
the expected state in which all the traffic uses the backup link F (see Fig-
ures 8.48 and 8.49).

We do not show, but it is easy to imagine, that restoring the peering also
results in traffic shifting back to the primary link E.

8.6 Conclusions

In this Section we provide a survey of environments for the emulation of com-
puter networks. We describe in detail Netkit, a lightweight network emulator
based on User-Mode Linux. We show how Netkit can be effectively exploited to
ease experimenting with complex scenarios consisting of several virtual devices.

189

8. Emulation of Computer Networks with Netkit

as20r2 console
as20r2:~# telnet localhost bgpd

Trying 127.0.0.1...

Connected to as20r2.

Escape character is ’^]’.

Hello, this is zebra (version 0.94).

Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: zebra

bgpd> enable

Password: zebra

bgpd# configure terminal

bgpd(config)# router bgp 20

bgpd(config-router)# neighbor 11.0.0.1 shutdown

bgpd(config-router)# end

bgpd# show ip bgp summary

BGP router identifier 20.1.1.2, local AS number 20

3 BGP AS-PATH entries

0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

11.0.0.1 4 100 220 222 0 0 0 00:00:05 Idle (Admin)

20.1.1.1 4 20 226 223 0 0 0 03:37:37 6

Total number of neighbors 2

Figure 8.50: A telnet session showing the commands to administratively
shutdown a BGP peering.

We also explain how these scenarios can be easily packed and redistributed for
sharing them with others. Last, we show a sample application of Netkit to
the study of a multihoming configuration, pointing out issues related to the
interplay between BGP and IGP protocols. Among the other network emula-
tors, Netkit has the advantages of being lightweight and to support installation
and execution fully in user space and without administrative privileges. It also
facilitates the exchange and redistribution of emulated scenarios and supports
reasonably good scalability by allowing to run more than one hundred of vir-
tual devices on a typical workstation. Moreover, Netkit provides users with a
familiar environment consisting of a virtual boxes based on a standard Linux
distribution and routing daemons using a Cisco-like command syntax.

190

Conclusions

One of the most natural contexts of application of Netkit is probably di-
dactics: it can be effectively exploited in teaching networking by giving the
students the opportunity to experiment with the protocols and services they
are learning. However, we believe that Netkit may prove itself useful for both
operators and researchers in several other contexts, ranging from testing of
configurations before deployment to debugging and development of new ser-
vices and protocols, from studying abnormal routing behaviors to validating
theoretical model by experimentation.

191

Part V

Conclusions and Bibliography

Conclusions

I
nvestigating the behavior of Internet routing is not an easy task. Not only
the scale of the system being analyzed is difficult to handle, but also routing
information is not always accessible. This is especially true for the case of inter-

domain routing with BGP. Purposefully deployed routing policies limit the spread
of BGP routing information, for example for implementing commercial agreements,
and this makes it hard even to get the required data.

Yet, studying BGP routing phenomena is very important both for operators, in
order to debug routing issues, and for researchers, in order to build sound models
that can help in preventing abnormal and unexpected routing behaviors from hap-
pening. Several works have focused on BGP in the past, but there are still some
aspects that need to be analyzed.

This thesis describes novel techniques to perform different kinds of investigation
on BGP routing, with particular attention to the inference of routing policies.

The first, essential step to study the behavior of a routing protocol is to have
topological information about the network it operates on. For the case of BGP,
this means knowing the peerings established between Autonomous Systems. We
propose two new methods to obtain this information: one exploits active probes
that make use of standard BGP announcements, while the other processes and
accurately purges information contained in the Internet Routing Registry. Exper-
iments have proved the effectiveness of both methods: active probing allows to
discover seven times as many peerings in the IPv6 Internet and more than two
times as many in the IPv4 Internet, with respect to state of the art methods; ac-
curate processing of IRR data allows us to extract about twice as many peerings
as existing IRR tools are able to find. We believe that a seasonable use of these
two techniques can effectively help in obtaining richer and more accurate AS-level
topologies.

Once the topology is known, the investigation moves on to routing policies.
While fragments of topological information can be obtained by looking at BGP

195

Conclusions

announcements, routing policies cannot be observed as they are part of the con-
figuration of devices. Moreover, administrators are often unwilling to disclose
information about routing policies, as they are considered critical for the economic
strategies of an ISP.

This thesis proposes some novel techniques to find out and study routing poli-
cies. The first kind of analysis that is taken into account is the inference of
commercial relationships between Autonomous Systems. Such knowledge would
be of help both to debug routing problems and to devise more effective peering
strategies for new ISPs. While some inference algorithms have already been in-
troduced to obtain the commercial relationships, it is still unclear to what extent
the results they produce are realistic and of practical interest. We propose a com-
parative analysis of state of the art inference algorithms that are based on the
valley-free approach and compute measures that help in estimating their trustwor-
thiness. The analysis shows that the results produced by the considered algorithms
are fairly independent from background routing noise and only capture the longer
term dynamics of commercial agreements. Also, the analyzed algorithms produce
remarkably overlapping relationships, which confirms that the valley-free approach
holds its validity regardless of the specific algorithm that exploits it.

Routing policies are often used to constrain traffic flows in order to achieve op-
timal usage of network resources. This thesis proposes two new models to describe
different traffic engineering requirements that span from the optimization of band-
width allocation to fair cost distribution. For each model we propose algorithms
to determine the amount of AS-path prepending that should be used in BGP an-
nouncements in order to achieve the desired traffic engineering objective. We also
introduce some optimized techniques to retrieve the topological information that
is necessary for these algorithms to operate properly. We think that the traffic
engineering algorithms we propose, used in conjunction with the topology discov-
ery techniques presented in this thesis, can help in determining configurations that
allow to achieve arbitrary traffic engineering requirements in a deterministic way,
in contrast with the usually adopted trial-and-error approach.

In a large scale environment like the Internet, the propagation of route an-
nouncements is influenced by the interaction of routing policies deployed at dif-
ferent Autonomous Systems. Typically, routers limit the propagation of routing
information either because of explicit filters or because they are configured to pre-
fer a certain AS-path when multiple choices are available. This thesis proposes
novel techniques that, based on the probing primitives we use to get topological
information, allow to determine the feasibility of AS-paths that cannot be observed
in stable routing states and to establish which is the level of preference associated
with different AS-paths having the same length. We prove the effectiveness of

196

these techniques by applying them to discover the policies used to route both IPv6
and IPv4 prefixes on the live Internet.

Interactions among routing policies may also lead to abnormal and unforeseen
behaviors like permanent routing oscillations. Some models have already been
introduced to study the characteristics of stable BGP configurations. In this thesis
we propose an alternative model to formally describe the conditions that ensure
stable routing and prove some properties of stable configurations. The model can
be used to analyze an instance of routing system in order to single out conflicting
policies potentially leading to permanent oscillations.

Working with solid theoretical models is usually very helpful but yet not enough
to understand the dynamics of a routing system. Experimentation too may not
be feasible because the necessary devices may not be available or the required
tests may involve disruptive actions on the network under consideration. Yet,
it is often very useful both for operators and for researchers to be able to see
device configurations in action before deploying them in a live network scenario.
Emulation systems effectively fill this gap. This thesis presents a short survey of
network emulation systems and describes in detail Netkit, a lightweight emulator
that allows to easily setup and distribute complex network configurations. Besides
being an effective instrument to support teaching of computer networks, Netkit
has also proved itself to be helpful in testing the configuration of large scale real
world networks. Netkit also comes with a set of ready to use virtual laboratories
that allow to immediately experiment with specific case studies. It fully installs
and runs in user space and provides users with a familiar environment consisting
of a Debian based Linux box and well known routing software and routing tools.

197

Open Problems

W
hile this thesis introduces novel models and presents interesting results
that enable a deeper understanding of BGP routing, there are still some
open issues which require further investigation.

Topology discovery techniques based on active probing by BGP announcements
could be improved by introducing a strong theoretical foundation driving the ex-
ploration process. This would allow to optimize the number of announcements
required to discover portions of the Internet and would help in better estimat-
ing the limits of our discovery methodology, by discriminating between what can
be discovered and what cannot be. Probes may then be combined with network
measurements to support what-if case analysis of network performance under al-
ternate routing configurations. These considerations also hold for the techniques
for determining the feasibility or level of preference of an AS-path.

A natural evolution of the analysis of Registry information to extract BGP
peerings would be to focus on routing policies expressed in RPSL. Because of
its primary goal of supporting the definition of consistent routing policies, the
Internet Routing Registry is a very rich source of policy information. Mining such
information may be difficult because of the existence of out-of-date and inconsistent
chunks of data in the IRR; yet, the knowledge of routing policies would allow to
better understand how network prefixes would be propagated in the Internet before
actually announcing them. In principle, routing policies could also be implemented
in an emulation system in order to obtain a virtualized instance of (a portion of)
the Internet.

The analysis of methods for inferring the commercial relationships between
Autonomous Systems can be further extended to take into account recently intro-
duced algorithms and validate their results. Also consider that under the valley-free
approach an instance of network may have multiple valid relationship assignments,
while inference algorithms usually return just one of them. It would be interesting
to investigate the whole space of solutions in order to estimate the degrees of

199

Open Problems

freedom of an assignment. Once a realistic relationship assignment is available, it
could be used as a starting point to compute a classification of the Autonomous
Systems into hierarchical levels. While some methodologies for computing a hierar-
chy have already been proposed, it is still unclear which is the correct classification
criterion.

Also the model for achieving traffic engineering by prepending presented in
this thesis leaves room for improvements. First of all, both the model and the
algorithms for computing the optimal amount of prepending should be tested on a
case study to prove their effectiveness. Then, the model itself could be extended to
take into account other traffic engineering requirements. It would also be impor-
tant to determine bounds on the algorithmic complexity of computing the optimal
amount of prepending. Another interesting perspective for future research consists
in understanding the evolution of the Internet system when its actors apply traffic
engineering in a selfish way, with the goal of maximizing their own profit. Such
a study would allow to determine whether adopting a selfish behavior on a large
scale would impact Internet’s stability.

The model for studying BGP routing oscillations still needs to be extended.
While it is able to capture different kinds of stability, it misses a methodology
for determining whether a network instance is configured in such a way to induce
instabilities. Moreover, the correlation between the configuration of a network and
the reachability of stable states has still to be investigated.

The Netkit emulation environment currently provides an extensive set of tools
and ready to use virtual labs that allow to quickly and effectively experiment with
complex network scenarios. The improvements it is susceptible of are mainly of
technical nature. Essentially, plans for future development include updates of the
filesystem and kernel of virtual machines in order to improve stability and include
more recent releases of routing software as well as other tools (for example, related
to network security). The possibility to introduce support for physical charac-
teristics of network links (delay, packet loss, reordering, etc.) is also taken into
consideration. Another possible improvement would be to simplify the deployment
of virtual networks distributed on multiple real hosts. This can be achieved by
integration with existing tools for building distributed networks and would bring
benefits in terms of scale and complexity of the emulated network.

200

Acknowledgments

There are a lot of people to whom I owe something more than a simple list of
thanks.

Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia acted
as irreplaceable guides through the whole PhD, helped me in understanding
what to do and what not to, gave me plenty of precious suggestions, and
supported me during my research activity; and I am not mentioning their
ability in creating a group of people that work so well together.

Lorenzo Colitti has been a clever partner and an effective leader during
some of the most difficult phases of the research activity.

Daniel Karrenberg and Henk Uijterwaal gave me the opportunity to share
knowledge and experience with people that coordinate and manage routing
resources in the Internet.

Tiziana Refice and I collaborated on some of the most important research
matters of my studies, and she provided significant support in arranging some
travels abroad.

Stefano Pettini improved the interface of Netkit with the idea of organizing
the labs as a hierarchy of directories. Configuration options have been improved
since then, but we owe the original idea and implementation of the ltools to
him. Fabio Ricci contributed with the idea and implementation of the self
testing procedure of Netkit labs.

Several useful discussions and exchanges of ideas about different topics have
taken place with Guido Drovandi, Gabriele Barbagallo, Andrea Capaldo, and
Giacomo Masseroni.

A lot of thanks go to the reviewers for their willingness in going through
this thesis and for their kindness in providing useful hints for making it better.

201

Acknowledgements

There are many other people from whom I got technical and methodological
support. I really acknowledge their help despite the fact that they are not
mentioned here.

Substantial moral support (and you cannot make it through a PhD without)
came from several other people who I am not mentioning here but are clearly
impressed in my heart and to whom I am immensely grateful.

Some of the material presented in this thesis is based on results from published
works [140, 66, 67, 131, 139, 130, 65, 141].

202

Bibliography

[1] NCTUns 1.0. IEEE Network Magazine, 17(4), Jul 2003. Appeared in
the column “Software Tools for Networking”.

[2] Aaron Klingaman, Mark Huang, Steve Muir, and Larry Peterson.
PlanetLab Core Specification 4.0. Technical Report PDN–06–032,
PlanetLab Consortium, Jun 2006.

[3] Advanced Micro Devices. Introducing AMD VirtualizationTM.
http://www.amd.com/us-en/Processors/ProductInformation/0,
,30 118 8826 14287,00.html.

[4] Albert-László Barabási. Linked: The New Science of Networks. Perseus
Publishing, 2002.

[5] Albert-László Barabási. Linked: The New Science of Networks. Journal
of Artificial Societies and Social Simulation, 6(2), 2003.

[6] Albert-László Barabási, Réka Albert, H. Jeong, and G. Bianconi.
Power-Law Distribution of the World Wide Web. Science, 287(5461),
Mar 2000.

[7] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan
Kostic, Jeff Chase, and David Becker. Scalability and Accuracy in a
Large-Scale Network Emulator. ACM SIGOPS Operating Systems
Review, 36(SI):271–284, 2002.

[8] Andrea Bittau and Mark Handley. Decoupling Policy from Protocols.
Draft paper, Feb 2006.

[9] Andrea Carmignani, Giuseppe Di Battista, Walter Didimo, Francesco
Matera, and Maurizio Pizzonia. Visualization of the High Level

203

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8826_14287,00.html
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8826_14287,00.html

Bibliography

Structure of the Internet with Hermes. Journal of Graph Algorithms
and Applications, 6(3):281–311, 2002.

[10] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and
Jennifer Rexford. In VINI Veritas: Realistic and Controlled Network
Experimentation. ACM SIGCOMM Computer Communication Review,
36(4):3–14, Sep 2006.

[11] ARIN. American Registry for Internet Numbers.
http://www.arin.net/.

[12] Beichuan Zhang, Raymond Liu, Daniel Massey, and Lixia Zhang.
Collecting the internet AS-level topology. ACM SIGCOMM Computer
Communication Review, 35(1):53–61, 2005.

[13] Boston University. BRITE Internet Topology Generator.
http://www.cs.bu.edu/brite/.

[14] Brad Marshall. User Mode Linux, VMWare and Wine – Virtual
Machines under Linux, Apr 2003.
http://quark.humbug.org.au/publications/linux/uml.pdf.

[15] Bradley Huffaker, Daniel Plummer, David Moore, and kc claffy.
Topology Discovery by Active Probing. In Proc. Symposium on
Applications and the Internet (SAINT 2002), page 90. IEEE Computer
Society, Jan 2002.

[16] Bradley Huffaker, Evi Nemeth, and kc claffy. Otter: A General-purpose
Network Visualization Tool. In Proc. International Networking
Conference (INET 1999), Jun 1999.

[17] Bruno Quoitin. C-BGP. http://cbgp.info.ucl.ac.be/.

[18] Bruno Quoitin. CBGP – A new approach to BGP simulation. E-Next
Advanced two-day course on Interdomain Routing with BGP4, Nov
2004. http://cbgp.info.ucl.ac.be/downloads/cbgp-1.pdf,
http://cbgp.info.ucl.ac.be/downloads/cbgp-2.pdf.

[19] Bruno Quoitin, Cristel Pelsser, Louis Swinnen, Olivier Bonaventure,
and Steve Uhlig. Interdomain Traffic Engineering with BGP. IEEE
Communications Magazine, 41(5):122–128, May 2003.

204

http://www.arin.net/
http://www.cs.bu.edu/brite/
http://quark.humbug.org.au/publications/linux/uml.pdf
http://cbgp.info.ucl.ac.be/
http://cbgp.info.ucl.ac.be/downloads/cbgp-1.pdf
http://cbgp.info.ucl.ac.be/downloads/cbgp-2.pdf

[20] Bruno Quoitin and Steve Uhlig. Modeling the Routing of an
Autonomous System with C-BGP. IEEE Network, 19(6), Nov 2005.

[21] Bruno Quoitin, Steve Uhlig, Cristel Pelsser, and Olivier Bonaventure.
Internet Traffic Engineering Techniques. Technical Report
Infonet-2002-05, Apr 2002.

[22] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T.
Bates, D. Karrenberg, and M. Terpstra. Routing Policy Specification
Language (RPSL). RFC 2622, Jun 1999.

[23] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service.
RFC 1546, Nov 1993.

[24] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap
Damping. RFC 2439, Nov 1998.

[25] CAIDA. Reverse Traceroute and Looking Glass servers in the World.
http://www.caida.org/analysis/routing/reversetrace/.

[26] CAIDA. Skitter.
http://www.caida.org/tools/measurement/skitter/.

[27] CAIDA. Skitter Topology Monitors’ Status.
http://sk-status.caida.org/cgi-bin/main.pl?mode=status.

[28] Cengiz Alaettinoglu, Ramesh Govindan, David Kessens, and WeeSan
Lee. Providing IRR Consistency. 41st Internet Engineering Task Force
(IETF), Apr 1998.

[29] Christos Papadimitriou. Algorithms, Games, and the Internet. In Proc.
33rd annual ACM Symposium on Theory of Computing (STOC 2001),
pages 749–753. ACM Press, 2001.

[30] Cisco Systems, Inc. BGP Best Path Selection Algorithm.
http://www.cisco.com/en/US/tech/tk365/
technologies tech note09186a0080094431.shtml.

[31] University of Roma Tre Computer Networks Research Group. BGP
Probing. http://www.dia.uniroma3.it/∼compunet/bgp-probing/.

[32] University of Roma Tre Computer Networks Research Group. BGPlay.
http://bgplay.routeviews.org/bgplay/.

205

http://www.caida.org/analysis/routing/reversetrace/
http://www.caida.org/tools/measurement/skitter/
http://sk-status.caida.org/cgi-bin/main.pl?mode=status
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094431.shtml
http://www.dia.uniroma3.it/~compunet/bgp-probing/
http://bgplay.routeviews.org/bgplay/

Bibliography

[33] University of Roma Tre Computer Networks Research Group. BGPlay.
http://www.ris.ripe.net/bgplay/.

[34] University of Roma Tre Computer Networks Research Group. Hermes.
http://tocai.dia.uniroma3.it/∼hermes.

[35] University of Roma Tre Computer Networks Research Group. Netkit.
http://www.netkit.org.

[36] University of Roma Tre Computer Networks Research Group. Netkit
ready to use Labs. http://www.netkit.org/labs.html.

[37] University of Roma Tre Computer Networks Research Group. Netkit
related publications. http://www.netkit.org/publications.html.

[38] University of Roma Tre Computer Networks Research Group. NetML.
http://www.dia.uniroma3.it/∼compunet/netml/.

[39] University of Roma Tre Computer Networks Research Group. RPSL
Analysis Service. http://tocai.dia.uniroma3.it/∼irr analysis/.

[40] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian.
Delayed Internet Routing Convergence. In Proc. ACM SIGCOMM
2000, pages 175–187, Sep 2000.

[41] Craig Labovitz, Abha Ahuja, Roger Wattenhofer, and Venkatachary
Srinivasan. The Impact of Internet Policy and Topology on Delayed
Routing Convergence. In Proc. IEEE INFOCOM 2001, pages 537–546,
Apr 2001.

[42] Curtis Villamizar. Some Practical Advice on Using the IRR, 1998.
http:
//www.isc.org/sw/IRRToolSet/documentation/advice.pdf.gz.

[43] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview
and Principles of Internet Traffic Engineering. RFC 3272, May 2002.

[44] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu. Using
RPSL in Practice. RFC 2650, Aug 1999.

[45] Daniel Karrenberg, Gerard Ross, Paul Wilson, and Leslie Nobile.
Development of the Regional Internet Registry System. Internet
Protocol Journal, 4(4):17–29, Dec 2001.

206

http://www.ris.ripe.net/bgplay/
http://tocai.dia.uniroma3.it/~hermes
http://www.netkit.org
http://www.netkit.org/labs.html
http://www.netkit.org/publications.html
http://www.dia.uniroma3.it/~compunet/netml/
http://tocai.dia.uniroma3.it/~irr_analysis/
http://www.isc.org/sw/IRRToolSet/documentation/advice.pdf.gz
http://www.isc.org/sw/IRRToolSet/documentation/advice.pdf.gz

[46] Debian. APT Howto.
http://www.debian.org/doc/manuals/apt-howto/.

[47] Friedrich Alexander Universität Erlangen-Nürnberg Department of
Computer Science. FAUmachine Project (formerly UMLinux).
http://www3.informatik.uni-erlangen.de/Research/FAUmachine/.

[48] University of California, San Diego Department of Computer Science.
ModelNet. http://modelnet.ucsd.edu/.

[49] Purdue University Department of Computer Sciences. vBET: a
VM-Based Education Testbed.
http://www.cs.purdue.edu/homes/jiangx/vBET/.

[50] University of Zagreb Department of Telecommunications. IMUNES –
An Integrated Multiprotocol Network Emulator/Simulator.
http://www.tel.fer.hr/imunes/.

[51] Fabrice Bellard. QEMU Open Source Processor Emulator.
http://www.qemu.org/, http://fabrice.bellard.free.fr/qemu/.

[52] Fabrizio Ciacchi. Linux in Linux. Linux Magazine, May 2005.

[53] Fermı́n Galán and David Fernández. VNUML: Una Herramienta de
Virtualización de Redes Basada en Software Libre. In Proc. Open
Source International Conference 2004, pages 35–41, Feb 2004. In
Spanish.

[54] Fermı́n Galán, David Fernández, Javier Ruiz, Omar Walid, and Tomás
de Miguel. Use of Virtualization Tools in Computer Network
Laboratories. In Proc. 5th International Conference on Information
Technology Based Higher Education and Training (ITHET 2004), pages
209–214, Jun 2004.

[55] G. Malkin. RIP Version 2. RFC 2453, Nov 1998.

[56] Geoff Huston. BGP Reports. http://bgp.potaroo.net/.

[57] Geoff Huston. ISP Survival Guide: Strategies for Running a
Competitive ISP. Paperback, New York, NY, 1998.

[58] Geoff Huston. Interconnection, Peering and Settlements – Part I.
Internet Protocol Journal, 2(1), Mar 1999.

207

http://www.debian.org/doc/manuals/apt-howto/
http://www3.informatik.uni-erlangen.de/Research/FAUmachine/
http://modelnet.ucsd.edu/
http://www.cs.purdue.edu/homes/jiangx/vBET/
http://www.tel.fer.hr/imunes/
http://www.qemu.org/
http://fabrice.bellard.free.fr/qemu/
http://bgp.potaroo.net/

Bibliography

[59] Geoff Huston. Interconnection, Peering and Settlements – Part II.
Internet Protocol Journal, 2(2), Jun 1999.

[60] Georgos Siganos and Michalis Faloutsos. Analyzing BGP Policies:
Methodology and Tool. In Proc. IEEE INFOCOM 2004. IEEE, Mar
2004.

[61] Georgos Siganos and Michalis Faloutsos. Nemecis: A Tool to Analyze
the Internet Routing Registries. RIPE Meeting 48, May 2004.

[62] Gerd Stolpmann. UMLMON.
http://www.gerd-stolpmann.de/buero/umlmon.html.en.

[63] Giuseppe Di Battista, Federico Mariani, Maurizio Patrignani, and
Maurizio Pizzonia. Archives of BGP Updates: Integration and
Visualization. In Proc. International Workshop on Inter-domain
Performance and Simulation, pages 123–129, Feb 2003.

[64] Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia.
Computing the Types of the Relationships between Autonomous
Systems. In Proc. IEEE INFOCOM 2003, volume 1, pages 156–165.
IEEE, Apr 2003.

[65] Giuseppe Di Battista, Maurizio Patrignani, Maurizio Pizzonia, and
Massimo Rimondini. Towards Optimal Prepending for Incoming Traffic
Engineering. In Proc. 3rd International Workshop on Internet
Performance, Simulation, Monitoring and Measurement (IPS-MoMe
2005), Mar 2005.

[66] Giuseppe Di Battista, Tiziana Refice, and Massimo Rimondini. How to
Extract BGP Peering Information from the Internet Routing Registry.
In Proceedings of the 2006 SIGCOMM workshop on Mining network
data (MineNet 2006), pages 317–322. ACM Press, 2006.

[67] Giuseppe Di Battista, Tiziana Refice, and Massimo Rimondini. How to
Extract BGP Peering Information from the Internet Routing Registry.
Technical Report RT-DIA-108-2006, University of Roma Tre, Dept. of
Computer Science and Automation, May 2006. http://dipartimento.
dia.uniroma3.it/ricerca/rapporti/rapporti.php.

[68] Hao Wang, Haiyong Xie, Yang Richard Yang, Avi Silberschatz, Li
Erran Li, and Yanbin Liu. On the Stability of Rational, Heterogeneous

208

http://www.gerd-stolpmann.de/buero/umlmon.html.en
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rapporti.php
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rapporti.php

Interdomain Route Selection. In Proc. 13th IEEE International
Conference on Network Protocols (ICNP 2005), pages 40–52. IEEE
Computer Society, 2005.

[69] Hao Wang, Haiyong Xie, Yang Richard Yang, Avi Silberschatz
Silberschatz, Li Erran Li, and Yanbin Liu. Stable Egress Route
Selection for Interdomain Traffic Engineering: Model and Analysis. In
Proc. 13th IEEE International Conference on Network Protocols (ICNP
2005), pages 16–29. IEEE Computer Society, 2005.

[70] Hao Wang, Haiyong Xie, Yang Richard Yang, Li Erran Li, Yanbin Liu,
and Avi Silberschatz. On Stable Route Selection for Interdomain Traffic
Engineering: Models and Analysis. Technical Report
YALEU/DCS/TR-1316, Computer Science Department, Yale
University, Feb 2005.

[71] Henk Uijterwaal, Antony Antony, and Daniel Karrenberg. RIS
Observations. RIPE Meeting 38, Ja 2001.

[72] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer-Verlag New York, Inc., 1987.

[73] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and
Deborah Estrin. The Impact of Routing Policy on Internet Paths. In
Proc. IEEE INFOCOM 2001, pages 736–742, Apr 2001.

[74] Hongwei Zhang, Anish Arora, and Zhijun Liu. G-BGP: Stable and Fast
Convergence of the Border Gateway Protocol. Technical Report
OSU-CISRC-6/03-TR36, Ohio State University, Jun 2003.

[75] Hongwei Zhang, Anish Arora, and Zhijun Liu. A Stability-Oriented
Approach to Improving BGP Convergence. In Proc. 23rd IEEE
International Symposium on Reliable Distributed Systems (SRDS 2004),
pages 90–99. IEEE Computer Society, 2004.

[76] Hyunseok Chang, Ramesh Govindan, Sugih Jamin, Scott J. Shenker,
and Walter Willinger. Towards Capturing Representative AS-level
Internet Topologies. Computer Networks, 44(6):737–755, 2004.

[77] Ian Pratt. Xen and the Art of Virtualization. Ottawa Linux
Symposium 2004, 2004.

209

Bibliography

[78] Ian Pratt. Xen 3.0 and the Art of Virtualization. Ottawa Linux
Symposium 2005, 2005.

[79] Ian Pratt. Xen and the Art of Virtualization. Ottawa Linux
Symposium 2006, 2006.

[80] Innotek. VirtualBox. http://www.virtualbox.org/.

[81] Intel. Intel R©Virtualization Technology.
http://www.intel.com/technology/virtualization/index.htm.

[82] International Computer Science Institute, Berkeley, California. XORP
Open Source IP Router. http://www.xorp.org/.

[83] Internet Systems Consortium. Internet Routing Registry Toolset.
http://www.isc.org/index.pl?/sw/IRRToolSet/.

[84] Ivan Santarelli and Alexandra Bellogini. NetML – Network Markup
Language. RIPE Meeting 47, Feb 2004.

[85] J. Moy. OSPF Version 2. RFC 2328, Apr 1998.

[86] Jay Chen, Diwaker Gupta, Kashi V. Vishwanath, Alex C. Snoeren, and
Amin Vahdat. Routing in an Internet-Scale Network Emulator. In Proc.
12th IEEE Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems
(MASCOTS 2004), pages 275–283. IEEE Computer Society, 2004.

[87] Jay Lepreau. Emulab: Recent Work, Ongoing Work. Talk at DETER
Lab Community Meeting, Jan 2006.

[88] Jeff Dike. A User-Mode Port of the Linux Kernel.
http://user-mode-linux.sourceforge.net/als2000/index.html.

[89] Jeff Dike. A User-Mode Port of the Linux Kernel. In Proc. 4th Annual
Linux Showcase & Conference, pages 63–72, Oct 2000.

[90] Jeff Dike. User-Mode Linux. Talk at the 2001 Ottawa Linux
Symposium, Jul 2001.

[91] Jeff Dike. Double your Fun with User-Mode Linux, Nov 2004.

[92] Jeff Dike. User Mode Linux. Prentice Hall, Apr 2006.

210

http://www.virtualbox.org/
http://www.intel.com/technology/virtualization/index.htm
http://www.xorp.org/
http://www.isc.org/index.pl?/sw/IRRToolSet/
http://user-mode-linux.sourceforge.net/als2000/index.html

[93] Jeroen van der Ham, Freek Dijkstra, Franco Travostino, Hubertus
Andree, and Cees de Laat. Using RDF to Describe Networks. Future
Generation Computer Systems, Feature topic iGrid 2005, 2006.
http://staff.science.uva.nl/∼vdham/research/publications/
0510-NetworkDescriptionLanguage.pdf.

[94] Jeroen van der Ham, Paola Grosso, and Cees de Laat. Semantics for
Hybrid Networks Using the Network Description Language. Poster at
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2006), Mar 2006.
http://staff.science.uva.nl/∼vdham/research/publications/
0603-NetworkDescriptionLanguage.pdf.

[95] Jeroen van der Ham, Paola Grosso, Ronald van der Pol, Andree Toonk,
and Cees de Laat. Using the Network Description Language in Optical
Networks. May 2006. Accepted at the IEEE Integrated Management
Conference 2007.

[96] Jianhong Xia. Weird ASPATH in update message. RIPE Routing
Working Group list archive, Jun 2002. http://www.ripe.net/
maillists/ncc-archives/ris-users/2002/msg00044.html.

[97] João Lúıs Sobrinho. Network Routing with Path Vector Protocols:
Theory and Applications. In Proc. ACM SIGCOMM 2003, pages 49–60.
ACM Press, 2003.

[98] João Lúıs Sobrinho. An Algebraic Theory of Dynamic Network Routing.
IEEE/ACM Transactions on Networking, 13(5):1160–1173, 2005.

[99] Joachim Schmitz, Engin Gunduz, Shane Kerr, Andrei Robachevsky,
and Joao Luis Silva Damas. Routing Registry Consistency Check.
RIPE Document 201, Dec 2001.

[100] John W. Stewart. BGP4: Inter-Domain Routing in the Internet.
Addison-Wesley, Reading, MA, 1999.

[101] Jorge A. Cobb, Mohamed G. Gouda, and Ravi Musunuri. A Stabilizing
Solution to the Stable Path Problem. LNCS, 2704:169–183, 2003.

[102] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent
Route Oscillations in Inter-domain Routing. Elsevier Computer
Networks, 32(1):1–16, 2000.

211

http://staff.science.uva.nl/~vdham/research/publications/0510-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0510-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0603-NetworkDescriptionLanguage.pdf
http://staff.science.uva.nl/~vdham/research/publications/0603-NetworkDescriptionLanguage.pdf
http://www.ripe.net/maillists/ncc-archives/ris-users/2002/msg00044.html
http://www.ripe.net/maillists/ncc-archives/ris-users/2002/msg00044.html

Bibliography

[103] kc claffy. Internet Measurement and Data Analysis: Topology,
Workload, Performance and Routing Statistics. National Academy of
Engineering (NAE) Workshop, Mar 1999.

[104] kc claffy. CAIDA: Visualizing the Internet. Internet Computing Online,
Jan 2001.

[105] kc claffy and Sean McCreary. Internet Measurement and Data
Analysis: Passive and Active Measurement. American Statistical
Association, Aug 1999.

[106] kc claffy, Tracie E. Monk, and Daniel McRobb. Internet Tomography.
Nature, Web Matters column, Jan 1999.

[107] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew
Warfield, and Mark Williamson. Safe Hardware Access with the Xen
Virtual Machine Monitor. In Proc. 1st Workshop on Operating System
and Architectural Support for the on demand IT InfraStructure (OASIS
2004), Oct 2004.

[108] Kunihiro Ishiguro. GNU Zebra Routing Software.
http://www.zebra.org/.

[109] Kuthonuzo Luruo and Shashank Khanvilkar. Virtual Networking with
User-Mode Linux. Linux for You – Pro, Mar 2005.

[110] Kyron. Linux Virtual Server.
http://www.kyron.it/virtual server.asp.

[111] L. Blunk, J. Damas, F. Parent, and A. Robachevsky. Routing Policy
Specification Language next generation (RPSLng). RFC 4012, Mar
2005.

[112] L. Daigle. WHOIS Protocol Specification. RFC 3912, Sep 2004.

[113] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee,
Mark Handley, Zhuoqing Morley Mao, Scott Shenker, and Ion Stoica.
Towards a Next Generation Inter-domain Routing Protocol. In Proc.
3rd Workshop on Hot Topics in Networks (HOTNETS-III), Nov 2004.

[114] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee,
Mark Handley, Zhuoqing Morley Mao, Scott Shenker, and Ion Stoica.
HLP: A Next Generation Inter-domain Routing Protocol. In Proc.
ACM SIGCOMM 2005, pages 13–24. ACM Press, 2005.

212

http://www.zebra.org/
http://www.kyron.it/virtual_server.asp

[115] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford,
and Randy H. Katz. Characterizing the Internet Hierarchy from
Multiple Vantage Points. In Proc. IEEE INFOCOM 2002, Jun 2002.

[116] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford,
and Randy H. Katz. Characterizing the Internet Hierarchy from
Multiple Vantage Points, Data Sets [discontinued], 2002. http:
//www.cs.berkeley.edu/∼sagarwal/research/BGP-hierarchy/.

[117] Larry Peterson, Steve Muir, Timothy Roscoe, and Aaron Klingaman.
PlanetLab Architecture: An Overview. Technical Report PDN–06–031,
PlanetLab Consortium, May 2006.

[118] Larry Peterson and Timothy Roscoe. The Design Principles of
PlanetLab. ACM SIGOPS Operating Systems Review, 40(1):11–16,
2006.

[119] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On Selfish
Routing in Internet-Like Environments. IEEE/ACM Transactions on
Networking, 14(4), Aug 2006.

[120] Linode.com. Virtual Private Server. http://linode.com/.

[121] Lixin Gao. On Inferring Autonomous System Relationships in the
Internet. In Proc. IEEE Global Internet Symposium 2000, Nov 2000.

[122] Lixin Gao. On Inferring Autonomous System Relationships in the
Internet. IEEE/ACM Transactions on Networking, 9(6):733–745, Dec
2001.

[123] Lixin Gao and Feng Wang. The Extent of AS Path Inflation by Routing
Policies. In Proc. IEEE Global Internet Symposium 2002, Nov 2002.

[124] Lixin Gao and Jennifer Rexford. Stable Internet Routing without
Global Coordination. In Proc. ACM SIGMETRICS 2000, pages
307–317. ACM Press, 2000.

[125] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently Safe
Backup Routing with BGP. In Proc. IEEE INFOCOM 2001, pages
547–556, Apr 2001.

213

http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://www.cs.berkeley.edu/~sagarwal/research/BGP-hierarchy/
http://linode.com/

Bibliography

[126] Lorenzo Colitti. ”AS-set stuffing” experiments using RIS beacons. RIPE
Routing Working Group mailing list, Feb 2005. http://www.ripe.net/
ripe/maillists/archives/routing-wg/2005/msg00021.html.

[127] Lorenzo Colitti. Heads up: Long AS-sets announced in the next few
days. North American Network Operators Group (NANOG) mailing
list, Mar 2005. http:
//www.merit.edu/mail.archives/nanog/2005-03/msg00029.html.

[128] Lorenzo Colitti. Heads up: Long AS-sets announced in the next few
days. RIPE NCC RIS Users mailing list, Mar 2005.
https://www.ripe.net/maillists/ncc-archives/ris-users/2005/
msg00017.html.

[129] Lorenzo Colitti, Giuseppe Di Battista, Federico Mariani, Maurizio
Patrignani, and Maurizio Pizzonia. Visualizing interdomain routing
with BGPlay. Journal of Graph Algorithms and Applications,
9(1):117–148, Nov 2005.

[130] Lorenzo Colitti, Giuseppe Di Battista, Maurizio Patrignani, Maurizio
Pizzonia, and Massimo Rimondini. Active BGP Probing. Technical
Report RT-DIA-102-2005, University of Roma Tre, Dept. of Computer
Science and Automation, Nov 2005. http://dipartimento.dia.
uniroma3.it/ricerca/rapporti/rapporti.php.

[131] Lorenzo Colitti, Giuseppe Di Battista, Maurizio Patrignani, Maurizio
Pizzonia, and Massimo Rimondini. Investigating Prefix Propagation
through Active BGP Probing. In Proc. IEEE Symposium on Computers
and Communications (ISCC 2006), pages 497–504. IEEE Computer
Society, 2006.

[132] Louis Swinnen, Sébastien Tandel, S. Uhlig, Bruno Quoitin, and Olivier
Bonaventure. An Evaluation of BGP-based Traffic Engineering
Techniques. Technical Report Infonet-2002-10, Dec 2002.

[133] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.
RFC 2581, Apr 1999.

[134] Mark Handley. Proposal to Develop an Extensible Open Router
Platform. Initial project proposal, Nov 2000.

214

http://www.ripe.net/ripe/maillists/archives/routing-wg/2005/msg00021.html
http://www.ripe.net/ripe/maillists/archives/routing-wg/2005/msg00021.html
http://www.merit.edu/mail.archives/nanog/2005-03/msg00029.html
http://www.merit.edu/mail.archives/nanog/2005-03/msg00029.html
https://www.ripe.net/maillists/ncc-archives/ris-users/2005/msg00017.html
https://www.ripe.net/maillists/ncc-archives/ris-users/2005/msg00017.html
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rapporti.php
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rapporti.php

[135] Mark Handley. New BGP decision process implementation,
Xorp-hackers mailing list, Oct 2003. http://mailman.icsi.berkeley.
edu/pipermail/xorp-hackers/2003-October/000011.html.

[136] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, and Pavlin
Radoslavov. Designing Extensible IP Router Software. In Proc. 2ns
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2005), May 2005.

[137] Mark Handley, Orion Hodson, and Eddie Kohler. XORP: An Open
Platform for Network Research. ACM SIGCOMM Computer
Communication Review, 33(1):53–57, 2003.

[138] Marko Zec. Implementing a Clonable Network Stack in the FreeBSD
Kernel. In Proc. 2003 USENIX Annual Technical Conference, Jun 2003.

[139] Massimo Rimondini. Emulating Computer Networks with Netkit.
Tutorial at the 4th International Workshop on Internet Performance,
Simulation, Monitoring and Measurement (IPS-MoMe 2006), Feb 2006.

[140] Massimo Rimondini. Emulation of Computer Networks with Netkit.
Technical Report RT-DIA-113-2007, University of Roma Tre, Jan 2007.

[141] Massimo Rimondini, Maurizio Pizzonia, Giuseppe Di Battista, and
Maurizio Patrignani. Algorithms for the Inference of the Commercial
Relationships between Autonomous Systems: Results Analysis and
Model Validation. In Proc. 2nd International Workshop on
Inter-Domain Performance and Simulation (IPS 2004), Mar 2004.

[142] Merit Network Inc. List of Routing Registries.
http://www.irr.net/docs/list.html.

[143] Merit Network, Inc. Overview of the IRR.
http://www.irr.net/docs/overview.html.

[144] Merit Network, Inc. Routing Assets Database (RADB).
ftp://ftp.radb.net/radb/dbase/.

[145] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On
Power-Law Relationships of the Internet Topology. In Proc. ACM
SIGCOMM 1999, pages 251–262. ACM Press, 1999.

215

http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2003-October/000011.html
http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2003-October/000011.html
http://www.irr.net/docs/list.html
http://www.irr.net/docs/overview.html
ftp://ftp.radb.net/radb/dbase/

Bibliography

[146] Microsoft. Virtual PC 2004. http:
//www.microsoft.com/italy/windows/virtualpc/default.mspx.

[147] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson.
Measuring ISP Topologies with Rocketfuel. IEEE/ACM Transactions
on Networking, 12(1):2–16, 2004.

[148] Neil Spring, Ratul Mahajan, and Thomas Anderson. Quantifying the
Causes of Path Inflation. In Proc. ACM SIGCOMM 2003, Aug 2003.

[149] University of Cambridge Networks and Operating Systems Group.
XEN. http://www.cl.cam.ac.uk/research/srg/netos/xen/.

[150] Nick Feamster, Hari Balakrishnan, and Jennifer Rexford. Some
Foundational Problems in Interdomain Routing. In Proc. 3rd Workshop
on Hot Topics in Networks (HOTNETS-III), Nov 2004.

[151] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. Guidelines for
Interdomain Traffic Engineering. ACM SIGCOMM Computer
Communication Review, 33(5):19–30, Oct 2003.

[152] Olivier Bonaventure. Internet Traffic Engineering Techniques. Tutorial
at ICNP 2002, Nov 2002.
http://suraj.lums.edu.pk/∼te/mpls/icnp2002-notes.pdf.

[153] P. Srisuresh and K. Egevang. Traditional IP Network Address
Translator (Traditional NAT). RFC 3022, Jan 2001.

[154] Paolo Giarrusso. SKAS patches and UML updates.
http://www.user-mode-linux.org/∼blaisorblade/.

[155] Paolo Giarrusso. UML Utilities.
http://www.user-mode-linux.org/∼blaisorblade/uml-utilities/.

[156] Parallels. Parallels Workstation. http://www.parallels.com/.

[157] Paul Albitz. DNS and BIND. O’Reilly & Associates, Inc., 2001.

[158] Paul Barford, Azer Bestavros, John Byers, and Mark Crovella. On the
Marginal Utility of Network Topology Measurements. In Proc. 1st
ACM SIGCOMM Workshop on Internet Measurement (IMW 2001),
pages 5–17. ACM Press, 2001.

216

http://www.microsoft.com/italy/windows/virtualpc/default.mspx
http://www.microsoft.com/italy/windows/virtualpc/default.mspx
http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://suraj.lums.edu.pk/~te/mpls/icnp2002-notes.pdf
http://www.user-mode-linux.org/~blaisorblade/
http://www.user-mode-linux.org/~blaisorblade/uml-utilities/
http://www.parallels.com/

[159] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauery, Ian Pratt, and Andrew Warfield. Xen and
the Art of Virtualization. In Proc. 19th ACM Symposium on Operating
System Principles (SOSP 2003), Oct 2003.

[160] Pio Baake and Thorsten Wichmann. On the Economics of Internet
Peering. Netnomics, 1(1):89–105, 1999.

[161] PlanetLab Consortium. PlanetLab. http://www.planet-lab.org/.

[162] Priya Mahadevan, Adolfo Rodriguez, David Becker, and Amin Vahdat.
MobiNet: A Scalable Emulation Infrastructure for Ad hoc and Wireless
Networks. In Proc. 2005 Workshop on Wireless Traffic Measurements
and Modeling (WiTMeMo 2005), pages 7–12. USENIX Association,
2005.

[163] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xenofontas
Dimitropoulos, kc claffy, and Amin Vahdat. The Internet AS-Level
Topology: Three Data Sources and One Definitive Metric. ACM
SIGCOMM Computer Communication Review, 36(1):17–26, 2006.

[164] R. Chandra, P. Traina, and T. Li. BGP Communities Attribute. RFC
1997, Aug 1996.

[165] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas Anderson.
Inferring Link Weights using End-to-End Measurements. In Proc.
Internet Measurement Workshop (IMW 2002), Nov 2002.

[166] Renzo Davoli. VDE: Virtual Distributed Ethernet.
http://sourceforge.net/projects/vde/.

[167] Renzo Davoli. Virtual Square. http://www.virtualsquare.org/.

[168] Renzo Davoli. VDE: Virtual Distributed Ethernet. Technical Report
UBLCS-2004-12, University of Bologna, Jun 2004.

[169] Renzo Davoli. VDE: Virtual Distributed Ethernet. In Proc. 1st
International Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities (TRIDENTCOM
2005), pages 213–220. IEEE Computer Society, 2005.

[170] RIPE NCC. General Routing Registry Consistency Check Report.
http://rrcc.ripe.net/RRCC general report.html.

217

http://www.planet-lab.org/
http://sourceforge.net/projects/vde/
http://www.virtualsquare.org/
http://rrcc.ripe.net/RRCC_general_report.html

Bibliography

[171] RIPE NCC. RIPE Routing Registry database.
ftp://ftp.ripe.net/ripe/dbase/ripe.db.gz.

[172] RIPE NCC. RIS Routing Beacons.
http://www.ripe.net/ris/docs/beaconlist.html.

[173] RIPE NCC. Routing Information Service.
http://www.ripe.net/projects/ris/.

[174] RIPE NCC. Routing Registry Consistency Check (RRCC) Project.
http://www.ripe.net/projects/rrcc/.

[175] Rocky K. C. Chang and Michael Lo. Inbound Traffic Engineering for
Multihomed ASes Using AS Path Prepending. In Proc. Network
Operations and Management Symposium (NOMS 2004), Apr 2004.

[176] S. Y. Wang. Using the NCTUns 2.0 Network Simulator and Emulator
to Facilitate Network Researches. In Proc. 2nd International Conference
on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TRIDENTCOM 2006), Mar 2006.

[177] S. Y. Wang, C. L. Chou, C. H. Huang, C. C. Hwang, Z. M. Yang, C. C.
Chiou, and C. C. Lin. The Design and Implementation of the NCTUns
1.0 Network Simulator. Computer Networks, 42(2):175–197, 2003.

[178] S. Y. Wang and H. T. Kung. A New Methodology for Easily
Constructing Extensible and High-fidelity TCP/IP Network Simulators.
Computer Networks, 40(2):257–278, 2002.

[179] Sandro Doro. Netkit4TIC Virtual Laboratory.
http://www.tic.fdns.net/tic/html/lab.html.

[180] Shane Kerr. RIPE Database Inconsistencies. RIPE Meeting 43, Sep
2002.

[181] Shie-Yuan Wang and Kuo-Chiang Liao. Innovative Network Emulations
Using the NCTUns Tool. Computer Networking and Networks, pages
157–187, 2006.

[182] SimReal Inc. NCTUns Network Simulator and Emulator.
http://nsl10.csie.nctu.edu.tw/.

218

ftp://ftp.ripe.net/ripe/dbase/ripe.db.gz
http://www.ripe.net/ris/docs/beaconlist.html
http://www.ripe.net/projects/ris/
http://www.ripe.net/projects/rrcc/
http://www.tic.fdns.net/tic/html/lab.html
http://nsl10.csie.nctu.edu.tw/

[183] Suman Banerjee, Timothy G. Griffin, and Marcelo Pias. The
Interdoman Connectivity of PlanetLab Nodes. In Proc. Passive &
Active Measurement Workshop (PAM 2004), Apr 2004.

[184] T. Bates, E. Gerich, L. Joncheray, J-M. Jouanigot, D. Karrenberg, M.
Terpstra, and J. Yu. Representation of IP Routing Policies in a Routing
Registry (ripe-81++). RFC 1786, Mar 1995.

[185] T. Griffin and G. Huston. BGP Wedgies. RFC 4264, Nov 2005.

[186] Technical University of Madrid (UPM) Telematics Engineering
Department. VNUML. http://jungla.dit.upm.es/∼vnuml/.

[187] Thomas Erlebach, Alexander Hall, and Thomas Schank. Classifying
Customer-Provider Relationships in the Internet. In Proc. International
Conference on Communications and Computer Networks (CCN 2002),
pages 538–545. IASTED, Nov 2002.

[188] Thomas Kernen. A comprehensive list of Looking Glasses.
http://www.traceroute.org/.

[189] Timothy G. Griffin, Aaron D. Jaggard, and Vijay Ramachandran.
Design Principles of Policy Languages for Path Vector Protocols. In
Proc. ACM SIGCOMM 2003, pages 61–72. ACM Press, 2003.

[190] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. Policy
Disputes in Path-Vector Protocols. In Proc. 7th International
Conference on Network Protocols (ICNP 1999), page 21. IEEE
Computer Society, 1999.

[191] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The
Stable Paths Problem and Interdomain Routing. IEEE/ACM
Transactions on Networking, 10(2):232–243, 2002.

[192] Timothy G. Griffin and Gordon Wilfong. An Analysis of BGP
Convergence Properties. In Proc. ACM SIGCOMM 1999, pages
277–288. ACM Press, 1999.

[193] Timothy G. Griffin and João Lúıs Sobrinho. Metarouting. ACM
SIGCOMM Computer Communication Review, 35(4):1–12, 2005.

[194] Timothy Griffin and Gordon T. Wilfong. A Safe Path Vector Protocol.
In Proc. IEEE INFOCOM 2000, pages 490–499, Mar 2000.

219

http://jungla.dit.upm.es/~vnuml/
http://www.traceroute.org/

Bibliography

[195] Tony Bates, Elise Gerich, Laurent Joncheray, Jean-Michel Jouanigot,
Daniel Karrenberg, Marten Terpstra, and Jessica Yu. Representation of
IP Routing Policies in a Routing Registry. RIPE Document: RIPE-181,
Oct 1994.

[196] Tony Bates, Jean-Michel Jouanigot, Daniel Karrenberg, Peter Lothberg,
and Marten Terpstra. Representation of IP Routing Policies in the
RIPE Database. RIPE Document: RIPE-81, Feb 1993.

[197] Universiteit van Amsterdam. NDL – Network Description Language.
http://www.science.uva.nl/research/sne/ndl/.

[198] University of Oregon. Route Views Project.
http://www.routeviews.org/.

[199] University of Utah. Emulab Network Emulation Testbed.
http://www.emulab.net/.

[200] University of Washington. Rocketfuel: An ISP Topology Mapping
Engine. http:
//www.cs.washington.edu/research/networking/rocketfuel/.

[201] W. Simpson. IP in IP Tunneling. RFC 1853, Oct 1995.

[202] Adaptive Networking Software - Avaya.
http://support.avaya.com/japple/css/japple?PAGE=
Product&temp.productID=227906&temp.releaseID=227907.

[203] BGP Advanced Internet Routing Resources. http://www.bgp4.as/.

[204] Bochs. http://bochs.sourceforge.net/.

[205] CAIDA – AS ranking. http://as-rank.caida.org/.

[206] Cooperative Linux. http://www.colinux.org/.

[207] Debian GNU/Linux. http://www.debian.org/.

[208] DOSBox. http://dosbox.sourceforge.net/.

[209] DOSEMU. http://www.dosemu.org/.

[210] EINAR (Einar Is Not a Router) Router Simulator.
http://www.isk.kth.se/proj/einar/.

220

http://www.science.uva.nl/research/sne/ndl/
http://www.routeviews.org/
http://www.emulab.net/
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.cs.washington.edu/research/networking/rocketfuel/
http://support.avaya.com/japple/css/japple?PAGE=Product&temp.productID=227906&temp.releaseID=227907
http://support.avaya.com/japple/css/japple?PAGE=Product&temp.productID=227906&temp.releaseID=227907
http://www.bgp4.as/
http://bochs.sourceforge.net/
http://as-rank.caida.org/
http://www.colinux.org/
http://www.debian.org/
http://dosbox.sourceforge.net/
http://www.dosemu.org/
http://www.isk.kth.se/proj/einar/

[211] Flow Control Platform - Internap, Inc. http:
//www.internap.com/product/technology/fcp/page1533.html.

[212] Network stack cloning/virtualization extensions to the FreeBSD kernel.
http://www.tel.fer.hr/zec/BSD/vimage/.

[213] GARR - The Italian Academic and Research Network.
http://www.garr.it/.

[214] Graphviz Graph Visualization Software. http://www.graphviz.org/.

[215] InternetNews xSP Archives. http://www.internetnews.com/xSP/.

[216] The Internet Routing Registry: History and Purpose.
http://www.ripe.net/db/irr.html.

[217] Internet Routing Registry Daemon (IRRd). http://www.irrd.net/.

[218] ISP-Planet ISP-Business Archives.
http://www.isp-planet.com/business/index.html.

[219] J-Sim simulation environment - The Ohio State University.
http://www.j-sim.org/.

[220] The Linux Kernel Archives. http://www.kernel.org/.

[221] KVM Kernel-based Virtual Machine. http://kvm.sourceforge.net/.

[222] The MLN Project. http://mln.sourceforge.net/.

[223] Nemecis. http://ira.cs.ucr.edu:8080/Nemecis/.

[224] netfilter – Firewalling, NAT, and Packet Mangling for Linux.
http://www.netfilter.org/.

[225] Cisco Netflow. http://www.cisco.com/en/US/tech/tk812/
tsd technology support protocol home.html.

[226] Packages installed in Netkit filesystem version F2.2.
http://www.netkit.org/download/netkit-filesystem/
installed-packages-F2.2.

[227] The Network Simulator – NS-2. http://www.isi.edu/nsnam/ns/.

221

http://www.internap.com/product/technology/fcp/page1533.html
http://www.internap.com/product/technology/fcp/page1533.html
http://www.tel.fer.hr/zec/BSD/vimage/
http://www.garr.it/
http://www.graphviz.org/
http://www.internetnews.com/xSP/
http://www.ripe.net/db/irr.html
http://www.irrd.net/
http://www.isp-planet.com/business/index.html
http://www.j-sim.org/
http://www.kernel.org/
http://kvm.sourceforge.net/
http://mln.sourceforge.net/
http://ira.cs.ucr.edu:8080/Nemecis/
http://www.netfilter.org/
http://www.cisco.com/en/US/tech/tk812/tsd_technology_support_protocol_home.html
http://www.cisco.com/en/US/tech/tk812/tsd_technology_support_protocol_home.html
http://www.netkit.org/download/netkit-filesystem/installed-packages-F2.2
http://www.netkit.org/download/netkit-filesystem/installed-packages-F2.2
http://www.isi.edu/nsnam/ns/

Bibliography

[228] PearPC PowerPC Architecture Emulator.
http://pearpc.sourceforge.net/.

[229] Peer Director - Radware, Inc.
http://www.radware.com/content/products/pd/default.asp.

[230] PlanetLab Acceptable Use Policy.
http://www.planet-lab.org/php/aup/.

[231] Plex86 x86 Virtual Machine Project.
http://plex86.sourceforge.net/, http://www.plex86.org/.

[232] Q – Mac port of QEMU. http://www.kju-app.org/kju/.

[233] Quagga Routing Suite. http://www.quagga.net/.

[234] Routing Registry Consistency Check Scripts.
ftp://ftp.ripe.net/ripe/dbase/software/RRCC-0.2.tar.gz.

[235] Scalable Simulation Framework (SSFNet).
http://www.ssfnet.org/homePage.html.

[236] Serenity Virtual Station (formerly TwoOSTwo).
http://www.serenityvirtual.com/.

[237] TORQUE: Type Of Relationship Quality Evaluation Toolkit.
http://www.dia.uniroma3.it/∼compunet/torque.

[238] User-mode Linux Kernel.
http://user-mode-linux.sourceforge.net/.

[239] UML Utilities.
http://user-mode-linux.sourceforge.net/dl-sf.html.

[240] Università degli Studi Roma Tre. http://www.uniroma3.it/.

[241] VINI – A Virtual Network Infrastructure. http://vini-veritas.net/.

[242] Virtuozzo. http://www.swsoft.com/en/products/virtuozzo.

[243] VMware. http://www.vmware.com/.

[244] Win4Lin. http://www.win4lin.com/.

[245] Wine. http://www.winehq.com/.

222

http://pearpc.sourceforge.net/
http://www.radware.com/content/products/pd/default.asp
http://www.planet-lab.org/php/aup/
http://plex86.sourceforge.net/
http://www.plex86.org/
http://www.kju-app.org/kju/
http://www.quagga.net/
ftp://ftp.ripe.net/ripe/dbase/software/RRCC-0.2.tar.gz
http://www.ssfnet.org/homePage.html
http://www.serenityvirtual.com/
http://www.dia.uniroma3.it/~compunet/torque
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/dl-sf.html
http://www.uniroma3.it/
http://vini-veritas.net/
http://www.swsoft.com/en/products/virtuozzo
http://www.vmware.com/
http://www.win4lin.com/
http://www.winehq.com/

[246] William B. Norton. Internet Service Providers and Peering. NANOG 19
Meeting, Jun 2000.

[247] Wolfgang Mühlbauer, Anja Feldmann, Olaf Maennel, Matthew
Roughan, and Steve Uhlig. Building an AS-topology Model that
Captures Route Diversity. ACM SIGCOMM Computer Communication
Review, 36(4):195–206, 2006.

[248] Xenofontas Dimitropoulos, Dmitri Krioukov, Bradley Huffaker, kc
claffy, and George Riley. Inferring AS Relationships: Dead End or
Lively Beginning? LNCS, 3503:113–125, 2005.

[249] Xenofontas Dimitropoulos, Dmitri Krioukov, Bradley Huffaker, kc
claffy, and George Riley. Inferring AS Relationships: Dead End or
Lively Beginning? In Proc. 4th International Workshop on Efficient
and Experimental Algorithms (WEA 2005), May 2005.

[250] Xenofontas Dimitropoulos, Dmitri Krioukov, and George Riley.
Revisiting Internet AS-level Topology Discovery. In Proc. Passive &
Active Measurement Workshop (PAM 2005), Apr 2005.

[251] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina Fomenkov,
Bradley Huffaker, Young Hyun, kc claffy, and George Riley. AS
Relationships: Inference and Validation. ACM SIGCOMM Computer
Communication Review, 37(1), 2007. To appear.

[252] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4
(BGP-4). RFC 4271, Jan 2006.

[253] Yang Richard Yang, Haiyong Xie, Hao Wang, Li Erran Li, Yanbin Liu,
Avi Silberschatz, and Arvind Krishnamurthy. Stable Route Selection
for Interdomain Traffic Engineering. IEEE Network Magazine – Special
Issue on Interdomain Routing, Nov/Dec 2005.

[254] Zhuoqing Morley Mao. BGP Beacon Info.
http://www.psg.com/∼zmao/BGPBeacon.html.

[255] Zhuoqing Morley Mao, David Johnson, Jennifer Rexford, Jia Wang, and
Randy Katz. Scalable and Accurate Identification of AS-Level
Forwarding Paths. In Proc. IEEE INFOCOM 2004, Mar 2004.

223

http://www.psg.com/~zmao/BGPBeacon.html

Bibliography

[256] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H.
Katz. Towards an Accurate AS-level Traceroute Tool. In Proc. ACM
SIGCOMM 2003, pages 365–378. ACM Press, 2003.

[257] Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and
Randy H. Katz. Route Flap Damping Exacerbates Internet Routing
Convergence. In Proc. ACM SIGCOMM 2002, pages 221–233. ACM
Press, Aug 2002.

[258] Zhuoqing Morley Mao, Randy Bush, Timothy G. Griffin, and Matthew
Roughan. BGP Beacons. In Proc. of the 3rd ACM SIGCOMM
Conference on Internet Measurement (IMC 2003), pages 1–14. ACM
Press, 2003.

[259] Zihui Ge, Daniel Ratton Figueiredo, and Sharad Jaiswal. Logical
Relationship Inference software.
http://www-net.cs.umass.edu/∼ratton/AS/.

[260] Zihui Ge, Daniel Ratton Figueiredo, Sharad Jaiswal, and Lixin Gao. On
the Hierarchical Structure of the Logical Internet Graph. In Proc. SPIE
ITCom 2001, Aug 2001.

224

http://www-net.cs.umass.edu/~ratton/AS/

	Introduction
	I Background and Objectives
	1 Interdomain Routing with BGP
	1.1 BGP and Internet Routing
	1.2 Policy Routing with BGP
	1.3 Collecting BGP Routing Information

	2 Motivations and Objectives
	2.1 The Need for Topological Information
	2.2 Analysis of Routing Policies
	2.3 How to Experiment Routing by Emulation

	II Interdomain Topology Discovery Methods
	Introduction
	3 Topology Discovery by Active Probing
	3.1 Background
	3.2 Related Work
	3.3 Probing Primitives
	3.3.1 Withdrawal Observation
	3.3.2 AS-set Stuffing
	3.3.3 Effectiveness and Limitations

	3.4 Discovery Techniques
	3.4.1 Obtaining a Topology
	3.4.2 Operational and Ethical Impact

	3.5 Experimental Results
	3.5.1 Experimental Setup
	3.5.2 Topology Discovery
	3.5.3 Impact of Route-flap Dampening
	3.5.4 Comparison with the Full AS Graph

	3.6 Conclusions

	4 Topology Discovery based on Registry Information
	4.1 Introduction and Related Work
	4.2 Background
	4.3 A Methodology and a Service to Extract Peerings from the IRR
	4.3.1 Reference Data Set
	4.3.2 Integrating Information from Different Registries
	4.3.3 Extracting Peering Information from the IRR
	4.3.4 Classifying the Peerings

	4.4 Comparison with the State of the Art
	4.5 Conclusions

	III Inference and Analysis of Routing Policies
	Introduction
	5 Inference of Commercial Relationships between Autonomous Systems
	5.1 Background
	5.2 Problem Statement
	5.3 Inference Algorithms
	5.4 A Methodology to Evaluate the Quality of Inference Algorithms
	5.4.1 Measuring Differences between Inference Results
	5.4.2 Extensively Evaluating Inference Algorithms

	5.5 A Software Suite to Evaluate Inference Algorithms
	5.6 Experimental Results
	5.6.1 Data Sets
	5.6.2 Independence of Inference Results from Routing Changes
	5.6.3 Independence of Inference Results from the Algorithm

	5.7 Conclusions

	6 Policy-Based Interdomain Traffic Engineering
	6.1 Background
	6.2 Related Work
	6.3 Traffic Engineering by Using Prepending
	6.3.1 Computing Prepending by Integer Linear Programming
	6.3.2 Computing Prepending by Computational Geometry

	6.4 Remarks about Computational Complexity
	6.5 Applicability Considerations
	6.6 Conclusions

	7 Interplay of Routing Policies at different Autonomous Systems
	7.1 Checking the Feasibility of AS-paths
	7.2 Revealing the Preference Associated to AS-paths
	7.3 Instabilities Caused by Routing Policies
	7.3.1 The Stable Paths Problem Model
	7.3.2 An Alternative Model to Investigate BGP Routing Instabilities

	7.4 Conclusions

	IV Experimenting Routing by Emulation
	8 Emulation of Computer Networks with Netkit
	8.1 An Overview of Emulation Environments
	8.2 The Architecture of Netkit
	8.2.1 User-Mode Linux: a Kernel in the Kernel
	8.2.2 Networking Support in Netkit
	8.2.3 A Filesystem of Networking Tools
	8.2.4 User Interface

	8.3 Setting up a Virtual Lab
	8.3.1 Defining the Topology
	8.3.2 Implementing the Topology
	8.3.3 Setting Network Addresses and Startup Time Services
	8.3.4 Configuring Services
	8.3.5 Tuning Lab Startup
	8.3.6 Testing the Lab

	8.4 Managing a Virtual Lab
	8.5 A Case Study: Multihoming
	8.6 Conclusions

	V Conclusions and Bibliography
	Conclusions
	Open Problems
	Bibliography

