
Pdk: the System and its Language

Marta Cialdea Mayer, Carla Limongelli,
Andrea Orlandini, and Valentina Poggioni

Università di Roma Tre, Dipartimento di Informatica e Automazione
{cialdea,limongel,orlandin,poggioni}@dia.uniroma3.it

Abstract. This paper presents the planning system Pdk (Planning with
Domain Knowledge), based on the translation of planning problems into
Linear Time Logic theories, in such a way that finding solution plans
is reduced to model search. The model search mechanism is based on
temporal tableaux. The planning language accepted by the system allows
one to specify extra problem dependent information, that can be of help
both in reducing the search space and finding plans of better quality.

1 Introduction

Artificial Intelligence planning is concerned with the automatic synthesis of se-
quences of actions that, when executed, lead from a given initial state to a state
satisfying some logics have been used in different perspectives in this context,
either in the deductive view [10, 12], or by model checking [5], or as a language
to add control knowledge to a specialised planner [1, 6]. The system presented in
this work is a planner fully based on Linear Time Logic (LTL), planning problem
into LTL in such a way that planning is reduced to model search. This corre-
sponds to the idea of executing temporal logics, where executing a formula means
building a model of it [7] (the application to planning was already sketchily pro-
posed in [2]).

The system Pdk (Planning with Domain Knowledge) accepts the description
of a planning problem, given in the planning language PDDL-K (Planning Do-
main Description Language with control Knowledge), that offers the possibility
of specifying extra problem dependent and control information, that can be of
help both in reducing the search space and finding plans of better quality. The
specification of the planning problem is translated into a set S of LTL formulae
in such a way that any model of S represents a plan solving the problem. The
reduction consists of a “linear encoding” [3], that recalls the classical Situation
Calculus representation of planning [11].

The small example that follows illustrates how a planning problem is encoded
into LTL. In the initial state, a robot is in room A, its goal is to be in room
B and the only actions it can perform is going from a location to another,
specifically either from A to B (go A B), or from B to A (go B A). This problem
is represented by the following set of LTL formulae:



S = { at A ∧ ¬at B, 3at B,

2(go A B → at A), 2(go B A → at B),
2(©at A ≡ (at A ∧ ¬go A B) ∨ go B A),
2(©at B ≡ (at B ∧ ¬go B A) ∨ go A B)}

The first two formulae represent the initial state and goal of the problem (some-
times in the future the goal will be achieved). The two formulae in the second
line above represent the preconditions for the executability of the two actions
(the agent can move from a place only if it is there). The last two formulae are
the LTL reformulation of Reiter’s “successor state axioms” [11]. A model of S is
the sequence of states s0, s1, ... such that the only true atoms at s0 are at A and
go A B, and the only true atom at si, for i > 0, is at B. The plan corresponding
to such a model is the sequence of actions 〈go A B〉.

Pdk, which is available at http://pdk.dia.uniroma3.it/, is implemented
in Objective Caml (http://caml.inria.fr/) and its model search mechanism
relies on the system ptl, an efficient implementation of proof search in LTL
by means of tableaux techniques, developed in C by G. Janssen at Eindhoven
University [9].

A first version of the planner was already presented in [4]. The experiments
with that system raised the need for tools supporting the domain expert in the
specification task, especially when stating domain specific and control knowledge.
In fact, the domain expert charged of the description of the problem cannot be
assumed to be a logician, and it is therefore important to have a simple, compact
and easy-to-use planning language, similar to the special purpose formalisms
widely adopted in the planning community.

The new release of the planner, briefly described in this paper, beyond be-
ing a more efficient implementation, accepts problem specifications written in a
planning language where heuristic knowledge can not only be provided explic-
itly as a set of LTL formulae, but also as instances of a set of specific control
schemata. Moreover, the system provides meta-level tools that can be of help in
debugging the problem specification (synthetically described at the end of the
next section). Such tools can be developed thanks to the fact that the whole
planning domain is encoded into a logical theory.

2 The Planning Language and Off-line Checks

The planning language PDDL-K can be viewed as an extension of the ADL-
subset of classical PDDL [8]. A full description of the language and its semantics,
given by means of the translation into LTL, can be found at the above cited
URL, together with a set of sample domains. Due to space restrictions, only
a brief overview can be given here. The PDDL-K description of a planning
problem follows a multi-sorted first-order syntax. However, as usual in classical
planning, domains are finite and fixed, and (typed) quantification is actually
an abbreviation for propositional formulae. For instance, ∀x : t A(x) stands for
A(c1) ∧ ... ∧ A(cn), where c1, ..., cn are all the constants of type t.



The specification of the problem contains the definition of the signature:
type declarations, with associated sets of constants, and predicate declarations.
In PDDL-K predicates are distinguished into static predicates (denoting prop-
erties that do not change over time) and fluents. The value of static predicates
is declared as a background theory, consisting of a set of classical formulae. The
background theory is completed with respect to static atoms, according to the
closed world assumption: what is not classically derivable from the background
theory is false. Therefore, each ground static atom is either true or false at
each time point. All literals built up from fluents which are derivable from the
background theory are also added to its completion. After completion, the back-
ground theory consists of a set of literals. It is used to simplify the encoding
of the planning problem: each static atom is replaced by either True or False,
and the same happens with fluent literals occurring in the completed theory.
The theory is also used to filter out operator instances, by elimination of those
actions whose preconditions or effects are inconsistent.

The other fundamental declarations in the description of the problem are
the specification of the initial state, goal and operators. Since, like in classical
planning, the knowledge about the initial state is assumed to be complete, the
initial state is completed wrt fluents. The description of the initial state may also
contain temporal operators. Non-classical formulae, that will just be added to
the encoding, may be used to specify intermediate goals that must be achieved
or actions that must be performed. For instance, the description of the initial
state can contain 3(∃x : location go(x, bank)∧3∃x : location go(x, post office)):
during plan execution, the agent must sooner or later go (from some place x) to
the bank and afterwards to the post office.

Control knowledge can be specified either explicitly, as a set of temporal
formulae, or according to a predefined set of control schemata in the description
of operators. Such schemata allow one, for instance, to specify that a given action
should be performed only if given conditions hold, or that it should be performed
whenever possible (see the example given below).

A peculiarity of the language is that it is possible to refer to actions in
formulae. Beyond fluents and static predicates, in fact, atoms can be build out
of predicates denoting actions. This allows one to specify for instance that the
execution of a given action must be either accompanied or followed by others,
or that the effect of performing two actions together is different from what can
be obtained by executing each of them separately.

In the specification of control information, the possibility to refer to the
goal to be achieved, as well as to what is true in the initial state can be of
use, especially to eliminate useless actions. To this aim, the syntax of PDDL-K
formulae is extended by means of the unary modal operators goal (which can
dominate only literals) and initially (which can dominate only atoms): goal `

means that ` is a goal of the problem, initially p means that p is true in the
initial state.

In order to give the flavour of the language, let us consider the simple domain
where a robotic agent has to move some objects from/to different locations by



means of a briefcase. Constants are either of sort location or object. The fluents
are atRobby(x) (the robot is at location x), in(x) (the object x is in the robot’s
briefcase), at(x, y) (the object x is at location y). The complete specification
of this class of problems can be found at the above cited URL. Here, we only
show how the take action can be specified using some of the available control
schemata.

(:action take :parameters (x - object y - location)

:precondition (atRobby y) (at x y)

:effect (in x) (not (at x y))

:only-if (not (goal (at x y))) (initially (at x y))

:s-asap )

The parameters of the action are the object x and the place y where both the
object and the robot are (this is specified in the action precondition). After
the execution of the action, the object is no more at y, but inside the briefcase
(the effect of the action). The :only-if field specifies additional (heuristic)
restrictions on the action execution: take x from place y only if x is not already
at its destination and x is at y in the initial state. The :s-asap field (strong asap)
requires all instances of the action to be performed “as soon as possible”. If O =
¬goal(at(x, y))∧ initially(at(x, y)) and P = atRobby(y)∧ at(x, y), the encoding
of the two control fields above (:only-if and :s-asap) are (the propositional
counterparts of) the following formulae, respectively:

2 ∀x : object ∀y : location(take(x, y) → O)
2 ∀x : object ∀y : location(P ∧ O → take(x, y))

Following the guidelines given by action oriented control schemata, the spec-
ification task becomes easier, but surely not free from errors. It often happens
in fact that the addition of too strong control requirements makes the problem
unsolvable. In order to help the domain expert, the system Pdk provides some
meta-level tools that can be of help in debugging the specification. The system
allows one to check for the consistency of the theory encoding the kernel prob-
lem (i.e. excluding control knowledge and goal), and to check whether such a
theory becomes inconsistent with the addition of control knowledge. Sometimes,
moreover, it happens that, although the theory is consistent, the goal cannot
be achieved because some important actions can never be performed, since they
would violate some too strong control requirement. The system allows one to
check actions, one by one, to verify their executability.

3 Conclusion

Some experiments have been carried out in order to verify whether the expres-
sive power of the language compensates for the loss in time efficiency that often
derives from the use of general logical procedures (especially if based on exhaus-
tive search) and/or allows the planner to find solutions of better quality. The
performances of Pdk have been compared with some planners that showed best



performances in the last International Planning Competitions (IPC 2002 and
IPC 2004). The experiments – whose results cannot be reported in detail here
for space reasons – show that Pdk outperforms optimal planners, such as SAT-
PLAN 2004. With respect to suboptimal planners, such as LPG, the relative
performances of the planners in terms of execution times vary in dependence
of the planning domains: in some cases LPG is much faster, in other domains
the execution times are comparable and sometimes Pdk is faster than LPG. In
nearly all experimented cases, however, Pdk finds shorter plans.

Comparing Pdk with other planners that allow for the employment of heuris-
tic knowledge, such as TLPLAN [1], involves, beyond efficiency, also expressive-
ness considerations. Although TLPLAN is faster than Pdk, the specification of
heuristic knowledge is often quite long and cumbersome. One of the reasons is
that all statements must be made in terms of fluents. The fact that, in PDDL-K,
actions are represented by atoms allows for much simpler control formulae, that,
in turn, can often be reduced to the addition of even simpler control fields in
operators specifications. We believe that this is not a secondary issue, since the
statement of correct control knowledge is often a subtle and difficult task.

References

1. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116:123–191, 2000.

2. H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-reasoning in executable
temporal logic. In Proc. of KR’91, pages 40–49, 1991.

3. S. Cerrito and M. Cialdea Mayer. Using linear temporal logic to model and solve
planning problems. In Proc. of AIMSA’98, pages 141–152, 1998.

4. M. Cialdea Mayer, A. Orlandini, G. Balestreri, and C. Limongelli. A planner fully
based on linear time logic. In Proc. of AIPS-2000, pages 347–354, 2000.

5. A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model
checking: a decision procedure for AR. In Proc. ECP-97, pages 130–142, 1997.

6. P. Doherty and J. Kvarnström. TALplanner: A temporal logic based planner. AI
Magazine, 22:95–102, 2001.

7. M. Fisher and R. Owens. An introduction to executable modal and temporal logics.
In Executable modal and temporal logics (Proc. of the IJCAI’93 Workshop), pages
1–20, 1995.

8. M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

9. G. L. J. M. Janssen. Logics for Digital Circuit Verification. Theory, Algorithms
and Applications. CIP-DATA Library Technische Universiteit Eindhoven, 1999.

10. J. Koehler and R. Treinen. Constraint deduction in an interval-based temporal
logic. In Executable Modal and Temporal Logics, (Proc. of the IJCAI’93 Workshop),
pages 103–117, 1995.

11. R. Reiter. Knowledge in Action: logical foundations for describing and implement-
ing dynamical systems. MIT Press, 2001.

12. B. Stephan and S. Biundo. Deduction based refinement planning. In Proc. of
AIPS-96, pages 213–220, 1996.


