
i
i

“thesis” — 2015/4/29 — 21:44 — page i — #1 i
i

i
i

i
i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Planar Graphs with Vertices in
Prescribed Regions:

models, algorithms, and complexity

Giordano Da Lozzo

i
i

“thesis” — 2015/4/29 — 21:44 — page ii — #2 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page iii — #3 i
i

i
i

i
i

Planar Graphs with Vertices in Prescribed Regions:
models, algorithms, and complexity

A thesis presented by
Giordano Da Lozzo

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Department of Engineering

Spring 2015

i
i

“thesis” — 2015/4/29 — 21:44 — page iv — #4 i
i

i
i

i
i

COMMITTEE:
Prof. Giuseppe Di Battista
Prof. Maurizio Patrignani

REVIEWERS:
Prof. Seok-Hee Hong
Prof. Michael Kaufmann

i
i

“thesis” — 2015/4/29 — 21:44 — page v — #5 i
i

i
i

i
i

a mia nonna Anna

Imagination is more important than knowledge. For knowledge is limited to all we
now know and understand, while imagination embraces the entire world,
and all there ever will be to know and understand. – Albert Einstein

i
i

“thesis” — 2015/4/29 — 21:44 — page vi — #6 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page vii — #7 i
i

i
i

i
i

Acknowledgments

My best acknowledgments go to my advisors, Giuseppe Di Battista and Maurizio
Patrignani. They introduced me to the beautiful topics which they actively research
and instilled in me the deep passion they share in their work. Ever since I met them
their love for science and their restless curiosity have been a constant source of in-
spiration for me. Working with them has been a great honor and one of the most
important events of my life, as it led me to answer the question “What do I want to do
when I grow up?”.

A special thank goes to Patrizio Angelini. Over the course of this thesis he has
been a third advisor, an amazing research partner, and – most of all – a true friend. I am
tremendously indebted to him for all I have gained from our fascinating discussions.

I would like to thank Frabrizio Frati and Ignaz Rutter for the opportunity they
gave me to work alongside them. I am glad that this thesis is just the start of our
collaboration.

I would like to thank Jan Kratochvìl and Dorothea Wagner for allowing me to
spend very pleasant and productive time as a visiting doctoral student at the Charles
University and the Karlsruhe Institute of Technology, respectively.

I would like to thank Seok-Hee Hong and Michael Kaufmann for carefully re-
viewing this thesis.

I would like to thank all my coauthors for the great time I had while work-
ing with each of them: Patrizio Angelini, Carla Binucci, Davide Cannone, Walter
Didimo, Marco Di Bartolomeo, Giuseppe Di Battista, Fabrizio Frati, Luca Grilli,
Seok-Hee Hong, Francesco Ingrassia, Vìt Jelìnek, Jan Kratochvìl, Anna Lubiw, Fab-
rizio Montecchiani, Daniel Neuwirth, Maurizio Patrignani, Vincenzo Roselli, Ignaz
Rutter, Claudio Squarcella, Ioannis Tollis, and Sergio Tortora.

I would like to thank all the other people who have been part of our research group
during these years, each of them contributed in creating the friendly and productive at-
mosphere that makes working in our office so great: Massimo Candela, Marco Chiesa,
Marco Di Bartolomeo, Valentino Di Donato, Roberto di Lallo, Gabriele Lospoto,

vii

i
i

“thesis” — 2015/4/29 — 21:44 — page viii — #8 i
i

i
i

i
i

viii

Maurizio Pizzonia, Massimo Rimondini, Vincenzo Roselli, Claudio Squarcella, and
Stefano Vissicchio.

I would like to thank Walter Didimo and Giuseppe Liotta for inviting me to the
Bertinoro Workshop on Graph Drawing in 2013, 2014, and 2015, and Jan Kratochvìl
for inviting me to the 2013 HOMONOLO Workshop. They gave the opportunity to
work on new challenging problems with amazing people.

I would like to thank all my friends (both Series A and B, though this distinction
faded away long ago). They always believed in me and never failed to encourage me
to give my best.

My final heartfelt thanks go to those I love the most: My parents Angelo and
Luisa for their unwavering trust and constant encouragement, my brother Paolo for the
fundamental role he had in making me the person I am today, my nephews and niece
for reminding me of the magic that lies inside every little gesture, my grandmother
Anna for teaching me that kindness is all we need to win people’s heart, and my
soulmate Novella for making me feel like everything is possible. They are my life and
the best things in it.

i
i

“thesis” — 2015/4/29 — 21:44 — page ix — #9 i
i

i
i

i
i

Contents

Contents ix

Introduction 1

I Preliminaries & Background 9

Background & Basics 11

1 Graph Preliminaries and Definitions 11
1.1 Basic Definitions . 11
1.2 Planar Graphs . 13
1.3 Graph Drawing . 19

2 Data Structures 23
2.1 Connectivity . 23
2.2 BC-trees . 25
2.3 SPQR-trees . 26
2.4 PQ-trees . 29

3 Planarity of Simultaneous and Clustered Graphs 33
3.1 Clustered Graphs . 33
3.2 Simultaneous Graphs . 41

ix

i
i

“thesis” — 2015/4/29 — 21:44 — page x — #10 i
i

i
i

i
i

x CONTENTS

II Clustered Planarity 47

4 Relaxing the Constraints of Clustered Planarity 49
4.1 Introduction . 49
4.2 Preliminaries . 54
4.3 Drawings of Clustered Graphs with Crossings 55
4.4 Lower bounds . 94
4.5 Relationships between α, β and γ 101
4.6 Complexity . 106
4.7 Open Problems . 112

5 Planar Embeddings with Small and Uniform Faces 115
5.1 Introduction . 116
5.2 Preliminaries . 117
5.3 Minimizing the Maximum Face . 118
5.4 Perfectly Uniform Face Sizes . 128
5.5 Open Problems. 142

III Clusters and Levels 143

6 Strip Planarity Testing 145
6.1 Introduction . 145
6.2 Preliminaries . 149
6.3 How To Test Strip Planarity . 151
6.4 Reduction . 182
6.5 Conclusions . 186

7 C-Level Planarity and T-Level Planarity Testing 189
7.1 Introduction and Overview . 189
7.2 NP-Hardness . 191
7.3 Polynomial-Time Algorithms . 195
7.4 Open Problems . 203

IV Simultaneous Embedding with Fixed Edges 205

8 Advancements on SEFE and Partitioned Book Embedding Problems 207
8.1 Introduction . 208
8.2 Sunflower SEFE . 211

i
i

“thesis” — 2015/4/29 — 21:44 — page xi — #11 i
i

i
i

i
i

CONTENTS xi

8.3 Partitioned T -Coherent k-Page Book Embedding 216
8.4 MAX SEFE . 229
8.5 Conclusions . 239

9 Deepening the Relationship between SEFE and C-Planarity 241
9.1 Introduction . 241
9.2 Preliminaries . 242
9.3 Reduction . 243
9.4 The Expressive Power of C-Planarity 250
9.5 Conclusions and Open Problems . 253

V Drawings with Crossings 255

10 Algorithms and Bounds for Drawing Graphs with Crossing-free Sub-
graphs 257
10.1 Introduction . 257
10.2 Preliminaries and Definitions . 259
10.3 Straight-line Drawings . 260
10.4 Polyline Drawings . 276
10.5 Conclusions and Open Problems . 284

11 Planarity of Streamed Graphs 287
11.1 Introduction . 287
11.2 Notation and Preliminaries . 291
11.3 Complexity . 292
11.4 Algorithms for ω-Stream Drawings with Backbone 302
11.5 Conclusions . 311

Appendices 313

Appendix A: Other Research Activities 315

Appendix B: List of Publications 324

Bibliography 329

i
i

“thesis” — 2015/4/29 — 21:44 — page xii — #12 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 1 — #13 i
i

i
i

i
i

Introduction

The volume and the complexity of structured relational information created and han-
dled by modern information systems has drastically increased. More and more often,
data are generated so quickly that they cannon even be completely displayed or stored,
and the manual analysis of their relational content may just be impracticable. In such
a complex scenario, the creation of new paradigms and the design of efficient algo-
rithms for the layout, the exploration and the analysis of large and dynamic graphs
have emerged as strategic research directions, encompassed with both great practical
interest and intrinsic theoretical appeal.

The classic notion of graph, as a mathematical abstraction used to describe a bi-
nary relation among a set of entities, has been extended to meet these new challenges.
New enhanced models of graphs have been conceived. They allow for representing
aggregations, semantic affinities, hierarchies, and multiple or even dynamic relations
on the same set of entities.

It is not surprising, from a cognitive perspective, that the most natural and likely
the most effective way to benefit from these combinatorial structures is to visualize
them. In fact, drawings of graphs allow for quickly grasp their relational content.
However, not all drawings might be equally effective to convey a graph’s structure.
Graph Drawing is the research field dealing with the design of algorithms to automat-
ically produce visual representations of graphs. Among the features a “good” drawing
of a graph should have, planarity is undoubtedly the most desired. In fact, drawings
of a graph with no crossings among the edges are more readable and easier to navi-
gate by the human eye. Hence, in order to produce nice and effective visualization of
new models of graphs, the most promising direction is that of extending the standard
notion of planarity also to such new models.

In particular, two new models of graphs that held the scene in the last years are
the clustered graphs and the simultaneous graphs. A clustered graph consists of a
graph and of a recursive hierarchical clustering of its vertex set. Clusters can be used
to represent similarities among vertices, to abstract complex substructure into simpler

1

i
i

“thesis” — 2015/4/29 — 21:44 — page 2 — #14 i
i

i
i

i
i

2 CONTENTS

ones, and more in general to enrich a graph with hierarchical information. A simul-
taneous graph can be seen as a collection of graphs sharing the same vertex set or,
alternatively, as a single graph with multiple edge sets. Simultaneous graphs allow to
encode different relations among the same set of objects or the evolution of a single
relation over time. For these models, visualization paradigms have been devised that
are based on constraining the vertex set of the graph to lie in prescribed regions of the
plane. For example, clusters are usually represented by enclosing vertices in simple
closed regions, while the consistency between drawings of the constituent graphs of a
simultaneous graph is achieved by mapping their vertices to the same set of points.

In this thesis, we deal with both clustered graphs and simultaneous graphs, and in
particular with the two most famous notions of planarity for these models. Namely,
CLUSTERED PLANARITY (C-PLANARITY for short) of clustered graphs and SIMUL-
TANEOUS EMBEDDING WITH FIXED EDGES (SEFE for short) of simultaneous
graphs. Further, we extend our focus, by considering as the possible embedding space
for the vertices not only simple nested regions of the plane and finite points sets, but
also single lines, sets of parallel lines, and disjoint unbounded strips of the plane. For
example, in the framework of simultaneous graphs, we study problems PARTITIONED
k-PAGE BOOK EMBEDDING, where vertices are forced to lie on a single line, T -
COHERENT LEVEL PLANARITY, where vertices are forced to lie on parallel lines,
and STREAMED PLANARITY where vertices are confined on a finite point set; further,
in the framework of clustered graphs, we study STRIP PLANARITY, where vertices
are assigned to disjoint unbounded regions of the plane; moreover, by requiring ver-
tices to lie along parallel lines and, at the same time, inside nested regions intersecting
those lines, we study CLUSTERED-LEVEL PLANARITY.

Clustered graphs were introduced together with the notion of C-PLANARITY, in
which a clustered graph has to be drawn in the plane so that its drawing is planar and
clusters are represented as simple regions enclosing all and only the vertices of the
cluster in such a way that – to simplify – no “unnecessary” intersections involving
clusters and edges are created. This notion of planarity aims at clearly displaying
both the relational and the hierarchal information of the clustered graph at the same
time. For simultaneous graphs, on the other hand, different notions of planarity were
introduced. However, due to its practical and theoretical applications, SEFE is the
most prominent one. In a SEFE a simultaneous graph has to be drawn in the plane in
such a way that its drawing induces planar drawings of each of its constituent graphs
and multi-edges are drawn as single edges. Alternatively, when considering each of
such constituent graphs separately, a SEFE can be defined as a collection of planar
drawings, one for each of such graphs, on the same set of points in which the common
edges are represented by the same curves. This variant of planarity aims at clearly
displaying each of the relations composing a simultaneous graph and, at the same

i
i

“thesis” — 2015/4/29 — 21:44 — page 3 — #15 i
i

i
i

i
i

CONTENTS 3

time, at helping the user maintain his/her mental map while exploring the structure of
the graph.

Despite the great effort of research spent by the Graph Drawing community, de-
termining the computational complexity of these problems is still among the most
challenging and, even more so, fascinating open questions in this research field.

This thesis contributes to deepen the comprehension of the relationship between
different and fundamental variants of planarity as well as to expand the knowledge
about the computational complexity of some of these variants. We mainly deal with
planar graphs (Part I), clustered graphs (Part II), strip graphs and clustered-level graphs
(Part III), simultaneous graphs (Part IV), and streamed graphs (Part V). We have set-
tled the question regarding the computational complexity of notable variants of pla-
narity on which research had already been initiated in the last two decades. Further,
we enriched the stage of planarity with new actors, by introducing and studying new
constrained notions of planarity. Furthermore, we brought to light important combi-
natorial aspects and developed efficient algorithms for testing some of these old and
new planarity problems.

Figure 0.1 provides an overview of some of the results presented in this thesis,
where the emphasis is on the reducibility among different notions of planarity. Many
algorithmic contributions are, however, not captured by this schema which is only
meant as an updated map to help the reader explore the realm of the many declinations
of planarity.

The thesis is organized as follows.

Part I deals with planar graphs, with the most common methods to described and
handle their planar embeddings, and with the notions of planarity that are the main
subject of this thesis.

In Chapter 1 we introduce some preliminaries and definitions about planar graphs,
their embeddings, and their drawings.

In Chapter 2 we introduce basic concepts about the connectivity of graphs and
we illustrate the main techniques for describing and handling the embeddings of pla-
nar graphs, depending on their degree of connectivity. In particular, we consider the
SPQR-trees data structure that allows to efficiently handle the decomposition of a bi-
connected graph into its triconnected components.

In Chapter 3 we formally introduce the C-PLANARITY and SEFE problems and
review the state of the art about the known polynomial-time algorithms to decide these
problems for restricted classes of instances.

Part II deals with drawings of clustered graphs and constrained embeddings of
planar multi-graphs.

i
i

“thesis” — 2015/4/29 — 21:44 — page 4 — #16 i
i

i
i

i
i

4 CONTENTS

In Chapter 4, in order to shed light on the C-PLANARITY problem we consider a
relaxed version of it, where some kinds of crossings (either edge-edge, edge-region,
or region-region) are allowed, even if the underlying graph is planar. In this setting,
our main result is a polynomial-time algorithm to test whether a drawing with only
region-region crossings exists for biconnected planar graphs, hence identifying a first
non-trivial necessary condition for C-PLANARITY that can be tested in polynomial
time for a noticeable class of clustered graphs.

In Chapter 5, motivated by the fact that the many computationally challenging
problems as well as some of unknown complexity, like the C-PLANARITY problem,
are polynomial-time solvable for embedded planar graphs with small faces, we study
the problems MINMAXFACE and UNIFORMFACES of embedding a given biconnected
multi-graph such that the largest face is as small as possible and such that all faces have
the same size, respectively. Although both problems turn out to be computationally
tough, a constant-factor approximation for MINMAXFACE and efficient algorithms
for several interesting classes of instances of both problems are presented.

Part III deals with drawings of clustered graphs whose vertices are prescribed to
lie in disjoint horizontal strips of the plane or on parallel lines.

In Chapter 6, we introduce and study a new notion of planarity, called STRIP
PLANARITY, for graphs whose vertices are prescribed to lie within disjoint horizontal
strips of the plane, called strip graphs. The problem has strong relationships with
some of the most deeply studied variants of the planarity testing problem, such as
C-PLANARITY, UPWARD PLANARITY, and LEVEL PLANARITY. Indeed, we show
a polynomial-time reduction from this problem to the C-PLANARITY problem, thus
relating their computational complexity. Further, we present a polynomial-time test-
ing algorithm for embedded strip graphs, based on several augmentation techniques
that eventually allow to reduce such instances to special instances of the UPWARD
PLANARITY problem.

In Chapter 7, we study the computational complexity of two notorious notions of
planarity related to the drawing of level graphs, that is, T -LEVEL PLANARITY and
CLUSTERED-LEVEL PLANARITY. A level graph is a graph whose vertices are placed
on parallel levels (or lines) with edges connecting only vertices on different levels. The
former problem considers level graphs equipped, in the very same way as a clustered
graph, with a recursive clustering of their vertex set. The latter problem, instead, con-
siders level graphs in which each level is associated with a tree that imposes constrains
on the ordering of the vertices on the corresponding level. Unlike the standard notion
of LEVEL PLANARITY, we show that the additionally introduced constraints make
these planarity problems NP -complete, while they become polynomial-time solvable
when restricted to level graphs whose edges span only consecutive levels. It is worth

i
i

“thesis” — 2015/4/29 — 21:44 — page 5 — #17 i
i

i
i

i
i

CONTENTS 5

to point out that the algorithmic contribution is obtained by exploiting a non-trivial
reduction between the two problems and their connection with the SEFE problem.
We remark that, the NP -hardness of CLUSTERED-LEVEL PLANARITY presented in
this chapter is, to the best of our knowledge, the first hardness result for a variation of
the C-PLANARITY problem in which none of the c-planarity constraints is dropped.

Part IV deals with the SEFE problem, focusing in particular on the case in which
the embedding space of the vertex set of the simultaneous graph is a single line, and
with the relationship between the SEFE and C-PLANARITY problems.

In Chapter 8, we study the complexity of some combinatorial problems related to
SEFE. Namely, we consider the variant of the problem called SUNFLOWER SEFE
and PARTITIONED T-COHERENT k-PAGE BOOK EMBEDDING (PTBE-k for short)
problems, which are known to be equivalent under certain conditions. We prove sev-
eral hardness results for these problems even when simultaneous graphs composed
of only thee planar graphs are considered and when strong restrictions on their de-
gree of connectivity are imposed. In particular, our results on the PTBE-k problem
for a fixed number of input graphs all sharing the same star subgraph, which is cited
as a open problem by Schaefer [Sch13] and Hoske [Hos12], complements the work
by Hong and Nagamochi [HN14] on this problem. On the positive side, we provide
a linear-time algorithm for PTBE-k for an interesting class of simultaneous graphs
composed of an arbitrary number of input graphs. Then, we focus on the still open
case of SEFE where simultaneous graphs composed of only two input graphs are
considered, called SEFE-2. First, we show that in the “connected” version of this
problem, denoted C-SEFE-2, we can focus only on instances in which one of the
two graphs has a special structure and high connectivity. Second, we study the opti-
mization version of this problem where we seek to maximize the number of common
edges that are drawn the same, called MAX SEFE, which is cited as an open question
by Haeupler et al. [HJL13] and in Chapter 11 (Open Problem 9) of the Handbook of
Graph Drawing and Visualization [BKR13b], and prove NP -completeness results for
this problem in several restricted settings.

In Chapter 9 we deepen the understanding of the connection between the two long-
standing Graph Drawing open problems that are the main subject of this thesis, that
is, SEFE and C-PLANARITY. It is an intriguing question whether the two problems
are polynomial-time equivalent. A major milestone in this respect was first proved
by Schaefer [Sch13], who gave a reduction from C-PLANARITY to SEFE-2. In our
research we make a further step to better comprehend the relationship between these
problems, by showing that a reduction exists also in the opposite direction, if we
consider instances of SEFE-2 in which the graph induced by the common edges is
connected (C-SEFE-2).

i
i

“thesis” — 2015/4/29 — 21:44 — page 6 — #18 i
i

i
i

i
i

6 CONTENTS

Part V deals with drawings of non-planar graphs with crossing-free subgraphs and
drawings of graphs that are presented in a streaming fashion.

In Chapter 10, we initiate the study of a new problem related to the SEFE and, par-
ticularly, to the SUNFLOWER SEFE problem. The focus of this research is on produc-
ing drawings of non-planar graphs in which a planar spanning subgraph is represented
without intersections. In many application domains, edges might express connections
between entities with different semantics and importance. In this case a visual in-
terface might attempt to display more important edges without intersections, while
disregarding intersections involving only the less important edges. Further, drawings
in which edges are represented as straight-line segments, instead of polylines, are gen-
erally considered more readable. Hence, it also makes sense to consider drawings in
which less important edges have bends, while still requiring the important edges to
be represented as straight-line segments. Algorithms are presented for computing this
kind of drawings for several classes of instances, both in the straight-line and in the
polyline setting. In the former setting, we give positive and negative results for dif-
ferent kinds of connected spanning subgraphs and give an efficient testing algorithm
for instances in which the crossing-free spanning subgraph is triconnected. In the
latter setting, we provide different trade-offs between the number of bends and the
required area of the drawing, and give a testing algorithm for instances in which the
crossing-free spanning subgraph is biconnected and edges are allowed to have at most
one bend.

In Chapter 11, we introduce and study a new model of graphs, called streamed
graphs, that are graphs whose edges are presented as a stream evolving over time. We
consider streamed graphs composed of edges that appear at a specific time instant and
are visible for a limited time window before disappearing. Given a window size ω,
we define the notion of ω-STREAM PLANARITY in which drawings for the edges of
the streamed graph are searched for that induce crossing free drawing of the streamed
graph at each time instant. It is not hard to see that this notion can be interpreted as a
variant of SEFE. We show NP -completeness for this problem even when a constant
window size is considered. Further, we consider the variant of the problem in which
a given subgraph of the streamed graph, called backbone, never disappears, and show
NP -completeness even for ω = 2. On the positive side, we present a linear-time
algorithm for this latter problem when ω = 1, for which a polynomial-time algo-
rithm was already given in the framework of PARTIAL PLANARITY [Sch14], whose
study was motivated by the research presented in Chapter 10. Our results also imply
that, unless P=NP, no FPT algorithms exist for the SEFE and the fundamental WEAK
REALIZABILITY problem, with respect to some interesting parameters.

i
i

“thesis” — 2015/4/29 — 21:44 — page 7 — #19 i
i

i
i

i
i

CONTENTS 7

P

NPC

Upward

ec-planar
with free

edges

Partial
Rotation

(with flips)

Clustered
level (cl)

Outer

ec-planar

Partially
Embedded

Partial
rotation

SEFE-3

Radial
Level

Upward
(Embedded)

Strip ?

P
Book 〈α, β, γ〉-

drawings

Standard

Strip
(Embedded)

T -level

Proper
T -level

Partitioned
2-page

Weak
realizability

Weak
realizability

[Th. 11.1]

[Th. 8.3]

[Th. 11.2]

[Th. 11.4 & Sch14]

[Th. 9.3]

[Th. 9.2]

[Th. 8.7 & 8.8]

[Th. 8.4]
[Th. 8.2]

[Th. 7.4]

[Le.
7.3]

[Th. 7.3]

[Th.
6.2]

[Th. 6.1]

[Le. 6.6]

[Le. 7.1
& Sch13]

[Th. 7.1]
[Th. 7.2]

[Le. 4.7]

SEFE

Clustered
level (cl)

T -level

Clustered (c)

Partitioned
T -coherent

3-page

Partitioned
3-Page

MaxSEFE

Partitioned
T -coherent

2-page
(C-SEFE-2)

SEFE-2

Streamed
Backbone

Partial
Planarity

PStreamed
Planarity

Level

Proper
Clustered

Level

Figure 0.1: Updates on the classification proposed by Schaefer in [Sch13], where
changes to the original schema in [Sch13] are emphasized by using the red color.
Dashed lines represent the boundaries between problems that were known to be
polynomial-time solvable, problems that were known to be NP -complete, and prob-
lems whose complexity was unknown before the work described in this thesis. Boxes
for newly introduced problems have been added. Solid lines show the new bound-
aries according to the results of this thesis. The arcs representing reductions that can
be transitively inferred are omitted. Arcs connecting a more constrained version of
a problem to its generalization are also drawn. Results described in this thesis are
equipped with references.

i
i

“thesis” — 2015/4/29 — 21:44 — page 8 — #20 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 9 — #21 i
i

i
i

i
i

Part I

Preliminaries & Background

9

i
i

“thesis” — 2015/4/29 — 21:44 — page 10 — #22 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 11 — #23 i
i

i
i

i
i

Chapter 1

Graph Preliminaries and Definitions

In this chapter, we introduce some preliminaries and definitions about graphs, their
embeddings, and their drawings that are used throughout this thesis.

A reader who wants to assume more familiarity with the basic concepts about
graphs, algorithms, and geometry, may refer to books on Graph Theory (e.g., [Har69,
BM76, CN88, Die05]), to books on Algorithms (e.g., [Eve79, GJ83, AHU83, CLRS09,
GT09]), and to books on Computational Geometry (e.g., [PS85, Ede87, dCvO08]).
Reference books containing detailed definitions, basic concepts, and most important
results about Graph Drawing can also be useful and interesting to read [KW01, NR04,
DETT99].

The chapter is structured as follows. In Section 1.1 we give basic definitions about
graphs. Then, in Section 1.2 we deal with planar graphs and planar embeddings,
and define some interesting subclasses of planar graphs. Finally, in Section 1.3 we
describe the main drawing conventions and aesthetic criteria used in Graph Drawing.

1.1 Basic Definitions

A graph G = (V,E) is composed of a set V of vertices or nodes, and a multiset E
of unordered pairs of vertices, called edges or arcs. Given an edge e = (u, v) ∈ E,
we say that u and v are incident to e (u and v are the end-vertices of e), and that e is
incident to u and v. Also, we say that two vertices are adjacent if they are incident
to the same edge, and two edges are adjacent if they are incident to the same vertex.
The degree of a vertex v, denoted by deg(v), is the number of edges incident to it.
The degree of a graph G, denoted by ∆(G), is the maximum among the degrees of its
vertices.

11

i
i

“thesis” — 2015/4/29 — 21:44 — page 12 — #24 i
i

i
i

i
i

12 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

A graph G = (V,E) is directed, also referred to as digraph, if the pairs of vertices
in E are ordered. In a directed graph, an edge (v, w) is oriented from its tail (or
origin) v to its head (or end) w; also, the edge is outgoing from v and incoming to w.
The indegree of a vertex v is the number of its incoming incident edges; analogously,
the outdegree is the number of its outgoing edges. A vertex whose indegree equals 0
is called source; analogously, a vertex whose outdegree equals 0 is called sink. The
graph obtained from a digraphG by considering its edges without orientation is called
the underlying graph of G.

A self-loop in a graph G = (V,E) is an edge (u, u) ∈ E. A set of multiple edges
in a graph (V,E) is a set of edges connecting the same two vertices u, v ∈ V . A graph
is simple if it contains neither self-loops nor multiple edges. In the following, unless
otherwise specified, we always refer to simple undirected graphs.

A graph is k-regular if all its vertices have degree k, that is, it holds that deg(v) =
k, for each vertex v ∈ V . A 3-regular graph is also called cubic and a graph G is
subcubic if all its vertices have degree at most 3, that is, ∆(G) ≤ 3.

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. We say that G′ = (V ′, E′) is induced by V ′ if, for each edge (u, v) ∈ E
such that u, v ∈ V ′, we have (u, v) ∈ E′. Also, G′ = (V ′, E′) is a spanning
subgraph of G = (V,E) if it is a subgraph of G and V ′ = V . A graph G′ = (V ′, E′)
is a supergraph of a graphG = (V,E) if V ⊆ V ′ and E ⊆ E′. A graphH is a proper
subgraph (supergraph) of a graph G if G contains at least a vertex or an edge more
(less) than H . A subgraph H of G is maximal under some condition c if there exists
no subgraph H ′ of G satisfying condition c such that H ′ is a proper supergraph of H .

A graph G = (V,E) is complete if for each pair of vertices u, v ∈ V , edge
(u, v) ∈ E. The complete graph on n vertices is denoted by Kn. A graph is bipartite
if V can be partitioned into two sets V1 and V2 such that for each edge (u, v) ∈ E,
either u ∈ V1 and v ∈ V2 or vice versa. A bipartite graph is complete if for each
vi ∈ V1 and for each vj ∈ V2, edge (vi, vj) ∈ E. Complete bipartite graphs are
denoted by Ka,b, where a = |V1| and b = |V2|.

A subdivision of a graph G is a graph G′ that can be obtained by replacing each
edge of G with a path of arbitrary length. The contraction of an edge (u, v) consists
of the replacement of u, v, and (u, v) with a single vertex w, of each edge (u, z) with
an edge (w, z), and of each edge (v, z′) with an edge (w, z′). A minor of a graph
G is any graph that can be obtained from G by a sequence of removals of vertices,
removals of edges, and contractions of edges.

i
i

“thesis” — 2015/4/29 — 21:44 — page 13 — #25 i
i

i
i

i
i

1.2. PLANAR GRAPHS 13

(a) (b)

Figure 1.1: (a) A non-planar drawing of a graph. (b) A planar drawing of the same
graph.

1.2 Planar Graphs

Planar graphs are probably the most studied class of graphs in Graph Theory, and
surely the most studied class of graphs in Graph Drawing. In this section we give
preliminaries and definitions about planar graphs.

A drawing of a graph is a mapping of each vertex to a distinct point of the plane
and of each edge to a simple Jordan curve connecting the points to which the end-
vertices of the edge have been mapped. A drawing is planar if the curves represent-
ing edges do not cross except, possibly, at common endpoints. A graph is planar
if it admits a planar drawing. A planar drawing of a graph provides extremely high
readability of the combinatorial structure of the graph [PCJ97, Pur00]. See 1.1 for a
comparison between a non-planar and a planar drawing.

A planar drawing of a graph determines a clockwise circular ordering of the edges
incident to each vertex, called rotation scheme of the vertex. Two drawings of the
same graph are equivalent if they determine the same rotation scheme for each vertex.
A combinatorial embedding (or simply planar embedding or embedding) is an equiv-
alence class of planar drawings. A graph is embedded when an embedding of it has
been decided. A planar drawing partitions the plane into topologically connected re-
gions, called faces. A vertex (an edge) is incident to a face f if it belongs to sequence
of vertices (edges) delimiting f . All the faces are bounded, except for one face, that
we call the outer face (or external face). The other bounded faces are called internal
faces. Two planar drawings with the same combinatorial embedding have the same
faces. However, such drawings could still differ for their outer faces. Refer to Fig. 1.2.

i
i

“thesis” — 2015/4/29 — 21:44 — page 14 — #26 i
i

i
i

i
i

14 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

vO

Γ1

vO′

Γ2

vO

Γ3

Figure 1.2: Three drawings Γ1, Γ2, and Γ3 of the same planar graph, focused on the
rotation scheme of vertex v. Drawings Γ1 and Γ2 have different combinatorial em-
beddings; drawings Γ1 and Γ3 have the same combinatorial embedding but a different
external face. The rotation schemes of vertex v in Γ1 (Γ3) and in Γ2 are denoted by
O and O′, respectively.

A graph together with a planar embedding and a choice for its outer face is called
a plane graph. In a plane graph, external and internal vertices are defined as the
vertices incident and not incident to the outer face, respectively. Analogously, external
and internal edges are defined as the edges incident and not incident to the outer
face, respectively. Sometimes, the distinction is made between planar embedding and
plane embedding, where the former is an equivalence class of planar drawings and
the latter is a planar embedding together with a choice for the outer face. When such
a distinction is made, then a planar embedding is more commonly referred to as a
combinatorial embedding.

The dual graph G? of an embedded planar graph G is a planar multi-graph having
a vertex vf for each face f of G and an edge (vf , vg) if and only if faces f and g of G
share an edge. We say that edge (vf , vg) is the dual edge of e, and vice versa. Fig. 1.3
shows an embedded planar graphs and its dual graph. It is important to notice that the
dual graph of an embedded planar graph depends on the embedding of the graph, that
is, different dual graphs correspond to different planar embeddings of the same graph.
On the other hand, the dual graph of an embedded planar graph G is independent of
the choice of the outer face of G.

A plane graph is maximal (or equivalently is a triangulation) if all its faces are
delimited by cycles of three vertices. A planar graph is maximal if it admits a planar
embedding that determines a triangulation. A triangulation is maximal in the sense
that adding an edge to it yields a non-planar graph. Maximal planar graphs are an
important and deeply studied class of planar graphs since any planar graph can be

i
i

“thesis” — 2015/4/29 — 21:44 — page 15 — #27 i
i

i
i

i
i

1.2. PLANAR GRAPHS 15

Figure 1.3: A plane graph whose vertices are drawn as black disks and whose edges
are drawn as solid curves, and its dual graph, whose vertices are drawn as white boxes
and whose edges are drawn as dashed curves.

.

augmented to maximal by adding dummy edges to it and since triangulations, as the
(subdivisions of) triconnected planar graphs, admit exactly one combinatorial em-
bedding (a more detailed discussion about the properties of highly-connected planar
graphs is given in Chapter 2) and hence are often easier to deal with. A plane graph is
internally-triangulated when all its internal faces have exactly three incident vertices.

Planarity

Planarity is commonly accepted as the most important aesthetic criteria a drawing
should satisfy to be nice and readable. In fact, the absence of partial or complete
overlapping among the objects makes the drawing aesthetically pleasant and easily
readable by the human eye, and provides extremely high readability of the combina-
torial structure of the graph, as confirmed by some cognitive experiments in graph
visualization [PCJ97, Pur00, PCA02, WPCM02]. However, the great importance of
planar graphs, so in Graph Drawing as in Graph Theory and Computational Geometry
in general, also comes from the many mathematical, combinatorial, and geometrical
properties they exhibit.

From the combinatorial and topological point of view, the first important result
about planar graphs is the characterization given by Kuratowski [Kur30] in 1930,
stating that a graph is planar if and only if it contains no subgraph isomorphic to a
subdivision of the complete graph K5 with five vertices or to a subdivision of the
complete bipartite graph K3,3 with three vertices in each of the sets of the bipartition.

i
i

“thesis” — 2015/4/29 — 21:44 — page 16 — #28 i
i

i
i

i
i

16 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

Afterwards, such a characterization has been extended by Wagner, who stated that a
graph is planar if and only if it contains no K5-minor and no K3,3-minor [Wag37].

The planarity of a graph can be tested in linear time, as first shown by Hopcroft
and Tarjan [HT74] in 1974. Linear-time algorithms for testing the planarity of a graph
have been also presented, e.g., in [BL76, ET76, dR82, BM04, dFOdM12, HT08].
Such testing algorithms can be suitably modified in order to compute planar embed-
dings if the test yields a positive result. If an embedding of a graph is fixed, then linear
time still suffices to test if the embedding is planar [Kir88].

The following result, known as Euler’s formula, relates the number of vertices,
edges, and faces in a connected plane graph.

Theorem 1.1 (Euler 1750) Let G be a connected plane graph, and let n, m, and f
denote the number of vertices, edges, and faces ofG, respectively. Then, the following
equation holds:

n−m+ f = 2

The fact that the planarity testing, so as many other problems on planar graphs,
can be solved in linear time is due to an important mathematical property of planar
graphs, stating that the number of edges of a planar graph is linear in the number of
its vertices. Namely, by the Euler’s formula, we have m ≤ 3n − 6, where m is the
number of edges, in any n-vertex planar graph.

Classes of Planar Graphs

In this section we present preliminaries and definitions about some important sub-
classes of planar graphs that will be used in the rest of the thesis.

A cycle is a connected graph such that each vertex has degree exactly two. A tree is
a connected acyclic (i.e., not containing any cycle) graph (see Fig. 1.4(a)). A pseudo-
tree is a connected graph containing exactly one cycle. A path is a tree such that each
vertex has degree at most two. A chord of a cycle (of a path) is an edge connecting
two non-consecutive vertices of the cycle (of the path). The degree-1 vertices of a
(pseudo-)tree are its leaves, while the other vertices are its internal vertices. We denote
the set of leaves of a (pseudo-)tree T by L(T). A leaf edge is an edge incident to a
leaf. A caterpillar (see Fig. 1.4(b)) is a tree such that removing all the leaves and all
the leaf edges yields a path, called spine of the caterpillar, whose nodes and edges
are called spine nodes and spine edges, respectively. A star graph is a tree such that
removing all leaves and all leaf edges yields an isolated node, called central node.

A rooted tree is a tree with one distinguished node, called root. In a rooted tree, the
depth of a node v is the length of the unique path (i.e., the number of edges composing

i
i

“thesis” — 2015/4/29 — 21:44 — page 17 — #29 i
i

i
i

i
i

1.2. PLANAR GRAPHS 17

(a) (b) (c)

Figure 1.4: (a) A tree. (b) A caterpillar. (c) A maximal outerplane graph.

the path) between v and the root. The depth of a rooted tree is the maximum depth
among all the vertices. A binary tree (a ternary tree) is a rooted tree such that each
node has at most two children (resp. three children). A tree is ordered if an order of
the children of each node (i.e., a planar embedding) is specified. In an ordered binary
tree we distinguish the left and the right child of a node. The subtrees of a node u of
a tree T are the subtrees of T rooted at u and not containing the root of T .

An outerplane graph is a plane graph such that all the vertices are incident to
the outer face. An outerplanar embedding is a planar embedding such that all the
vertices are incident to the same face. An outerplanar graph is a graph that admits an
outerplanar embedding. From a combinatorial point of view, an outerplanar graph is
a graph that contains no K4-minor and no K2,3-minor. Also, outerplanar graphs have
at most 2n − 3 edges. Note that trees and cycles are outerplanar graphs. A maximal
outerplane graph (see Fig. 1.4(c)) is an outerplane graph such that all its internal
faces are delimited by cycles of three vertices. A maximal outerplanar embedding is
an outerplanar embedding such that all its faces, except for the one to which all the
vertices are incident, are delimited by cycles of three vertices. A maximal outerplanar
graph is a graph that admits a maximal outerplanar embedding. Every outerplanar
graph can be augmented to maximal by adding dummy edges to it.

A series-parallel graph (SP-graph) is a graph with no K4-minor. SP-graphs are
inductively defined as follows. An edge (u, v) is a series-parallel graph with poles u
and v. Denote by ui and vi the poles of a series-parallel graph Gi. A series com-
position of SP-graphs G1, . . . , Gk, with k ≥ 2, is an SP-graph with poles u = u1

and v = vk, containing graphs Gi as subgraphs, and such that vi and ui+1 have been
identified, for each i = 1, . . . , k − 1 (see Fig. 1.5(a)). A parallel composition of
SP-graphs G1, . . . , Gk, with k ≥ 2, is an SP-graph with poles u = u1 = · · · = uk

i
i

“thesis” — 2015/4/29 — 21:44 — page 18 — #30 i
i

i
i

i
i

18 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

v2 = u3

v = vk

u = u1

(a)

u = u1 = u2 = . . . = uk

v = v1 = v2 = . . . = vk

(b)

Figure 1.5: (a) A series composition of a sequence G1, G2, . . . , Gk of series-parallel
graphs. (b) A parallel composition of a set G1, G2, . . . , Gk of series-parallel graphs.

and v = v1 = · · · = vk and containing graphs Gi as subgraphs (see Fig. 1.5(b)).
If follows that any (connected) subgraph of a series-parallel graph is a series-parallel
graph. Observe that outerplanar graphs are series-parallel graphs.

A graph G is a k-tree if it can be generated by a sequential addition of vertices
(and their incident edges) in an order v1, . . . , vn such that, for each i > k, vertex
vi has exactly k predecessors (i.e, neighbors with smaller index) and they form a
clique (i.e, the subgraph of G induced by the predecessors of vi is the complete graph
Kk). A partial k-tree is a subgraph of a k-tree and have treewidth (i.e., the size of
the largest clique in the graph) bounded by a constant. Partial k-trees received large
attention since, as their treewidth is bounded by a constant, they allow for solving in
polynomial time problems that are otherwise NP-hard ([AP89, CR05]). Trees coincide
with 1-trees, while maximal series-parallel graphs coincide with 2-trees. Planar 3-
trees, also referred as stacked triangulations or Apollonian graphs, are special types of
planar triangulations which can be generated from a triangle by a sequential addition
of vertices of degree 3 inside faces. Namely, planar 3-trees can be inductively defined
as follows:

• The complete graph K3 on three vertices is a planar 3-tree.

• Let G be a planar 3-tree with n vertices and let a, b, and c be three vertices
bounding a face of G. The graph G′ obtained by adding vertex v and edges
(a, v), (b, v), and (c, v) is a planar 3-tree with n+ 1 vertices.

A graph G with n ≥ 4 vertices is a wheel Wn if it consists of a simple cycle
C = v1, . . . , vn−1 on (n − 1) vertices and of a vertex, called the central vertex, that

i
i

“thesis” — 2015/4/29 — 21:44 — page 19 — #31 i
i

i
i

i
i

1.3. GRAPH DRAWING 19

is connected to all the vertices of C. Wheels are triconnected graphs. The complete
graph on four vertices K4 is a wheel W4 on four vertices.

1.3 Graph Drawing

In this section, we introduce basic concepts about Graph Drawing. A Graph Drawing
algorithm takes as an input a graph G and outputs a nice drawing of G. What makes
a drawing “nice”, is the fact that it is easily understandable by the human eyes, that
is, the fact that it is readable. In order to construct a nice drawing of the graph, it is
important the knowledge of the class of graphs G belongs to. In fact, several graph
drawing algorithms only work for restricted classes of graphs. Moreover, the drawing
should reflect the combinatorial properties of the graph, which are mainly encoded in
the class of graphsG belongs to. It is also important to observe that the best drawing of
a graph might not exist. In fact, different individuals usually have different perceptions
of the same drawing; moreover, different domains of applications determine different
requirements for the drawings. The requirements a drawing must satisfy in order to
be admissible are generally regarded as the drawing conventions; the properties that
a drawing should satisfy as much as possible are generally regarded as the drawing
aesthetics.

In the reminder of the section, we describe the most used drawing conventions and
discuss some aesthetic criteria that characterize a good drawing of a graph.

Drawing Conventions

When aiming at high readability of a drawing, an important issue that has to be con-
sidered concerns the geometrical representation of the edges and of the faces. Namely,
planar drawings in which edges are represented by straight-line segments (known
as straight-line drawings, see Fig. 1.6(a)) happen to be more readable than draw-
ings in which edges are represented by poly-lines (known as poly-line drawings, see
Fig. 1.6(b)) or general curves, and drawings in which faces are drawn as convex poly-
gons (known as convex drawings, see Fig. 1.6(c)) are more readable than drawings in
which this is not the case (see Fig. 1.6(a)). Among the more used and studied drawing
conventions, we also mention orthogonal drawings, in which each edge is represented
by a sequence of horizontal and vertical segments.

Other drawing conventions that are worth to mention are the grid drawings, in
which vertices and bends have integer coordinates, upward drawings of digraphs, in
which each edge is represented by a curve monotonically-increasing in the upward
direction, and proximity drawings, in which given a definition of proximity, the prox-
imity graph of a set of points is the graph with a vertex for each point of the set, and

i
i

“thesis” — 2015/4/29 — 21:44 — page 20 — #32 i
i

i
i

i
i

20 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

(a) (b) (c)

Figure 1.6: (a) A straight-line planar drawing of a planar graph G. (b) A poly-line
planar drawing of G. (c) A convex drawing of G.

with an edge between two vertices if the corresponding points satisfy the proximity
property. Then, a proximity drawing of a graph G is a drawing D of G such that the
proximity graph of the set of points on which the vertices of G are drawn in D co-
incides with G itself. An example of proximity graphs is the Delaunay triangulation
for a set P of points in the plane, that is, a triangulation T such that no point in P is
inside the circumscribed circle of any triangle in T .

The most studied and used drawing convention is the one of straight-line draw-
ings. Of course such a convention is much more restrictive than the one in which
edges can have bends, and hence many results that hold for poly-line drawings do
not hold for straight-line drawings. However, regarding planarity, this is not the case.
Indeed, a very important result, known as Fary’s theorem and independently proved
by Wagner [Wag36], by Fary [Fár48], and by Stein [Ste51], states that a graph admits
a straight-line planar drawing if and only if it admits a planar drawing. This result
shows that planarity does not depend on the geometry used for representing the edges
but it only depends on the topological properties of the graph.

Aesthetic Criteria

Some aesthetic criteria can be defined to measure the quality of a drawing. They are
naturally associated with optimization problems most of which are computationally
hard to solve. Among such criteria, one of the most important is certainly the area
occupied by the drawing, that is, the area of the smallest rectangle with sides parallel to
the coordinate axes that contains all the drawing. Of course, small area drawings can
not be obtained by simply scaling down the drawing, since some resolution rules have

i
i

“thesis” — 2015/4/29 — 21:44 — page 21 — #33 i
i

i
i

i
i

1.3. GRAPH DRAWING 21

to be respected in the drawing for maintaining readability. In particular, a minimum
distance, say one unit, between two elements (vertices and edges) of the drawing has
to be maintained. In order to respect some of such rules, when dealing with area
minimization problems, vertices are usually placed on an integer grid, in such a way
that the minimum distance between any two of them is at least one grid unit. In this
direction, it has been shown in several papers that every n-vertex plane graph admits
a planar straight-line drawing on a O(n2) area grid [dPP88, dPP90, Sch90, CN98,
ZH03, BFM07]. Further, a grid of quadratic size is asymptotically the best possible
for straight-line planar drawings, since there exist planar graphs requiring such an area
in any planar grid drawing [Val81, dPP90, FP08].

Further examples of commonly used aesthetic criteria are the following:

• Aspect Ratio: Minimization of the aspect ratio of the drawing. The aspect
ratio of a drawing is the ratio between the longest and the smallest side of the
bounding box of the drawing.

• Angular Resolution: Maximization of the smallest angle between two edges
incident to the same vertex.

• Crossings: Minimization of the number of crossings in the drawing. Notice that
this aesthetic does not make sense when the drawing is required to be planar.

• Total Edge Length: Minimization of the sum of the lengths of the edges in the
drawing.

• Total Bends: Minimization of the number of bends in the drawing.

i
i

“thesis” — 2015/4/29 — 21:44 — page 22 — #34 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 23 — #35 i
i

i
i

i
i

Chapter 2

Data Structures

In this chapter we describe useful data structures that will be exploited throughout this
thesis. Data structures exist to describe and efficiently handle the decomposition of
general graphs into their components of higher degree of connectivity for some values
of connectivity. We present two such data structures for connected and biconnected
graphs, respectively. Namely, we describe block-cutvertex trees (BC-trees) in Sec-
tion 2.2 and SPQR-trees in Section 2.3. Further, in Section 2.4 we describe PQ-trees,
a data structure that allows to succinctly represent a family of permutations of a set of
objects A with consecutivity constraints among subsets of objects in A.

2.1 Connectivity

A graph G = (V,E) is connected if, for each pair of vertices u, v ∈ V , there exists a
path connecting u and v. A graph that is not connected is said to be disconnected.
More generally, a graph G = (V,E) is k-connected if, for each pair of vertices
u, v ∈ V , there exist k vertex-disjoint paths connecting u and v. Alternatively, a
graph G = (V,E) is k-connected if it remains connected after the removal of any set
of k − 1 vertices; 3-connected, 2-connected, and 1-connected graphs are also called
triconnected, biconnected, and simply connected graphs, respectively. A separating
k-set is a set of k vertices whose removal disconnects the graph. Separating 1-sets,
separating 2-sets, and separating 3-sets are also called cutvertices, separation pairs,
and separation triples, respectively. Hence, a connected graph is biconnected if it has
no cutvertices, a biconnected graphs is triconnected if it has no separation pairs, and a
triconnected graph id 4-connected if it has no separation triples. The maximal bicon-
nected subgraphs of a graph are its blocks, while the maximal triconnected subgraphs

23

i
i

“thesis” — 2015/4/29 — 21:44 — page 24 — #36 i
i

i
i

i
i

24 CHAPTER 2. DATA STRUCTURES

of a graph are its triconnected components. Each edge of G falls into a single block of
G and into a single triconnected component, while cutvertices are shared by different
blocks and vertices belonging to a separation pair are shared by different separation
pairs. A cut of a graph G = (V,E) is a partition if its vertices into two subsets V1 and
V2. A cutset of G is the set E′ ⊆ E such that (u, v) ∈ E′ if and only if u ∈ V1 and
v ∈ V2. Observe that the removal of the edges of E′ from E increases the number of
connected components of G.

Connectivity, Planarity, and Combinatorial Embeddings

In this subsection we discuss some properties of planar graphs and their combinatorial
embeddings that depend on the degree of connectivity of the graph.

In general a connected planar graph G has several combinatorial embedding.
Let G be a simply-connected planar graph, that is, G has a cutvertex v, and let

H1, . . . ,Hl be the connected components of graph H = G \ v. Also, let E be any
combinatorial embedding of G. Then, it is possible to construct a new combinatorial
embedding E ′ ofG from E by replacing a componentHj ofH (together with the edges
connecting v to the vertices of Hj) lying in face f of E in another face f ′ 6= f of E
incident to v. Similarly, letG be a biconnected planar graph, that is,G has a separation
pair {u, v}, and letH1, . . . ,Hl be the connected components of graphH = G\{u, v}.
Then, it is possible to construct a new combinatorial embeddings of G by flipping or
by reordering some of H1, . . . ,Hl (together with their edges connecting u and v to
the vertices of each component) around {u, v}.

A theorem by Whitney [Whi33] states that every 3-connected planar graph admits
exactly two combinatorial planar embeddings, which are one the flip of the other, that
is, the rotation schemes of the vertices in the two embeddings are reversed. Since
any k + 1-connected graph is also k-connected, this result implies that no embedding
choice (except for a flip of the embedding) exists for higher degree planar graphs.
However, it is worth pointing out that there exists no k-connected planar graph with
k ≥ 6. This result can be easily derived from the fact a graph is k-connected only
if its minimum degree is at least k and by the following simple property that can be
proved by exploiting Euler’s formula.

Property 2.1 Every planar graph contains a vertex of degree at most 5.

We mention another important relation between connectivity and planarity. Namely,
a simply-connected (resp., biconnected) graph G is planar if and only if all its blocks
(resp., triconnected components) are planar [Har69]([BDD00]).

i
i

“thesis” — 2015/4/29 — 21:44 — page 25 — #37 i
i

i
i

i
i

2.2. BC-TREES 25

β5

β1
β3

β2

β4

v1

v2

v3

v4

(a)

β1

β2

β3β5

β4

v1

v2v3

v4

(b)

Figure 2.1: (a) A connected graph and (b) its BC-tree, rooted at block β1.

Problems concerning the research of a particular embedding of a planar graph
satisfying specific properties that are difficult for general planar graphs, can be of-
ten efficiently solved when the graph is triconnected. Hence, a possible strategy to
tackle such problems in general low-connected planar graphs is to first decompose
such graphs into their highly-connected components, as the problem can be solved
more easily on such components, and then efficiently combine the solutions for such
(smaller and highly-connected) components exploiting the property of the decom-
position. The next sections will be devoted to two such decompositions for simply
connected and biconnected graphs, respectively.

2.2 BC-trees

To handle the decomposition of a connected graph into its biconnected components,
we use block-cutvertex trees (usually referred to as BC-trees), a data structure intro-
duced by Harary and Prins in [HP66].

The BC-tree T of a connected graph G(V,E) is a tree with a B-node for each
block of G and a C-node for each cutvertex of G. Edges in T connect each B-node β
to theC-nodes associated with the cutvertices in the block of β. We consider BC-trees
that are rooted at a specific block of G.

The size of T is the number of nodes of T , which is equal to the number of blocks
plus the number of cutvertices. Hence, the size of T is O(n), where n = |V | is the
number of vertices of G. Figure 2.1 shows a connected graph and its BC-tree, rooted
at block β1.

i
i

“thesis” — 2015/4/29 — 21:44 — page 26 — #38 i
i

i
i

i
i

26 CHAPTER 2. DATA STRUCTURES

The first algorithm to decompose a connected undirected graph into its blocks is
due to Hopcroft and Tarjan [HT73] and runs in linear time. Tarjan and Vishkin [TV85]
also presented a parallel algorithm that runs in O(log n) time on a concurrent-read
concurrent-write parallel RAM (CRCW PRAM) with n+m processors, where n and
m are the number of vertices and edges of the considered graph, respectively.

For some specific examples of applications of this data structure the interested
reader might refer, for instance, to [PT00b, DDLM05, CDF+08, AFG10]; see also
Chapter 11.

2.3 SPQR-trees

To handle the decomposition of a biconnected graph into its triconnected components,
we use SPQR-trees, a data structure introduced by Di Battista and Tamassia in [DT90,
DT96a, DT96b].

A graph is st-biconnectible if adding edge (s, t) to it yields a biconnected graph.
LetG be an st-biconnectible graph. A separation pair ofG is a pair of vertices whose
removal disconnects the graph. A split pair of G is either a separation pair or a pair of
adjacent vertices. A maximal split component of G with respect to a split pair {u, v}
(or, simply, a maximal split component of {u, v}) is either an edge (u, v) or a maximal
subgraph G′ of G such that G′ contains u and v, and {u, v} is not a split pair of G′. A
vertex w 6= u, v belongs to exactly one maximal split component of {u, v}. We call
split component of {u, v} the union of any number of maximal split components of
{u, v}.

We consider SPQR-trees that are rooted at one edge of the graph, called the ref-
erence edge. The rooted SPQR-tree T of a biconnected graph G, with respect to a
reference edge e, describes a recursive decomposition of G induced by its split pairs.
The nodes of T are of four types: S, P, Q, and R. Their connections are called arcs, in
order to distinguish them from the edges of G.

Each node τ of T has an associated st-biconnectible multigraph, called the skele-
ton of τ and denoted by sk(τ). Skeleton sk(τ) shows how the children of τ , represented
by “virtual edges”, are arranged in τ . The virtual edge in sk(τ) associated with a child
node σ, is called the virtual edge of σ in sk(τ).

For each virtual edge ei of sk(τ), recursively replace ei with the skeleton sk(τi)
of its corresponding child τi. The subgraph of G that is obtained in this way is the
pertinent graph of τ and is denoted by pert(τ).

For each virtual edge ei of sk(τ), the expansion graph exp(ei) of ei is the pertinent
graph pert(µi) of the child µi of τ represented by edge ei in sk(τ).

i
i

“thesis” — 2015/4/29 — 21:44 — page 27 — #39 i
i

i
i

i
i

2.3. SPQR-TREES 27

Given a biconnected graph G and a reference edge e = (u′, v′), tree T is recur-
sively defined as follows. At each step, a split componentG∗, a pair of vertices {u, v},
and a node σ in T are given. A node τ corresponding to G∗ is introduced in T and
attached to its parent σ. Vertices u and v are the poles of τ and denoted by u(τ) and
v(τ), respectively. The decomposition possibly recurs on some split components of
G∗. At the beginning of the decomposition G∗ = G− {e}, {u, v} = {u′, v′}, and σ
is a Q-node corresponding to e.

Base Case: If G∗ consists of exactly one edge between u and v, then τ is a Q-node
whose skeleton is G∗ itself.

Parallel Case: IfG∗ is composed of at least two maximal split componentsG1, . . . , Gk
(k ≥ 2) of G with respect to {u, v}, then τ is a P-node. Graph sk(τ) consists of
k parallel virtual edges between u and v, denoted by e1, . . . , ek and correspond-
ing toG1, . . . , Gk, respectively. The decomposition recurs onG1, . . . , Gk, with
{u, v} as pair of vertices for every graph, and with τ as parent node.

Series Case: If G∗ is composed of exactly one maximal split component of G with
respect to {u, v} and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2), appearing in
this order on a path from u to v, then τ is an S-node. Graph sk(τ) is the path
e1, . . . , ek, where virtual edge ei connects ci−1 with ci (i = 2, . . . , k − 1), e1

connects u with c1, and ek connects ck−1 with v. The decomposition recurs
on the split components corresponding to each of e1, e2, . . . , ek−1, ek with τ as
parent node, and with {u, c1}, {c1, c2}, . . . , {ck−2, ck−1}, {ck−1, v} as pair of
vertices, respectively.

Rigid Case: If none of the above cases applies, the purpose of the decomposition step
is that of partitioning G∗ into the minimum number of split components and
recurring on each of them. We need some further definition. Given a maximal
split componentG′ of a split pair {s, t} ofG∗, a vertexw ∈ G′ properly belongs
to G′ if w 6= s, t. Given a split pair {s, t} of G∗, a maximal split component
G′ of {s, t} is internal if neither u nor v (the poles of G∗) properly belongs
to G′, external otherwise. A maximal split pair {s, t} of G∗ is a split pair of G∗

that is not contained into an internal maximal split component of any other split
pair {s′, t′} of G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗

(k ≥ 1) and, for i = 1, . . . , k, let Gi be the union of all the internal maximal
split components of {ui, vi}. Observe that each vertex of G∗ either properly
belongs to exactly one Gi or belongs to some maximal split pair {ui, vi}. Node
τ is an R-node. Graph sk(τ) is the graph obtained from G∗ by replacing each

i
i

“thesis” — 2015/4/29 — 21:44 — page 28 — #40 i
i

i
i

i
i

28 CHAPTER 2. DATA STRUCTURES

(a)

S

P

R

S

S

P

R
R R

R

(b)

Figure 2.2: (a) A biconnected planar graph and (b) its SPQR-tree, rooted at a Q-node
adjacent to the R-node whose internal vertices are black. The skeletons of the internal
R-nodes of the tree are represented inside the boxes. The virtual edge representing the
parent of a node µ in the skeleton of µ is drawn as a dotted line.

subgraph Gi with the virtual edge ei between ui and vi. The decomposition
recurs on each Gi with µ as parent node and with {ui, vi} as pair of vertices.

For each node τ of T , the construction of sk(τ) is completed by adding a virtual
edge (u, v) representing the rest of the graph. Fig. 2.2 depicts a biconnected planar
graph and its SPQR-tree.

In this thesis we will be mostly concerned with rooted SPQR-trees, however, it is
worth pointing out that when using a different reference edge e′ of G a decomposition
of G− e′ corresponds to rerooting T at the node representing e′. It thus makes sense
to say that T is the SPQR-tree of G.

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes
and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons
stored at the nodes of T is O(n). Finally, SPQR-trees can be constructed and handled
efficiently. Namely, given a biconnected planar graph G, the SPQR-tree T of G can
be computed in linear time [GM00].

SPQR-trees and Planar Embeddings. Let G be a biconnected graph and let T be
the SPQR-tree of G. Recall that graph G is planar if and only if all its triconnected
components are planar, that it, graph G is planar if and only if the skeletons of all the
nodes of T are planar [BDD00].

i
i

“thesis” — 2015/4/29 — 21:44 — page 29 — #41 i
i

i
i

i
i

2.4. PQ-TREES 29

The SPQR-tree T can be used to represent all the planar embeddings of G. In
fact, suppose that one of the combinatorial embeddings of the skeleton of each node
is chosen. A combinatorial embedding of G can be obtained by merging the skeletons
of all the adjacent nodes of T while preserving their embedding.

Observe that:

(i) the skeleton of an S-node admits exactly one combinatorial embedding (in fact,
since each vertex has degree two it admits a single rotation scheme);

(ii) the skeleton of a P-node admits as many combinatorial embeddings as the num-
ber of permutations of its virtual edges; and

(iii) the skeleton of an R-node, which is triconnected, admits exactly one combina-
torial embedding up to a reversal of the adjacency lists of its vertices.

Hence, a combinatorial embedding Γ of G correspond bijectively to planar em-
beddings of all skeletons of T ; the choices are the orderings of the parallel edges in
P-nodes and selection of one of the two possible embeddings of the R-node skeletons.
When considering rooted SPQR-trees, we assume that the embedding of G is such
that the root edge is incident to the outer face, which is equivalent to the parent edge
being incident to the outer face in each skeleton.

We remark that in a planar embedding of G, the poles of any node µ of T are inci-
dent to the outer face of pert(µ); embedding satisfying this property are called regular
in [BM90]. Hence, in the chapters of this thesis we will only consider embeddings of
the pertinent graphs with their poles lying on the same face.

In addition to the applications of this data structure presented in [DT90, DT96a,
DT96b], the interested reader might refer, for example, to [GMW05, FGJ+08, ADF+10,
ADP11, ADF+12, ACDP13, HN14]; see also Section 4.3 and Chapter 5.

2.4 PQ-trees

A PQ-tree T is a rooted tree whose leaves correspond to the elements of a ground set
A. The internal nodes of T are either P- or Q-nodes. P-nodes allow for an arbitrary
reordering of their children, while Q-nodes only allow for a reversal of the given order
of their children. PQ-trees can be used to represent all and only the linear orderings
of their leaves in which subsets of the leaves are required to be consecutive.

Usually, PQ-trees are depicted with circles representing P-nodes and rectangles
representing Q-nodes. See Fig. 2.3 for an example.

PQ-trees were introduced by Booth and Lueker [Boo75, BL76] who exploited
this data structure to test matrices for the consecutive-ones property, to implement a

i
i

“thesis” — 2015/4/29 — 21:44 — page 30 — #42 i
i

i
i

i
i

30 CHAPTER 2. DATA STRUCTURES

T1 T2

.

Tk

(a)

T1 T2

.

Tk

(b)

Figure 2.3: (a) A P-node and (b) a Q-node depicted as a circle and a rectangle, respec-
tively, with children (the subtrees T1, T2, . . . , Tk) drawn below them.

linear-time planarity testing algorithm, and to recognize interval graphs. They also
proved that construction and intersection of PQ-trees can be performed in linear time
by repeatedly applying the nine transformation rules called the template matchings.

Let T be a PQ-tree and let L(T) be the set of leaves of T . We denote by F (T) the
set of linear orders ofL(T) obtainable by arbitrarily reordering the children of each P-
node and by selecting one of the two possible orderings of the children of each Q-node.
Also, let X ⊆ L(T) be a subset of the leaves of T . We say that X is representable by
T , denoted X®T , if there exists a linear ordering O ∈ F (T) such that the elements
of X appear consecutively in O; otherwise, we say that X is not representable by T ,
denoted X®T . Further, we denote by T∅ the PQ-tree representing the empty order,
that is, F (T∅) = ∅, and by T∞ the PQ-tree representing all the possible permutations
of its leaves, that is, T∞ is a PQ-tree with a unique internal node that is a P-node.

We now illustrate two fundamental operations that are defined on PQ-trees. Namely,
the reduction and the intersection of PQ-trees.

Reduction. Let T be a PQ-tree and let X ⊆ L(T) be a subset of the leaves of T . The
reduction of T on X , denoted by T

⊕
X , constructs a new PQ-tree T ∗ such

that either (i) T ∗ is a PQ-tree with leaves L(T ∗) = L(T) and such that, for
each ordering O ∈ F (T) in which the elements of X appear consecutively, it
holds that O ∈ F (T ∗), or (ii) T ∗ = T∅, if X®T .

Intersection. Let T ′ and T ′′ be two PQ-tree on the same set of leaves. The intersec-
tion of T ′ and T ′′, denoted by T ′ ∩ T ′′, constructs a new PQ-tree T ∗ such that
either (i) T ∗ is a PQ-tree with leaves L(T ∗) = L(T ′) = L(T ′′) and such that
F (T ∗) = F (T ′) ∩ F (T ′′), or (ii) T ∗ = T∅, if F (T ′) ∩ F (T ′′) = ∅.

Observe that, given a PQ-tree T , there exist a collectionX(T) of setsXi ⊆ L(T),
with 1 ≤ i ≤ k, and PQ-trees Ti, with 1 ≤ i ≤ k, such that (i) T1 = T∞, (ii) Ti+1 =

i
i

“thesis” — 2015/4/29 — 21:44 — page 31 — #43 i
i

i
i

i
i

2.4. PQ-TREES 31

Ti
⊕
Xi, for i = 1, . . . , k− 1, and (iii) Tk = T . Hence, the intersection between two

PQ-trees T ′ and T ′′ can be obtained from T ′ (resp., from T ′′) by applying |X(T ′′)|
(resp., |X(T ′)|) reduction steps, one for each set in X(T ′′) (resp., in X(T ′)).

In addition to the applications of this data structure presented in [Boo75, BL76],
the interested reader might refer, for example, to [FCE95b, JLM98, LPW05]; see also
Section 4.3 and Section 8.3.

i
i

“thesis” — 2015/4/29 — 21:44 — page 32 — #44 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 33 — #45 i
i

i
i

i
i

Chapter 3

Planarity of Simultaneous and
Clustered Graphs

In this chapter we introduce the two long-standing Graph Drawing open problems
which are the main subject of this thesis. Namely, Section 3.1 is devoted to the
CLUSTERED PLANARITY (C-PLANARITY for short) problem, while in Section 3.2
we discuss the SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE for short)
problem. Further, we present the state of the art about testing this notions of planarity
for several classes of clustered graphs and simultaneous graphs.

3.1 Clustered Graphs

In this section we give definitions about clustered graphs and review the state of the
art of the C-PLANARITY testing problem1.

Let X be any set of elements. A cluster of X is a non empty subset X ′ ⊆ X
of its vertex set X . A recursive clustering of X is an assignment of its elements to
clusters such that, for any two clusters X ′ ⊆ X and X ′′ ⊆ X , it holds that either (i)
X ′ ∩X ′′ = X ′, or (ii) X ′ ∩X ′′ = X ′′, or (iii) X ′ ∩X ′′ = ∅. A recursive clustering
of X can be conveniently represented by means of a rooted tree T whose leaves are
the elements in X and whose internal nodes represent clusters of X .

A clustered graph C(G,T) (c-graph for short) is a graph G(V,E) plus a rooted
tree T representing a recursive clustering of V . A cluster (resp. recursive clustering)

1We remark that, as clarified in Feng’s thesis [Fen97], the term C-PLANARITY was originally meant
as a abbreviation for compound planarity. Afterwards, the term has commonly been accepted as a short
form for CLUSTERED PLANARITY.

33

i
i

“thesis” — 2015/4/29 — 21:44 — page 34 — #46 i
i

i
i

i
i

34 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

(a) (b)

Figure 3.1: (a) A c-planar drawing Γ of a clustered graph C(G,T). (b) The inclusion
tree T of C(G,T), where each internal node µ ∈ T is represented as a scaled drawing
of the region R(µ) representing µ in Γ.

Figure 3.2: (a) A c-planar drawing of a flat clustered graph and its inclusion tree. (b)
A c-planar drawing of a non-flat clustered graph and its inclusion tree.

of G(V,E) is a cluster (resp. recursive clustering) of the vertex set V of G. Given
an internal node µ of T we denote by V (µ) the cluster of G whose vertices are the
leaves of the subtree of T rooted at µ. The subgraph of G induced by V (µ) is denoted
as G(µ). An edge e between a vertex of V (µ) and a vertex of V \ V (µ) is said to be
incident on µ. Graph G and tree T are called underlying graph and inclusion tree (or
cluster hierarchy tree), respectively. A clustered graph C(G,T) is flat if T is a tree of
height 2 (that is, removing all the leaves yields a star graph) and non-flat otherwise.

See Fig 3.1 for an example of a non-flat c-planar clustered graph and of its inclu-
sion tree.

Graphs coming from many real application scenarios often exhibit semantic affini-
ties among their vertices that allow to group them into clusters. Further, in order to
cope with large graphs, clusters may also be artificially introduced with the purpose
of making easier the navigation and the exploration of large graphs. In fact, clusters
allows for representations of the same graph at different levels of abstraction, where
large portions of the graph may be hidden by contracting entire clusters to single ver-
tices (see e.g. [DGK03]). Refer to Fig 3.3.

Let I = [a, b] be a closed interval of the real numbers. Then a curve γ is a

i
i

“thesis” — 2015/4/29 — 21:44 — page 35 — #47 i
i

i
i

i
i

3.1. CLUSTERED GRAPHS 35

(a) (b)

(c) (d)

Figure 3.3: (a) A drawing of a clustered graph C(G,T). ((b),(c), and (d)) Drawings
of clustered graph C(G,T) at different levels of abstractions, where some clusters are
contracted to single vertices which are represented by large circles.

continuous mapping γ : I → R2. A curve γ is simple, or a Jordan arc, if it is
injective, that is, for all x, y ∈ I , it hold that γ(x) = γ(y) if and only if x = y. A
curve γ is closed if γ(a) = γ(b). A simple closed curve, also called a Jordan curve,
is a simple curve in which γ(a) = γ(b). A region of the plane (or simply region)
is subset of R2 that is open, connected and non-empty. A simple closed region is a
region bounded by a simple closed curve γ that includes γ, that is, it contains all its
boundary points.

A c-planar drawing Γ of a clustered graph C(G,T) is a drawing of G together
with a drawing of each cluster µ ∈ T as a simple closed region R(µ) such that:
1. R(µ) encloses all and only the leaves of T (µ) and the regions representing the
internal nodes of T (µ); 2. no edge-edge crossing occurs, the drawing of G contained
in Gamma is planar; 3. no region-region crossing occurs, that is, R(µ)∩R(ν) 6= ∅ if
and only if ν is an internal node of T (µ); and 4. no edge-region crossing occurs, that
is, each edge (u, v) of G intersects the boundary of R(µ) at most once.

A clustered graph is c-planar if it admits a c-planar drawing. The CLUSTERED

i
i

“thesis” — 2015/4/29 — 21:44 — page 36 — #48 i
i

i
i

i
i

36 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

α

β

γ

δ

(a)

nα

nβ

nγ nδ

(b)

Figure 3.4: (a) A clustered graph C(G,T) with four clusters α, β, γ, and δ that is
not c-planar, whose underlying graph is a set of stars. (b) The graph of clusters of
C(G,T), containing a vertex nµ for each cluster µ ∈ T .

PLANARITY problem (C-PLANARITY for short), introduced by Feng, Cohen, and
Eades [FCE95b, FCE95a], asks whether a clustered graph is c-planar.

Let C(G,T) be a flat clustered graph and let H be the graph of clusters of
C(G,T), that is, the simple graph obtained from G by contracting the subgraph G(µ)
induced by the vertices of cluster µ to a single vertex nµ and by removing loops and
multiple edges. Given a clustered graph C(G,T) an obvious necessary condition for
the c-planarity of C(G,T) is the planarity of its underlying graph G. Further, given a
flat clustered C(G,T) a necessary condition for the c-planarity of C(G,T) is the pla-
narity of its graph of clusters. However, this conditions are not also sufficient and the
consequences on the problem due to the requirement of not having edge-region and
region-region crossings are not yet fully understood. See Fig 3.4 for an example of a
flat non c-planar clustered graph whose underlying graph and whose graph of clusters
are planar.

The complexity of the C-PLANARITY problem is still unknown, both in the cases
in which the embedding of the underlying graph is fixed or can vary. In the next
subsection we review the state of the art on testing c-planarity for restricted classes of
clustered graphs.

Determining the complexity of testing whether a clustered graph admits a c-planar
drawing is a long-standing open problem in the Graph Drawing research area
(see [CB05] for a survey).

i
i

“thesis” — 2015/4/29 — 21:44 — page 37 — #49 i
i

i
i

i
i

3.1. CLUSTERED GRAPHS 37

Testing C-PLANARITY

In the last decades the C-PLANARITY problem has been deeply studied. While the
complexity of deciding if a clustered graph is c-planar is still an open problem in
the general case, polynomial-time algorithms have been proposed to test c-planarity
and produce c-planar drawings under several kinds of (possibly combined) restric-
tions. In the following we review several classes of clustered graph for which the
C-PLANARITY problem is known to be testable in polynomial-time. Results are clas-
sified according to the most adopted restrictions; we omit repetitions when multiple
restrictions are be applied.

Constraints on the Connectivity of Clusters. A cluster µ is connected, if the graph
G(µ) induced by the vertices of V (µ) is connected, and non-connected, otherwise. A
clustered graph is c-connected if for each node µ of T we have that µ is connected.
For example, the clustered graph C(G,T) in Fig. 3.5(a) is c-connected; in fact, as
shown in Fig. 3.5(b), each cluster induces a connected subgraph of G.

(a) (b)

Figure 3.5: (a) A c-connected clustered graph C(G,T). (b) For each internal node
µ ∈ T , the edges of graph G(µ) are drawn as thick red segments.

An important reference point in the literature on clustered planarity is the work
by Feng et al. [FCE95b, FCE95a]. In these papers the terminology that is currently
adopted is defined and an algorithm to test the c-planarity of a c-connected clustered
graph is provided. The algorithm is based on PQ-trees (refer to Section 2.4 for an
introduction on this data structure) and runs in quadratic time. In their original work,
Feng et al. also provided the following elegant characterization for c-planar clustered
graphs.

i
i

“thesis” — 2015/4/29 — 21:44 — page 38 — #50 i
i

i
i

i
i

38 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

Theorem 3.1 ([FCE95b]) A clustered graph C(G,T) is c-planar if and only if it is
a sub-clustered graph of a c-connected and c-planar clustered graph.

In a different context, Lengauer [Len89] gave an algorithm for testing planarity of
graphs defined in a hierarchical fashion. Namely, in that case that the clustered graph
is specified in terms of a set of graph patterns and in terms of their composition. This
algorithm can be interpreted as a C-PLANARITY testing for c-connected clustered
graph. The time complexity of the algorithm is linear in the size of the input. However,
the input size of Lengauer’s algorithm can be quadratic in the size of the represented
clustered graph.

The first linear-time algorithm for testing c-planarity of c-connected clustered
graphs was presented by Dahlhaus [Dah98]. The algorithm is based on a decomposi-
tion of G into its biconnected and triconnected components, a weight of each cluster
proportional to its size, and the characterization of c-planar embeddings presented
in [FCE95b]. The testing algorithm incrementally constructs of a certain planar em-
bedding and finally checks whether this embedding is c-planar. Shortly after, a new
linear-time algorithm was given by Cortese et al. [CDF+08] for testing c-planarity
of the class of c-connected clustered graph. The algorithm shares many aspects with
that presented by Dahlhaus [Dah98] and is based on exploiting both the BC-tree data
structure and the SPQR-tree data structure (refer to Section 2.2 and to Section 2.3 for
an introduction on these data structures).

The general C-PLANARITY testing problem, for non-connected clustered graphs,
is still open. In the following we review the steps that were done in the direction of
settling the general question, where several properties related to the connectivity of
clusters have been exploited.

A clustered graph is completely connected if for each non-root inner node µ of
T both G(µ) and G \ G(µ) are connected. Completely connected clustered graphs
have been studied by Cornelsen and Wagner [CW06], who proved that a completely
connected clustered graph is c-planar if and only if its underlying graph is planar.

A clustered graph is almost connected if it holds that either 1. there exists a unique
path p starting from the root of T such that each internal node µ of T that is non-
connected lies in p, or 2. for each internal node µ of T that is non-connected, its
parent and all its siblings in T are connected.

Gutwenger et al. [GJL+02, GJL+03] presented a O(n2)-time algorithm to test if
an n-vertex almost connected clustered graph is c-planar.

A cluster µ is extrovert if its parent ν in T is connected and each connected com-
ponent of µ has a edge that is incident to a cluster which is not a descendant of µ.
A clustered graph is extrovert if all its clusters are connected or extrovert. Extrovert
clustered graphs were introduced by Goodrich et al. [GLS05] who also gave a cubic-

i
i

“thesis” — 2015/4/29 — 21:44 — page 39 — #51 i
i

i
i

i
i

3.1. CLUSTERED GRAPHS 39

time algorithm to test c-planarity of this class of clustered graphs and an embedding
algorithm with the same time complexity.

Flat Clustered Graphs with Two Clusters. Biedl et al.[BKM98] study planar
graphs where each vertex is assigned to one of two disjoint sets. They provide a
linear-time algorithm to test if one of such graphs has a planar drawing such that
the vertices of the two classes are separated by an horizontal line (y-monotone HH-
drawing). Clearly, this algorithm can be interpreted as a c-planarity testing of a graph
with exactly two clusters (excluding the root) both at the same level. Shortly after,
Hong and Nagamochi [HN14] provided a linear-time algorithm to test c-planarity of
a clustered graph with arbitrary underlying graph whose vertices are assigned to two
clusters (excluding the root), based on the equivalence between the C-PLANARITY
in this setting and the PARTITIONED T-COHERENT 2-PAGE BOOK EMBEDDING
(PBE-2) (see Section 3.2 for a discussion on this problem), for which they provided
a linear-time testing algorithm based on SPQR-trees. More recently the same authors
presented a simpler linear-time algorithm to test the PBE-2 problem, based on reduc-
ing the problem to a planarity test.

Flat Clustered Graphs with Fixed Embedding of the Underlying Graph. A can-
didate saturating edge in a clustered graph C(G,T) is an edge whose addition to G
decreases the number of connected components of some cluster of C(G,T). Given
an embedded flat clustered graph, two candidate saturating edges have a conflict if
adding both of them to G causes a crossing. Di Battista and Frati [DF09] present a
characterization for single-conflict embedded flat clustered graphs, that are embed-
ded clustered graphs such that (i) the cluster hierarchy is flat and (ii) each candidate
saturating edge has a conflict with at most one other candidate saturating edge. As a
consequence of such a more general result, they provide a linear-time algorithm for
embedded flat clustered graphs with at most five vertices per face.

Recently, Chimani et al. [CDFK14] have shown a cubic-time algorithm for testing
c-planarity of embedded flat clustered graphs with at most two vertices per cluster
on each face. They also introduce a generalization of the C-PLANARITY problem
for embedded flat clustered graphs, called PLANAR SET OF SPANNING TREES IN
TOPOLOGICAL MULTIGRAPHS (PSSTTM for short), defined as follows: Given a
non-planar topological multigraph G with k connected components C1, . . . , Ck, the
PSSTTM problem asks whether there exists spanning trees S1, . . . , Sk of C1, . . . , Ck
such that no two edges in

⋃
i Si cross. The PSSTTM problem is NP-hard, even if

k = 1 [KLN91].

i
i

“thesis” — 2015/4/29 — 21:44 — page 40 — #52 i
i

i
i

i
i

40 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

Small Number of Components per Cluster. Jelínek et al. [JJKL08] showed that
the C-PLANARITY problem can be tested in polynomial time, if the embedding is
fixed and each cluster induces a subgraph with at most two connected components. A
somewhat more general result has recently been proved by Bläsius and Rutter [BR14],
who gave an efficient algorithm for testing c-planarity in the variable embedding set-
ting in the case in which every cluster and every co-cluster induces at most two con-
nected components. Their algorithm is based on exploiting the machinery of Simulta-
neous PQ-Ordering; see also [BR13] for further details on this topic.

Focusing on Particular Families of Underlying Graphs. In [CDPP05] Cortese et
al. focus on 3-cluster cycles, which are flat clustered graphs such that the underlying
graph is a simple cycle whose vertices are partitioned into 3 clusters. They show that
deciding C-PLANARITY for such instances and computing a c-planar drawing can be
done in linear time. Further, they give an elegant characterization of 3-cluster cycles
in terms of formal grammars.

Jelínková et al. [JKK+07] study the C-PLANARITY testing problem when all clus-
ters are small. Their main result is an O(|C|3 + n)-time algorithm for clusters of size
at most three on a cycle, where C is the set of clusters. Such a result is generalized
to a special class of Eulerian graphs that can be obtained from a vertex-3-connected
planar graph of fixed size by cloning and subdividing edges.

Limiting the Number of Inter-Cluster Edges. Polynomial-time algorithm have
been devised by posing restriction on the edges crossing the boundary of clusters.
In [JSTV08] Jelínek et al. give a linear-time algorithm for clusters with at most four
outgoing edges. This result is based on simulating the behavior of clusters with special
graphs, no matter whether the subgraph induced by each cluster is connected or not.
A slightly better result has been recently proved by Bläsius and Rutter [BR14] who
have shown a polynomial-time algorithm for C-PLANARITY when every cluster has
at most five outgoing edges.

Constraining the Arrangement of Clusters. Let C(G,T) be a flat clustered graph
and let H be the graph of clusters of C(G,T). As already observed, the planarity of
H is a necessary condition for the c-planarity of C(G,T). Also, let ΓH be a planar
drawing of H in which each vertex is drawn by a closed disk and each edge is drawn
by a pipe connecting the discs corresponding its endpoints. Cortese et al. [CDPP09]
study a problem in the framework of clustered planarity for highly non-connected
flat clustered graphs, defined as follows. Given a flat clustered graph C(G,T) and a
planar drawing ΓH of the graph of clusters H of C(G,T), does there exists a planar

i
i

“thesis” — 2015/4/29 — 21:44 — page 41 — #53 i
i

i
i

i
i

3.2. SIMULTANEOUS GRAPHS 41

drawing ΓG of G such that, for each cluster µ of T , graph G(µ) is drawn inside the
disk representing vertex nµ in ΓH and each inter-cluster edge (u, v) with u ∈ µ and
v ∈ ν is drawn as a curve completely contained inside the pipe connecting vertex nµ
and vertex nν in ΓH? They show that this problem can be solved in cubic-time if G
is a cycle. Recently, Chang et al. [CEX15] improved on the result of [CDPP09] by
presenting anO(n log n)-time algorithm to determine whether a closed walk of length
n in a simple plane graph is weakly simple2.

Finally, in [CDPP05] Cortese et al. studied the class of non-connected clustered
graphs such that the underlying graph is a cycle and the clusters at the same level of
T also form a cycle, where two clusters are considered adjacent if they are incident to
the same edge. They show that the C-PLANARITY testing and embedding problem is
linear for this class of clustered graphs.

3.2 Simultaneous Graphs

In this section we give definitions about simultaneous graphs and review the state of
the art of the SEFE testing problem.

A simultaneous graph is a triple G = (V,E, ψ) where V is a set of vertices,
E ⊆ V ×V is a set of edges, and ψ : V → P({1, . . . , k}) is a function that associates
each edge of the simultaneous graph with a set of integers with values up to k. Given
k graphs G1 = (V,E1), . . . , Gk = (V,Ek) defined on the same vertex set V , a
simultaneous graph G = (V,E, ψ) can be defined such that E =

⋃k
i Ei and, for

each edges e ∈ E, ψ(e) = {i : e ∈ Ei}. Simultaneous graphs can be used to
represent multiple sets of relationships over the same set of entities or to show the
evolution of a single graph whose edge-set changes over time. In the chapters of this
thesis dealing with simultaneous graphs, with the exception of Chapter 11, we will
be mostly interested in simultaneous graphs that are the union of a small number of
planar graphs. This will allow us to describe a simultaneous graph explicitly by means
of its constituent graphs and to drop the notation exploiting function ψ. For example,
we will denote by 〈G1, G2〉, by 〈G1, G2, G3〉, and by 〈Gi(V,Ei)〉ki=1 simultaneous
graphs composed of 2, 3, and k planar graphs, respectively. In Chapter 11, however,
where simultaneous graphs described as a stream of edges are studied, we will exploit
a notation similar to the one introduced above.

Clearly, even though each graph Gi, with i = 1, 2, . . . , k, is planar, the simulta-
neous graph G associated with these graphs might – in general – be non planar. In
the following, we discuss a notion of planarity for simultaneous graphs which aims

2A closed curve in the plane is weakly simple if it is the limit in the Fréchet metric of a sequence of
simple closed curves.

i
i

“thesis” — 2015/4/29 — 21:44 — page 42 — #54 i
i

i
i

i
i

42 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

at (i) clearly displaying each of the graph composing a simultaneous graph and at
(ii) helping the user maintain his/her mental map when exploring the structure of the
simultaneous graph.

Let G1 = (V,E1), . . . , Gk = (V,Ek) be k planar graphs on the same set V of
vertices. A simultaneous embedding with fixed edges (SEFE for short) ofG1, . . . , Gk
consists of k planar drawings Γ1, . . . ,Γk of G1, . . . , Gk, respectively, such that: (i)
each vertex v ∈ V is mapped to the same point in every drawing Γi and (ii) each
edge that is common to more than one graph is represented by the same simple
curve in the drawings of all such graphs. The SIMULTANEOUS EMBEDDING WITH
FIXED EDGES (SEFE for short) problem asks whether k input graphs G1, . . . , Gk
admit a SEFE [EK05]. We denote an instance of the SEFE problem as 〈G1 =

(V,E1), . . . , Gk = (V,Ek)〉 or, using a more concise notation, as 〈Gi(V,Ei)〉ki=1.
Given an instance 〈Gi(V,Ei)〉ki=1 of SEFE, the graphGij∩ = (V,Ei∩Ej) is the com-
mon graph of graphs Gi and Gj , with 1 ≤ i < j ≤ k. In this thesis we will be mostly
concerned with the cases k = 2 and k = 3. To easy the description, we will con-
sider the edge-sets E1, E2, and E3 of each graph assigned a color between red, blue,
and green. Also, for the sake of consistency, we will denote graphs G1 = (V,E1),
G2 = (V,E2), and G3 = (V,E3) as the red graph, as the blue graph, and as the green
graph, respectively. Furthermore, we will explicitly refer to the variant of the prob-
lem in which k = 2 graphs G1 and G2 are considered, as the SEFE-2 problem. For
example, Fig. 3.6 shows a negative instance 〈G1, G2〉 of SEFE-2.

In the following we introduce some notable variants of the SEFE problem.
Let 〈Gi(V,Ei)〉ki=1 be an instance of SEFE such that for each two graphs Gi and

Gj , with i 6= j, it holds that Gi ∩ Gj = G∩, where G∩ =
⋂k
l=1Gl. We say that the

input graphs have sunflower intersection, that is, the intersection graph is the same for
each pair of input graphs. We call SUNFLOWER SEFE problem the restriction of the
SEFE problem to this class of instances.

Let 〈G1, G2〉 be an instance of SEFE-2 such that the common graphG∩ = (V,E1∩
E2) is connected. We call C-SEFE-2 problem the restriction of the SEFE-2 problem
to such instances. Observe that, any instance of SEFE-2, and hence C-SEFE-2, is
also an instance of SUNFLOWER SEFE.

Given k planar graphs G1 = (V,E1), . . . , Gk = (V,Ek) such that Ei ∩ Ej = ∅,
with 1 ≤ i < j ≤ k, a k-page book-embedding of graphs G1 = (V,E1), . . . , Gk =
(V,Ek) consists of a linear ordering O of the vertices of V such that for each set
Ei, with 1 ≤ i ≤ k, there exist no two edges e′, e′′ ∈ Ei whose endvertices alter-
nate in O. The PARTITIONED T-COHERENT k-PAGE BOOK EMBEDDING problem
(PTBE-k for short) is defined as follows. Given a set V of vertices, a tree T whose
leaves L(T) are the elements of V , and a collection of edge-sets Ei ⊆ V × V , for

i
i

“thesis” — 2015/4/29 — 21:44 — page 43 — #55 i
i

i
i

i
i

3.2. SIMULTANEOUS GRAPHS 43

v4v3

v1

v2 v5

(a)

v2 v5

v3

v1

v4

(b)

v2 v5

v3

v1

v4

(c)

Figure 3.6: Graphs G1 (a) and G2 (b) do not admit a SEFE-2. (c) Since G1 is tricon-
nected, vertices v4 and v3 have to lie on different sides of cycle C = (v1, v2, v5, v1) in
any of the two combinatorial embeddings of G1. Hence, edge (v3, v4) of G2 cannot
be added without introducing crossings with the edges of C.

i = 1, 2, . . . , k, such that Ei ∩ Ej = ∅, with 1 ≤ i < j ≤ k, the PTBE-k asks
whether there exists an ordering O of the elements of V such that (i) the ordering O
is represented by T and (ii) the endvertices of any two edges belonging to the same
set Ei do not alternate in O. We denote an instance of the PTBE-k problem by
〈T,E1, . . . , Ek〉. Intuitively, the problem aims at placing the vertices along the spine
of a book in such a way that (i) the placement is consistent with tree T and (ii) it is pos-
sible to draw the edges of each set on a page of the book without creating any crossing.
We remark that the “connected” version of SEFE-2 is equivalent to problem PARTI-
TIONED T-COHERENT k-PAGE BOOK EMBEDDING (PTBE-k for short) [ADF+12]
for k = 2. Furthermore, we refer to the version of the PTBE-k problem in which
tree T is a star graph as the PARTITIONED k-PAGE BOOK EMBEDDING (PBE-k for
short) problem [HN09, ADD12, HN14]. We denote an instance of the PARTITIONED
k-PAGE BOOK EMBEDDING problem simply by 〈V,E1, . . . , Ek〉. See Fig. 3.7 for
examples of instances of these problems.

The SEFE problem can be studied both in terms of embeddings and in terms
of drawings, since edges can be represented by arbitrary curves without geometric
restrictions, and since Jünger and Schulz [JS09] proved that two graphs G1 and G2

with common graph G∩ have a SEFE-2 if and only if there exists a planar embedding
Γ1 ofG1 and a planar embedding Γ2 ofG2 inducing the same embedding ofG∩. This
condition extends to more than two graphs in the sunflower intersection setting.

Let S be a subgraph of a planar graph G and let E be a planar embedding of G.

i
i

“thesis” — 2015/4/29 — 21:44 — page 44 — #56 i
i

i
i

i
i

44 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

(a) (b)

Figure 3.7: (a) A negative instance 〈T,E1, E2〉 of PTBE-k and (b) a positive instance
〈G1, G2〉 of PTBE-2 where the V = L(T), E(G1) = E1, and E(G2) = E2. The
constraints imposed by tree T do not allow for an ordering O of its leaves along the
spine that yields a crossing-free drawing on both pages.

We denote by E|S the embedding of S induced by E . Similarly, let S be a subgraph
of a (not necessarily planar) graph G and let Γ be a drawing of G. We denote by Γ|S
the drawing of S induced by Γ.

Jünger and Schulz [JS09] showed that the SEFE-2 problem can be equivalently
stated in terms of embeddings. Namely, two graphs G1 = (V,E1) and G2 = (V,E2)
whose intersection graph G∩ = (V,E1 ∩ E2) is connected admit a SEFE if and
only if there exist planar embeddings E1 and E2 of G1 and G2, respectively, such
that E1|G∩ = E2|G∩ holds, that is, the two embeddings E1 and E2 coincide when
restricted to the intersection graph. Jünger and Schulz refer to embeddings satisfying
this property as compatible embeddings. The following theorem formalizes this result.

Theorem 3.2 ([JS09]) Let G1 and G2 be two planar graphs. G1 and G2 admit a
SEFE-2 if and only if there exist a pair of compatible embeddings E1 and E2 of G1

and G2, respectively.

Determining the complexity of testing whether an instance 〈G1, G2〉 of SEFE-2
(that is, a simultaneous graph composed of only two planar graphs) admits a SEFE-
2 is a fascinating open problem in Graph Drawing. We refer the interested reader
to [BKR13b] for a comprehensive survey on this topic.

Testing SEFE

In recent years the SEFE problem has been deeply studied. Deciding whether k
graphs admit a SEFE is an NP -complete problem [GJP+06], with k ≥ 3. This is

i
i

“thesis” — 2015/4/29 — 21:44 — page 45 — #57 i
i

i
i

i
i

3.2. SIMULTANEOUS GRAPHS 45

also true when every pair of graphs shares the same common graph (SUNFLOWER
SEFE) [Sch13]; see also Chapter 8. On the other hand, if the embedding of the in-
put graphs is fixed, SEFE becomes polynomial-time solvable for k = 3, but remains
NP -complete for k ≥ 14 [ADF13]. Also, Hoske [Hos12] proved NP -completeness
of PTBE-k, that is the restriction of SUNFLOWER SEFE to instances whose common
graph G∩ is a star, for k unbounded; see also Chapter 8. Nonetheless, the com-
plexity of testing SEFE for two graphs, hereinafter denoted as SEFE-2, is still open
in the general setting, even in its “connected” version PTBE-2 [ADF+12]. In a re-
cent work [Sch13] by Marcus Schaefer polynomial-time reductions from several well-
known open problems in Graph Drawing, including C-PLANARITY, to the SEFE-2
problem have been presented. This results further motivate the strong interest in set-
tling the question regarding the computational complexity of this problem. In the
following we review several classes of simultaneous graphs for which the SEFE-2
problem is known to be testable in polynomial-time.

Constraints on the Connectivity of the Instance. Haeupler et al. [HJL13] and
Angelini et al [ADF+12] independently show a linear-time algorithm to solve SEFE
for the case that the common graph is biconnected. The algorithm in [HJL13] is an
extension of the planarity testing algorithm by Haeupler and Tarjan [HT08] that is
bases on the PQ-tree data structure; while the algorithm in [ADF+12] aims at finding
an embedding of the common graph such that the exclusive edges ofG1 and ofG2 can
be added without braking planarity and is based on the SPQR-tree data structure. This
algorithms extend to the case of k planar graphs with sunflower intersection. Recently,
Schaefer [Sch13] extended this result by providing a polynomial-time algorithm for
the case in which the common graph consists of the disjoint union of biconnected
components and subcubic components, based on an algebraic approach derived from
the Hanani-Tutte theorem [Cho34, Tut70]. Further, in [Sch13] an algorithm for the
case in which at least one of G1 or G2 is the disjoint union of subdivisions of 3-
connected graphs is provided.

Bläsius and Rutter [BR13] give a quadratic-time algorithm to test SEFE-2 of two
biconnected planar graphs G1 and G2 whose common graph is connected. They for-
mulated the problem in the framework of the SIMULTANEOUS PQ-ORDERING prob-
lem that is defined as follows. LetD = (N,A) be a DAG with nodesN = T1, . . . , Tk,
where Ti is an unrooted PQ-tree, and arcs (Ti, Tj) equipped with an injective map ψ :
L(Ti) → L(Tj). The SIMULTANEOUS PQ-ORDERING problem asks whether there
are orders O1, . . . ,Ok of the leaf-sets L(T1), . . . ,L(Tk) of the PQ-trees T1, . . . , Tk
that are chosen consistently with respect to the relationship represented by the arcs in
A. This result can be slightly extended to the case in which graphs G1 and G2 contain

i
i

“thesis” — 2015/4/29 — 21:44 — page 46 — #58 i
i

i
i

i
i

46 CHAPTER 3. PLANARITY OF SIMULTANEOUS AND C-GRAPHS

cut-vertices incident to at most two non-trivial blocks (namely, blocks not consisting
of a single edge), that includes the special case in which both graphs have maximum
degree 5.

Fixing the Embedding of the Input Graphs. Angelini et al. [ADF+10] study the
following problem: Given a planar graph G and a planar embedding of a subgraph
of G, can such an embedding be extended to a planar embedding of the entire graph
G? They provide a linear-time algorithm for this problem which immediately yield to
solve in linear time the SEFE-2 problem if one of G1 and G2 has a fixed embedding.

Bläsius and Rutter [BKR13a] give a linear-time algorithm for solving SEFE-2 if
the common graph is a set of disjoint cycles, by introducing the CC-tree data struc-
ture. CC-trees can be used to represent all embeddings of a set of disjoint cycles that
can be induced by an embedding of a graph containing them as a subgraph. Further-
more, they can extend this result to a quadratic-time algorithm for the case where the
common graph consists of arbitrary connected components, each with a fixed planar
embedding. Both results extend to the case of k planar graphs with sunflower inter-
section.

Focusing on Particular Families of Graphs. Fowler et al. [FGJ+08] present an
algorithm for solving the SEFE-2 problem for a planar graph and a pseudoforest (a
graph with at most one cycle). This result is achieved by reducing to the following
embedding problem: Given a planar graph G, a cycle C of G, and a partitioning
P = {P1, . . . , Pk} of the remaining vertices ofG, does there exist a planar embedding
in which the induced subgraph on each vertex partition Pi of G \ C is contained
entirely inside or outside C? The algorithm for solving is based on the SPQR-tree
data structure and has linear running time.

Angelini et al. [ADF+12] show the equivalence between SEFE-2 and the PAR-
TITIONED T-COHERENT 2-PAGE BOOK EMBEDDING problem. Based on such an
equivalence and on a linear-time algorithm by Hong and Nagamochi for testing the
PARTITIONED k-PAGE BOOK EMBEDDING problem [HN09, HN14], they derive a
linear-time algorithm for SEFE-2 when the common graph G∩ is a star.

Some polynomial-time tractable instances have been identified when the degree of
the common graph is small. Schaefer [Sch13] shows a polynomial-time algorithm for
SEFE-2 when the common graph is subcubic, based on Hanani-Tutte-style methods;
while Hoske [Hos12] gives a simple quadratic-time algorithm in the case in which the
common graph is a binary tree, based on reducing the problem to the satisfiability of
a 2-SAT formula.

i
i

“thesis” — 2015/4/29 — 21:44 — page 47 — #59 i
i

i
i

i
i

Part II

Clustered Planarity

47

i
i

“thesis” — 2015/4/29 — 21:44 — page 48 — #60 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 49 — #61 i
i

i
i

i
i

Chapter 4

Relaxing the Constraints of Clustered
Planarity

In order to shed light on the C-PLANARITY problem, in this chapter1 we consider a
relaxed version of it, where some kinds of crossings (either edge-edge, edge-region,
or region-region) are allowed even if the underlying graph is planar. We investi-
gate the relationships among the minimum number of edge-edge, edge-region, and
region-region crossings for drawings of the same clustered graph. Also, we consider
drawings in which only crossings of one kind are admitted. In this setting, we prove
that drawings with only edge-edge or with only edge-region crossings always exist,
while drawings with only region-region crossings may not. Further, we provide upper
and lower bounds for the number of such crossings. Finally, we give a polynomial-
time algorithm to test whether a drawing with only region-region crossings exists
for biconnected graphs, hence identifying a first non-trivial necessary condition for
C-PLANARITY that can be tested in polynomial time for a noticeable class of graphs.

4.1 Introduction

C-PLANARITY is a classical Graph Drawing topic (see Chapter 3 for an introduction
and for references on this topic). A clustered graphC(G,T) consists of a graphG and
of a rooted tree T whose leaves are the vertices ofG. Such a structure is used to enrich
the vertices of the graph with hierarchical information. In fact, each internal node µ
of T represents the subset, called cluster, of the vertices of G that are the leaves of

1The contents of this chapter are a joint work with Patrizio Angelini, Giuseppe Di Battista, Fabrizio
Frati, Maurizio Patrignani, and Vincenzo Roselli published in a journal [ADD+15].

49

i
i

“thesis” — 2015/4/29 — 21:44 — page 50 — #62 i
i

i
i

i
i

50 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

the subtree of T rooted at µ. Tree T , which defines the inclusion relationships among
clusters, is called inclusion tree, while G is the underlying graph of C(G,T).

In a drawing of a clustered graph C(G,T) vertices and edges of G are drawn as
points and open curves, respectively, and each node µ of T is represented by a simple
closed region R(µ) containing exactly the vertices of µ. Also, if µ is a descendant of
a node ν, then R(ν) contains R(µ).

A drawing of clustered graph C(G,T) can have three types of crossings. Edge-
edge crossings are crossings between edges of G. Algorithms to produce drawings al-
lowing edge-edge crossings have already been proposed (see, for example, [DDM01]
and Fig. 4.1(a)). Two kinds of crossings involve regions, instead. Consider an edge
e of G and a node µ of T . If e intersects the boundary of R(µ) only once, this is not
considered as a crossing since there is no way of connecting the endpoints of e with-
out intersecting the boundary of R(µ). On the contrary, if e intersects the boundary
of R(µ) more than once, we have edge-region crossings. An example of this kind
of crossings is provided by Fig. 4.1(b), where edge (u,w) traverses R(µ) and edge
(u, v) exits and enters R(ν). Finally, consider two nodes µ and ν of T ; if the bound-
ary of R(µ) intersects the boundary of R(ν), we have a region-region crossing (see
Fig. 4.1(c) for an example). Clearly, a drawing of a clustered graph is c-planar if it
does not have any edge-edge, edge-region, or region-region crossing.

The huge body of research on clusterd planarity can be read as a collection of
polynomial-time testable sufficient conditions for C-PLANARITY. In contrast, the
planarity of the underlying graph is the only polynomial-time testable necessary con-
dition that has been found so far for C-PLANARITY in the general case. Such a con-
dition, however, is not sufficient and the consequences on the problem due to the
requirement of not having edge-region and region-region crossings are not yet fully
understood.

Other known necessary conditions are either trivial (i.e., satisfied by all clustered
graphs) or of unknown complexity as the original problem is. An example of the
first kind is the existence of a c-planar clustered graph obtained by splitting some
cluster into sibling clusters [AFP09]. An example of the second kind, which is also a
sufficient condition, is the existence of a set of edges that, if added to the underlying
graph, make the clustered graph c-connected and c-planar [FCE95b].

In this chapter we study a relaxed model of C-PLANARITY. Namely, we study
〈α, β, γ〉-drawings of clustered graphs. In an 〈α, β, γ〉-drawing the number of edge-
edge, edge-region, and region-region crossings is equal to α, β, and γ, respectively.
Figs. 4.1(a), 4.1(b), and 4.1(c) show examples of a 〈3, 0, 0〉-drawing, a 〈0, 2, 0〉-
drawing, and a 〈0, 0, 1〉-drawing, respectively. Notice that this model provides a gen-
eralization of C-PLANARITY, as the traditional c-planar drawing is a special case of
an 〈α, β, γ〉-drawing where α = β = γ = 0. Hence, we can say that the existence

i
i

“thesis” — 2015/4/29 — 21:44 — page 51 — #63 i
i

i
i

i
i

4.1. INTRODUCTION 51

(a)

ν

µ

w

v

u

(b)

(c)

Figure 4.1: Examples of crossings in drawings of clustered graphs. (a) A drawing
obtained with the planarization algorithm described in [DDM01] and containing three
edge-edge crossings. (b) A drawing with two edge-region crossings. (c) A drawing
with a region-region crossing.

of an 〈α, β, γ〉-drawing, for some values of α, β, and γ, is a necessary condition for
C-PLANARITY.

In our study we focus on clustered graphs whose underlying graph is planar. We
mainly concentrate on the existence of drawings in which only one type of crossings
is allowed. We call these drawings 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings, re-
spectively. Our investigation uncovers that allowing different types of crossings has
a different impact on the existence of drawings of clustered graphs (see Fig. 4.2). In
particular, we prove that, while every clustered graph admits an 〈∞, 0, 0〉-drawing
(even if its underlying graph is not planar) and a 〈0,∞, 0〉-drawing (only if its un-
derlying graph is planar), there exist clustered graphs not admitting any 〈0, 0,∞〉-
drawing. Further, we provide a polynomial-time testing algorithm to decide whether a
biconnected clustered graph admits a 〈0, 0,∞〉-drawing. From this fact we conclude
that the existence of such a drawing is the first non-trivial necessary condition for the

i
i

“thesis” — 2015/4/29 — 21:44 — page 52 — #64 i
i

i
i

i
i

52 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

planar underlying graph = admits 〈0,∞, 0〉-drawing

c-connectedc-planar

admits 〈0, 0,∞〉-drawing

admits 〈∞, 0, 0〉-drawing

Figure 4.2: Containment relationships among instances of clustered planarity. The
existence of a 〈0, 0,∞〉-drawing is a necessary condition for C-PLANARITY. Note
that any 〈0, 0,∞〉-drawing of a c-connected clustered graph C(G,T) can be suitably
modified to obtain a c-planar drawing of C(G,T).

C-PLANARITY of clustered graphs that can be tested efficiently. This allows us to
further restrict the search for c-planar instances with respect to the obvious condition
that the underlying graph is planar.

Also, we investigate the relationships among the minimum number of edge-edge,
edge-region, and region-region crossings for drawings of the same clustered graph,
showing that, in most of the cases, the fact that a clustered graph admits a drawing
with few crossings of one type does not imply that such a clustered graph admits a
drawing with few crossings of another type.

Finally, we show that minimizing the sum α + β + γ in a 〈α, β, γ〉-drawing of a
clustered graph is an NP-complete problem. Since in our construction it is possible
to replace each crossing of any type with a crossing of a different type, this implies
that the problems of minimizing crossings in 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-
drawings are also NP-complete. However, for the first two types of drawings we can
prove NP-completeness even for simpler classes of clustered graphs.

We remark that drawings of clustered graphs where a few intersections are admit-
ted may meet the requirements of many typical Graph Drawing applications, and that
their employment is encouraged by the fact that the class of c-planar instances might
be too small to be relevant for some application contexts.

More in detail, we present the following results (recall that we assume the neces-
sary condition that the underlying graph is planar to be always satisfied):

i
i

“thesis” — 2015/4/29 — 21:44 — page 53 — #65 i
i

i
i

i
i

4.1. INTRODUCTION 53

c-c flat 〈α, 0, 0〉 〈0, β, 0〉 〈0, 0, γ〉
α UB α LB β UB β LB γ UB γ LB

NO NO O(n2) Th.4.1 Ω(n2) O(n3) Th.4.2 Ω(n2) O(n3)z Th.4.5 Ω(n3) Th.4.12
NO YES O(n2) Ω(n2) O(n2) Th.4.2 Ω(n2) Cor.4.1 O(n2)z Th.4.5 Ω(n2) Th.4.11

YES NO O(n2) Ω(n2) O(n2) Th.4.3 Ω(n2) Th.4.9 0z [FCE95b] 0z [FCE95b]
YES YES O(n2) Ω(n2) Th.4.7 O(n) Th.4.3 Ω(n) Th.4.10 0z [FCE95b] 0z [FCE95b]

Table 4.1: Upper and lower bounds for the number of crossings in 〈∞, 0, 0〉-,
〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings of clustered graphs. Flags c-c and flat mean that
the clustered graph is c-connected and that the cluster hierarchy is flat, respectively.
Results written in gray derive from those in black, while a “z” means that there ex-
ist clustered graphs not admitting the corresponding drawings. A “0” occurs if the
clustered graph is c-planar.

1. In Section 4.3 we provide algorithms to produce 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and
〈0, 0,∞〉-drawings of clustered graphs, if they exist. In particular, while 〈∞, 0, 0〉-
and 〈0,∞, 0〉-drawings always exist, we show that some clustered graphs do not
admit any 〈0, 0,∞〉-drawing, and we present a polynomial-time algorithm to
test whether a biconnected clustered graph admits a 〈0, 0,∞〉-drawing, which
is a necessary condition for C-PLANARITY. The algorithm, whose approach is
reminiscent of [ADF+12], is based on a characterization of the planar embed-
dings that lead to 〈0, 0,∞〉-drawings, and on a subsequent structural charac-
terization of the existence of a 〈0, 0,∞〉-drawing for any biconnected clustered
graph C(G,T), based on the SPQR-tree decomposition of G.

2. The above mentioned algorithms provide upper bounds on the number of cross-
ings for the three kinds of drawings. We show that the majority of these upper
bounds are tight by providing matching lower bounds in Section 4.4. These
results are summarized in Tab. 4.1.

3. In Section 4.5 we show that there are clustered graphs admitting drawings with
one crossing of a certain type but requiring many crossings in drawings where
only different types of crossings are allowed. For example, there are clus-
tered graphs that admit a 〈1, 0, 0〉-drawing and that require β ∈ Ω(n2) in any
〈0, β, 0〉-drawing and γ ∈ Ω(n2) in any 〈0, 0, γ〉-drawing. See Tab. 4.2 for a
summary of these results.

4. In Section 4.6 we present several complexity results. Namely, we show that:

i
i

“thesis” — 2015/4/29 — 21:44 — page 54 — #66 i
i

i
i

i
i

54 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

→ 〈α, 0, 0〉 〈0, β, 0〉 〈0, 0, γ〉
〈1, 0, 0〉 Ω(n2) Ω(n2)

〈0, 1, 0〉 Ω(n) Ω(n2)

〈0, 0, 1〉 Ω(n2) Ω(n)

Table 4.2: Relationships between types of drawings proved in Theorem 4.14.

• minimizing α+ β + γ in an 〈α, β, γ〉-drawing is NP-complete even if the
underlying graph is planar, namely a forest of star graphs;

• minimizing α in an 〈α, 0, 0〉-drawing is NP-complete even if the underly-
ing graph is a matching;

• minimizing β in a 〈0, β, 0〉-drawing is NP-complete (see also [For05])
even for c-connected flat clustered graphs in which the underlying graph
is a triconnected planar multigraph;

Section 4.2 gives definitions and preliminary lemmas, while Section 4.7 contains
conclusions and open problems.

4.2 Preliminaries

We remark that every clustered graph C(G,T) that is considered in this chapter is
such that G is planar.

Let C(G,T) be a clustered graph. If µ is an internal node of T , we denote by
V (µ) the leaves of the subtree of T rooted at µ. The subgraph of G induced by V (µ)
is denoted by G(µ).

Some constraints are usually enforced on the crossings among the open curves
representing edges in a drawing of a graph. Namely: (C1) the intersections among
curves form a set of isolated points; (C2) no three curves intersect in the same point;
and (C3) two intersecting curves appear alternatingly in the circular order around their
intersection point. Figure 4.3(a) shows a legal crossing, while Figures 4.3(b)-(d) show
crossings violating Constraints C1, C2, and C3, respectively. These constraints natu-
rally extend to encompass crossings involving regions representing clusters, by con-
sidering, for each region, the closed curve that forms its boundary.

Let Γ be a drawing of a clustered graph C(G,T). First, we formally define the
types of crossings of Γ and how to count them.

Edge-edge crossings. Each crossing between two edges of G is an edge-edge cross-
ing (or ee-crossing for short) of Γ.

i
i

“thesis” — 2015/4/29 — 21:44 — page 55 — #67 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 55

Edge-region crossings. An edge-region crossing (er-crossing) is a crossing involv-
ing an edge e of G and a region R(µ) representing a cluster µ of T ; namely, if
e crosses the boundary of R(µ) k times, the number of er-crossings between e
and R(µ) is bk2 c. Note that, if e intersects the boundary of R(µ) exactly once,
then such an intersection does not count as an er-crossing, as in the traditional
C-PLANARITY literature.

Region-region crossings. A region-region crossing (rr-crossing) is a crossing in-
volving two regions R(µ) and R(ν) representing clusters µ and ν of T , respec-
tively, and such that µ is not an ancestor of ν and vice-versa. In fact, if µ is
an ancestor of ν, then R(ν) is contained into R(µ) by the definition of drawing
of a clustered graph. The number of rr-crossings between R(µ) and R(ν) is
equal to the number of the topologically connected regions resulting from the
relative complement of R(µ) in R(ν) (i.e., R(µ) \ R(ν)) minus one. Observe
that, due to Constraints C1, C2, and C3, the number of rr-crossings between
R(µ) andR(ν) is equal to the number of rr-crossings betweenR(ν) andR(µ).
Also, as region R(µ) contains all and only the vertices of µ, intersections be-
tween regions cannot contain vertices of G. Figure 4.4 provides examples of
region-region crossings.

Definition 4.1 An 〈α, β, γ〉-drawing of a clustered graph is a drawing with α ee-
crossings, β er-crossings, and γ rr-crossings.

4.3 Drawings of Clustered Graphs with Crossings

The following three sections deal with 〈∞, 0, 0〉-, 〈0,∞, 0〉- and 〈0, 0,∞〉-drawings,
respectively.

e1

e2

(a)

e1 e2

(b)

e1

e2
e3

(c)

e1

e2

e1

e2

(d)

Figure 4.3: Allowed and forbidden crossings in a drawing of a graph. (a) A legal cross-
ing. (b) A crossing violating Constraint C1. (c) A crossing violating Constraint C2. (d)
A crossing violating Constraint C3.

i
i

“thesis” — 2015/4/29 — 21:44 — page 56 — #68 i
i

i
i

i
i

56 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

µ
ν

(a)

µ

ν

(b)

µ
ν

(c)

Figure 4.4: Examples of intersections between clusters generating (a) zero rr-
crossings; (b) one rr-crossing; and (c) two rr-crossings.

Drawings with Edge-Edge Crossings

In this section, we show a simple algorithm to construct an 〈α, 0, 0〉-drawing of any
clustered graph, in which α is asymptotically optimal in the worst case, as proved in
Section 4.4.

Theorem 4.1 Let C(G,T) be a clustered graph. There exists an algorithm to com-
pute an 〈α, 0, 0〉-drawing of C(G,T) with α ∈ O(n2).

Proof: Let σ = v1, . . . , vn be an ordering of the vertices ofG such that vertices of
the same cluster are consecutive in σ. A drawing of G can be constructed as follows.
Place the vertices of G along a convex curve in the order they appear in σ. Draw the
edges of G as straight-line segments. Since vertices belonging to the same cluster
are consecutive in σ, drawing each cluster as the convex hull of the points assigned
to its vertices yields a drawing without region-region and edge-region crossings (see
Fig. 4.5). Further, since G has O(n) edges, and since edges are drawn as straight-line
segments, such a construction produces O(n2) edge-edge crossings. 2

Figure 4.5: Illustration for Theorem 4.1.

Observe that, using the same construction used in the proof of Theorem 4.1, it can
be proved that every clustered graph (even if its underlying graph is not planar) admits
an 〈α, 0, 0〉-drawing with α ∈ O(n4).

i
i

“thesis” — 2015/4/29 — 21:44 — page 57 — #69 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 57

Drawings with Edge-Region Crossings

In this section, we show two algorithms for constructing a 〈0, β, 0〉-drawing of any
clustered graph C(G,T), in which β is asymptotically optimal in the worst case if
C(G,T) is c-connected or if it is flat, as proved in Section 4.4. If C(G,T) is a
general clustered graph, then β is a linear factor apart from the lower bound presented
in Section 4.4.

The two algorithms handle the case in which C(G,T) is not c-connected (The-
orem 4.2) and in which C(G,T) is c-connected (Theorem 4.3), respectively. Both
algorithms have three steps:

1. A spanning tree T of the vertices ofG is constructed in such a way that, for each
cluster µ ∈ T , the subgraph of T induced by the vertices of µ is connected. The
two algorithms construct T in two different ways; in particular, T is a subgraph
of G if C(G,T) is c-connected, while it is not necessarily a subgraph of G if
C(G,T) is not c-connected.

2. A simultaneous embedding of G and T is computed. A simultaneous embed-
ding (SE for short) of two graphs G1(V,E1) and G2(V,E2), on the same set V
of vertices, is a drawing of G(V,E1 ∪ E2) such that any crossing involves an
edge from E1 and an edge from E2 [BCD+07].

3. A 〈0, β, 0〉-drawing ofC(G,T) is constructed by drawing each cluster µ as a re-
gion R(µ) slightly surrounding the edges of T (µ) and the regions
R(µ1), . . . , R(µk) representing the children µ1, . . . , µk of µ.

In the case in which C(G,T) is not c-connected, we get the following:

Theorem 4.2 Let C(G,T) be a clustered graph. Then, there exists an algorithm to
compute a 〈0, β, 0〉-drawing of C(G,T) with β ∈ O(n3). If C(G,T) is flat, then
β ∈ O(n2).

Proof: In the first step, the tree T is constructed by means of a bottom-up traver-
sal of T . Whenever a node µ ∈ T is considered, a spanning tree T (µ) of V (µ) is
constructed as follows. Denote by µ1, . . . , µk the children of µ in T (observe that,
for each 1 ≤ i ≤ k, µi is either a cluster or a vertex). Assume that spanning trees
T (µ1), . . . , T (µk) of V (µ1), . . . , V (µk) have been already computed. The spanning
tree T (µ) of V (µ) is constructed by connecting a vertex of µ1 to a vertex of each of
T (µ2), . . . , T (µk). Tree T coincides with T (ρ), where ρ is the root of T . Observe
that some of the edges of T might not belong to G.

i
i

“thesis” — 2015/4/29 — 21:44 — page 58 — #70 i
i

i
i

i
i

58 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

In the second step, we apply the algorithm by Kammer [Kam06] (see also [EK05])
to construct a simultaneous embedding of G and T in which each edge has at most
two bends, which implies that each pair of edges 〈e1 ∈ G, e2 ∈ T 〉 crosses a constant
number of times.

In the third step, each cluster µ is drawn as a region R(µ) slightly surrounding the
edges of T (µ) and the regionsR(µ1), . . . , R(µk) representing the children µ1, . . . , µk
of µ. Hence, each crossing between an edge e1 ∈ G and an edge e2 ∈ T determines
two intersections (hence one edge-region crossing) between e1 and the boundary of
each cluster ν such that e2 ∈ T (ν). Further, each edge (u, v) ∈ G such that (u, v) /∈
T and u and v belong to the same cluster ν, has a er-crossing with the boundary of
R(ν).

Note that, for each edge e2 ∈ T , there exist O(n) clusters ν such that e2 ∈ T (ν);
also there exist O(n2) pairs of edges 〈e1 ∈ G, e2 ∈ T 〉; further, there exist O(n)
edges not belonging to τ ; finally, for each edge e /∈ T there exists O(n) clusters ν
such that both endvertices of e belong to ν. Hence, the total number of er-crossings
is O(n3).

If C(G,T) is flat, then for each edge e2 ∈ T there exists at most one cluster ν
different from the root such that e2 ∈ T (ν); also, for each edge e /∈ T there exists at
most one cluster ν different from the root such that both endvertices of e belong to ν.
Hence, the total number of er-crossings is O(n2). 2

If C(G,T) is c-connected, we can improve the bounds of Theorem 4.2 as follows:

Theorem 4.3 Let C(G,T) be a c-connected clustered graph. Then, there exists an
algorithm to compute a 〈0, β, 0〉-drawing of C(G,T) with β ∈ O(n2). If C(G,T) is
flat, β ∈ O(n).

Proof: In the first step, the tree T is constructed by means of a bottom-up traversal of
T . When a node µ ∈ T is considered, a spanning tree T (µ) of V (µ) is constructed as
follows. Denote by µ1, . . . , µk the children of µ in T (note that, for each 1 ≤ i ≤ k,
µi is either a cluster or a vertex). Assume that spanning trees T (µ1), . . . , T (µk)
of V (µ1), . . . , V (µk) have been already computed so that T (µi) is a subgraph of
G(µi), for i = 1, . . . , k. Tree T (µ) contains all the edges in T (µ1), . . . , T (µk) plus
a minimal set of edges of G(µ) connecting T (µ1), . . . , T (µk). The latter set of edges
always exists since G(µ) is connected. Tree T coincides with T (ρ), where ρ is the
root of T . Observe that, in contrast with the construction in the proof of Theorem 4.2,
all edges of T belong to G.

In the second step, since each edge of T is also an edge ofG, any planar drawing of
G determines a simultaneous embedding of G and T in which no edge of G properly
crosses an edge of T .

i
i

“thesis” — 2015/4/29 — 21:44 — page 59 — #71 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 59

In the third step, clusters are drawn in the same way as in the proof of Theorem 4.2.
Note that the only edge-region crossings that may occur are those between any

edge of G not in T whose endvertices belong to the same cluster µ and the boundary
of R(µ). Since there exist O(n) edges not belonging to T and since for each edge
e /∈ T there exist O(n) clusters ν such that both endvertices of e belong to ν, it
follows that the total number of edge-region crossings is O(n2).

If C(G,T) is flat, then for each edge e /∈ T there exists at most one cluster ν
different from the root such that both endvertices of e belong to ν, and hence the total
number of edge-region crossings is O(n). 2

Drawings with Region-Region Crossings

In this section, we study 〈0, 0,∞〉-drawings of clustered graphs. First, we prove that
there are clustered graphs that do not admit any 〈0, 0,∞〉-drawings. Second, we pro-
vide a polynomial-time algorithm for testing whether a clustered graph C(G,T) with
G biconnected admits a 〈0, 0,∞〉-drawing and to compute one if it exists. Third,
we show an algorithm that constructs a 〈0, 0, γ〉-drawing Γ of any clustered graph
C(G,T) that admits such a drawing (the input of the algorithm is any 〈0, 0,∞〉-
drawing Γ′ of C(G,T)) in which γ is worst-case asymptotically optimal.

To show that there exist clustered graphs not admitting any 〈0, 0,∞〉-drawing, we
give two examples. Let C(G,T) be a clustered graph such that G is triconnected and
has a cycle of vertices belonging to a cluster µ separating two vertices not in µ (see
Fig. 4.6(a)). Note that, even in the presence of rr-crossings, one of the two vertices not
in µ is enclosed by R(µ) in any 〈0, 0,∞〉-drawing of C(G,T). This example exploits
the triconnectivity of the underlying graph. Next we show that even clustered graphs
with series-parallel underlying graph may not admit any 〈0, 0,∞〉-drawing. Namely,
let C(G,T) be a clustered graph such that G has eight vertices and is composed of
parallel paths p1, p2, p3, and p4. Tree T is such that cluster µ1 contains a vertex of
p1 and a vertex of p2; cluster µ2 contains a vertex of p2 and a vertex of p3; cluster µ3

contains a vertex of p2 and a vertex of p4 (see Fig. 4.6(b)). Note that, in any 〈0, 0,∞〉-
drawing of C(G,T), path p2 should be adjacent to all the other paths in the order
around the poles, and this is not possible by the planarity of the drawing of G.

Since some clustered graphs do not admit any 〈0, 0,∞〉-drawing, we study the
complexity of testing whether a clustered graph C(G,T) admits one. In order to
do that, we first give a characterization of the planar embeddings of G that allow
for the realization of a 〈0, 0,∞〉-drawing of C(G,T). Namely, let C(G,T) be a
clustered graph and let Γ be a planar embedding of G. For each cluster µ ∈ T
consider an auxiliary graph H(µ) with the same vertices as G(µ) and such that there

i
i

“thesis” — 2015/4/29 — 21:44 — page 60 — #72 i
i

i
i

i
i

60 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

(a)

µ1µ2
µ3

p1

p2

p3

p4

(b)

Figure 4.6: Two clustered graphs not admitting any 〈0, 0,∞〉-drawing. The underly-
ing graph of (a) is a triconnected planar graph, while the underlying graph of (b) is a
series-parallel graph.

is an edge between two vertices of H(µ) if and only if the corresponding vertices of
G are incident to the same face in Γ.

Lemma 4.1 Let C(G,T) be a clustered graph and let Γ be a planar embedding of
G. Then, C(G,T) admits a 〈0, 0,∞〉-drawing preserving Γ if and only if, for each
cluster µ ∈ T : (i) graph H(µ) is connected and (ii) there exists no cycle of G whose
vertices belong to µ and whose interior contains in Γ a vertex not belonging to µ.

Proof: We first prove the necessity of the conditions. For the necessity of Con-
dition (i), suppose that H(µ) is not connected. Then, for any two distinct connected
components H1(µ) and H2(µ) of H(µ), there exists a cycle C in G separating H1(µ)
and H2(µ), as otherwise H1(µ) and H2(µ) would be incident to a common face,
hence they would not be distinct connected components of H(µ). Therefore, the
boundary of any region R(µ) representing µ intersects (at least) one of the edges of C.
For the necessity of Condition (ii), suppose that a cycle C exists in Γ whose vertices
belong to µ and whose interior contains in Γ a vertex not belonging to µ. Then, in any
drawing of R(µ) as a simple closed region containing all and only the vertices in µ,
the border of R(µ) intersects (at least) one edge of C.

We next prove the sufficiency of the conditions. Suppose that Conditions (i) and
(ii) hold. Consider any subgraph H ′(µ) of H(µ) such that: (a) G(µ) ⊆ H ′(µ); (b)
H ′(µ) is connected; and (c) for every cycle C in H ′(µ), if any, all the edges of C
belong to G. Observe that the fact that H(µ) satisfies conditions (i) and (ii) implies
the existence of a graph H ′(µ) satisfying (a), (b), and (c). Draw each edge of H ′(µ)
not in G inside the corresponding face. Represent µ as a region slightly surrounding
the (possibly non-simple) cycle delimiting the outer face of H ′(µ). Denote by Γ′C the
resulting drawing and denote by ΓC the drawing of C(G,T) obtained from Γ′C by

i
i

“thesis” — 2015/4/29 — 21:44 — page 61 — #73 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 61

removing the edges not in G. We have that ΓC contains no ee-crossing, since Γ is
a planar embedding. Also, it contains no er-crossing, since the only edges crossing
clusters in Γ′C are those belonging to H ′(µ) and not belonging to G(µ). 2

Our next goal is to provide an algorithm that, given a clustered graph C(G,T)
such that G is biconnected, tests whether G admits a planar embedding allowing for a
〈0, 0,∞〉-drawing of C(G,T).

We start by giving some definitions. In the reminder of the chapter, even when not
explicitly mentioned, we will always assume the considered SPQR-trees to be rooted
at an edge of the graph. Let C(G,T) be a clustered graph such that G is biconnected
and consider the SPQR-tree T of G rooted at any Q-node ρ. The choice of rooting T
at ρ corresponds to only consider planar embeddings of G in which the edge eρ of G
corresponding to ρ is incident to the outer face.

Consider a node τ ∈ T , its pertinent graph pert(τ) (augmented with an edge e be-
tween the poles of τ , representing the parent of τ), and a planar embedding Γ(pert(τ))
with e on the outer face. Observe that assuming e to be incident to the outer face of
Γ(pert(τ)) is not a loss of generality, given that eρ is assumed to be incident to the
outer face of every considered planar embedding of G. Namely, consider any planar
embedding ΓG of G in which eρ is incident to the outer face and let Γ−(pert(τ)) be
the embedding of pert(τ) (except for edge e) obtained by restricting ΓG to pert(τ).
Then, the subgraph of G not in pert(τ) (i.e., the “rest of the graph” with respect to
τ) lies in ΓG in the outer face of Γ−(pert(τ)), hence edge e can be inserted in the
outer face of Γ−(pert(τ)), thus obtaining a planar embedding Γ(pert(τ)) with e on
the outer face.

Let f ′(τ) and f ′′(τ) be the two faces of Γ(pert(τ)) that are incident to e. For
each cluster µ ∈ T , we define an auxiliary graph H(τ, µ) as the graph containing
all the vertices of pert(τ) that belong to µ and such that two vertices of H(τ, µ) are
connected by an edge if and only if they are incident to the same face in Γ(pert(τ)).
Observe that H(ρ, µ) coincides with the above defined auxiliary graph H(µ). Also,
observe that no two connected components of H(τ, µ) exist both containing a vertex
incident to f ′(τ) or both containing a vertex incident to f ′′(τ).

Next we introduce some classifications of the nodes of T and of the embeddings of
their pertinent graphs that will be used to find an embedding ofG such that Conditions
(i) and (ii) of Lemma 4.1 are satisfied for each cluster µ.

In order to keep track of the connectivity of H(µ) (Condition (i) of Lemma 4.1),
for each node τ ∈ T and for each cluster µ ∈ T , we say that Γ(pert(τ)) is:

µ-traversable: if H(τ, µ) is connected and contains at least one vertex incident to
f ′(τ) and one vertex incident to f ′′(τ) (see Fig. 4.7(a)).

i
i

“thesis” — 2015/4/29 — 21:44 — page 62 — #74 i
i

i
i

i
i

62 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

e
f ′(τ) f ′′(τ)

(a)

e
f ′(τ) f ′′(τ)

(b)

e
f ′(τ) f ′′(τ)

(c)

e
f ′(τ) f ′′(τ)

(d)

e
f ′(τ) f ′′(τ)

(e)

Figure 4.7: Examples of embeddings of Γ(pert(τ)): (a) µ-traversable; (b) µ-sided;
(c) µ-bisided; (d) µ-kernelized; (e) µ-infeasible. Dashed red edges belong to H(τ, µ).
The five drawings represent five embeddings Γ(pert(τ)) for five different graphs
pert(τ).

µ-sided: ifH(τ, µ) is connected and contains at least one vertex incident to f ′(τ) and
no vertex incident to f ′′(τ), or vice versa (see Fig. 4.7(b)).

µ-bisided: if H(τ, µ) consists of two connected components, one containing a vertex
of f ′(τ) and the other one containing a vertex of f ′′(τ) (see Fig. 4.7(c)).

µ-kernelized: if H(τ, µ) is connected and contains neither a vertex incident to f ′(τ)
nor a vertex incident to f ′′(τ) (see Fig. 4.7(d)).

µ-infeasible: if H(τ, µ) has at least two connected components of which one has no
vertex incident to f ′(τ) or f ′′(τ) (see Fig. 4.7(e)).

Note that, if τ contains at least one vertex of µ, then Γ(pert(τ)) is exactly of one
of the types of embedding defined above.

First, we derive an elementary condition that prevents an embedding from being
µ-traversable.

Lemma 4.2 Suppose that an embedding Γ(pert(τ)) of pert(τ) with e incident to
the outer face is neither µ-traversable nor µ-infeasible. Then, there exists a path
in pert(τ) that connects the poles of τ , that is different from e, and none of whose
vertices belongs to µ.

Proof: Suppose first that H(τ, µ) is connected in Γ(pert(τ)). Then, Γ(pert(τ))
is either µ-traversable, or µ-kernelized, or µ-sided, by definition. By assumption,

i
i

“thesis” — 2015/4/29 — 21:44 — page 63 — #75 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 63

Γ(pert(τ)) is not µ-traversable, hence it is either µ-kernelized or µ-sided. In both
cases, the path of Γ(pert(τ)) delimiting f ′(τ), different from e, and connecting the
poles of τ , or the path of Γ(pert(τ)) delimiting f ′′(τ), different from e, and connect-
ing the poles of τ is such that none of its vertices belongs to µ, and the statement
follows.

Suppose next that H(τ, µ) is not connected in Γ(pert(τ)). Then, Γ(pert(τ)) is
either µ-infeasible or µ-bisided, by definition. By assumption, Γ(pert(τ)) is not µ-
infeasible, hence it is µ-bisided. By definition of H(τ, µ), the two connected compo-
nents H ′(τ, µ) and H ′′(τ, µ) of H(τ, µ) are not incident to any common face. Thus,
there exists a cycle C in Γ(pert(τ)) containing such components on different sides
and none of whose vertices belongs to µ. Cycle C contains edge e, given thatH ′(τ, µ)
and H ′′(τ, µ) contain vertices incident to f ′(τ) and f ′′(τ). It follows that the path
obtained from C by removing edge e connects the poles of τ , is different from edge e,
and is such that none of its vertices belongs to µ, thus proving the statement. 2

While the fact that Γ(pert(τ)) is µ-sided, µ-bisided, µ-kernelized, or µ-infeasible
does not rule the possibility that a different planar embedding of pert(τ) is of a differ-
ent type, if Γ(pert(τ)) is µ-traversable then any other embedding of pert(τ) is either
µ-traversable or µ-infeasible, as proved in the following.

Lemma 4.3 Let Γ1(pert(τ)) and Γ2(pert(τ)) be two planar embeddings of pert(τ),
both having edge e incident to the outer face. If Γ1(pert(τ)) is µ-traversable, then
Γ2(pert(τ)) is either µ-traversable or µ-infeasible.

Proof: Suppose, for a contradiction, that Γ2(pert(τ)) is neither µ-traversable nor
µ-infeasible. By Lemma 4.2, there exists a path in pert(τ) that connects the poles of
τ , that is different from e, and none of whose vertices belongs to µ. It follows that
the auxiliary graph H(τ, µ) associated with Γ2(pert(τ)) is disconnected, or does not
contain a vertex incident to f ′(τ), or does not contain a vertex incident to f ′′(τ). 2

By Lemma 4.3, if an embedding of pert(τ) is µ-traversable, then every embed-
ding of pert(τ) which is not µ-infeasible is µ-traversable. Hence, if a µ-traversable
embedding of pert(τ) exists, we say that τ and the virtual edge representing τ in the
skeleton of the parent of τ in T is µ-traversable.

Next, we introduce some definitions used to deal with Condition (ii) of Lemma 4.1.
Namely, for each node τ ∈ T and for each cluster µ ∈ T , we say that τ (and the virtual
edge representing τ in the skeleton of its parent) is:

µ-touched: if there exists a vertex in pert(τ) \ {u, v} that belongs to µ.

µ-full: if all the vertices in pert(τ) belong to µ.

i
i

“thesis” — 2015/4/29 — 21:44 — page 64 — #76 i
i

i
i

i
i

64 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

e
f ′(τ) f ′′(τ)

(a)

e
f ′(τ) f ′′(τ)

(b)

Figure 4.8: Examples of embeddings of Γ(pert(τ)): (a) µ-side-spined; (b) µ-central-
spined. Dashed red edges belong toH(τ, µ). The two drawings represent two embed-
dings Γ(pert(τ)) for two different graphs pert(τ).

µ-spined: if there exists in pert(τ) a path P between the poles of τ different from e
and containing only vertices of µ. Observe that, if τ is µ-spined and pert(τ) is
not a single edge, then τ is µ-touched.

Given a µ-spined node τ , an embedding Γ(pert(τ)) is µ-side-spined if at least
one of the two paths different from edge e, connecting the poles of τ , and delimiting
the outer face of Γ(pert(τ)) has only vertices in µ (see Fig 4.8(a)). Otherwise, it is
µ-central-spined (see Fig 4.8(b)).

Observe that, if τ is µ-spined, then it is also µ-traversable, since its poles belong
to µ.

We say that an embedding Γ(pert(τ)) of pert(τ) with e incident to the outer
face is extensible if the following condition holds: If C(G,T) admits a 〈0, 0,∞〉-
drawing in which the edge eρ corresponding to ρ is incident to the outer face, then it
admits a 〈0, 0,∞〉-drawing in which eρ is incident to the outer face and in which the
embedding of pert(τ) is Γ(pert(τ)). Observe that, if an embedding Γ(pert(τ)) of
pert(τ) is µ-infeasible, for some µ ∈ T , then Γ(pert(τ)) is not extensible.

One key ingredient of our result is that if an embedding Γ(pert(τ)) of pert(τ) is
extensible, not only there exists a 〈0, 0,∞〉-drawing of C(G,T) in which the embed-
ding of pert(τ) is Γ(pert(τ)), but for every 〈0, 0,∞〉-drawing Γ of C(G,T) in which
eρ is incident to the outer face, the embedding of pert(τ) in Γ can be modified to be
Γ(pert(τ)), without changing the rest of Γ, while maintaining the property that Γ is a
〈0, 0,∞〉-drawing. In the following we formalize such a claim.

i
i

“thesis” — 2015/4/29 — 21:44 — page 65 — #77 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 65

Γ1

Γ1(pert(τ))

(a)

Γ2

Γ2(pert(τ))

(b)

Γ3

possibly
flipped

Γ1(pert(τ))

(c)

Figure 4.9: Illustration for the statement of Lemma 4.4. (a) Embedding Γ1. (b) Em-
bedding Γ2. (c) Embedding Γ3.

Lemma 4.4 Let C(G,T) be a clustered graph, with G biconnected, that admits a
〈0, 0,∞〉-drawing in which the edge eρ corresponding to the root ρ of SPQR-tree T
ofG is incident to the outer face. Let Γ1 and Γ2 be two 〈0, 0,∞〉-drawings ofC(G,T)
in which eρ is incident to the outer face. Let τ be a P-node or an R-node of T . Let
Γi(pert(τ)) be the embedding of pert(τ) minus edge e in Γi, for i = 1, 2. Let Γ3 be
the drawing obtained from Γ2 by replacing Γ2(pert(τ)) with Γ1(pert(τ)), possibly
after performing a flip of Γ1(pert(τ)) (see Fig. 4.9(c)). Then, Γ3 is a 〈0, 0,∞〉-
drawing of C(G,T) in which eρ is incident to the outer face.

In the following we prove Lemma 4.4. Namely, we prove that, after the replace-
ment of Γ2(pert(τ)) with Γ1(pert(τ)) and, possibly, a flip of Γ1(pert(τ)), the re-
sulting embedding Γ3 of G satisfies the conditions of Lemma 4.1. Observe that eρ is
incident to the outer face of Γ3, given that it is incident to the outer face of Γ2.

We introduce some terminology. The rest of the graph with respect to τ is the
graph G(τ) obtained from G by removing the vertices of pert(τ) different from its
poles and by inserting a dummy edge eτ between the poles of pert(τ). In terms of
SPQR-trees, the rest of the graph can be equivalently defined as follows. Denote by
τ ′ the parent of τ in T . Then, the rest of the graph is the pertinent graph of τ ′ in
any re-rooting of T in which τ ′ becomes a child of τ plus an edge eτ between the
poles of τ . Denote by f ′(τ) and f ′′(τ) the faces of G(τ) incident to eτ . Recall that
f ′(τ) and f ′′(τ) also denote the faces incident to e in the embeddings Γ1(pert(τ)) and
Γ2(pert(τ)) of pert(τ) in which edge e is added in the outer face. We further overload
the notation f ′(τ) and f ′′(τ) to let them represent the faces of Γi that are shared by
Γi(pert(τ)) and Γi(G(τ)), for i = 1, 2, 3. For any node µ of T , the auxiliary graph
H(τ , µ) of G(τ) in Γi, for any i = 1, 2, 3, is the graph containing all the vertices of
G(τ) that belong to µ and such that two vertices of H(τ , µ) are connected by an edge

i
i

“thesis” — 2015/4/29 — 21:44 — page 66 — #78 i
i

i
i

i
i

66 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

if and only if they are incident to the same face in Γi. Let Γi(G(τ)) be the embedding
of G(τ) in Γi, for i = 1, 2, 3.

The definitions of µ-traversable, µ-sided, µ-bisided, µ-kernelized, µ-infeasible,
µ-touched, µ-full, and µ-spined apply to the rest of the graph with respect to τ anal-
ogously as to the pertinent graph of τ . For example, G(τ) is µ-traversable in Γi if
H(τ , µ) is connected and contains at least one vertex incident to f ′(τ) and one vertex
incident to f ′′(τ).

For any i = 1, 2, if Γi is such that Γi(pert(τ)) is µ-sided or µ-side-spined,
then, we denote by p(Γi, τ, µ) the path that (i) connects the poles of τ , (ii) belongs
to pert(τ), (iii) delimits f ′(τ) or f ′′(τ) in Γi, and (iv) contains vertices of µ (if
Γi(pert(τ)) is µ-sided, see Fig. 4.10(a)), or entirely belongs to µ (if Γi(pert(τ))
is µ-side-spined, see Fig. 4.10(b)).

Similarly, for any i = 1, 2, suppose Γi is such that Γi(G(τ)) is µ-sided, or is µ-
side-spined, or is µ-full and both the poles of τ belong to the outer face of Γi (refer
to Figs. 4.10(c), 4.10(d), and 4.10(e) for examples of the three cases, respectively).
Then, we denote by p(Γi, τ , µ) the path that (i) connects the poles of τ , (ii) belongs to
G(τ), (iii) delimits f ′(τ) or f ′′(τ) in Γi, and (iv) contains vertices of µ (if Γi(G(τ))
is µ-sided, see Fig. 4.10(c)), or entirely belongs to µ (if Γi(G(τ)) is µ-side-spined, see
Fig. 4.10(d)), or is not entirely incident to the outer face of Γi (if Γi(G(τ)) is µ-full
and both the poles of τ belong to the outer face of Γi, see Fig. 4.10(e)).

We show a simple algorithm to determine a flip of Γ1(pert(τ)); observe that the
choice of such a flip completely determines Γ3, as the embedding of G(τ) in Γ3

coincides with Γ2(G(τ)). Consider any cluster µ ∈ T such that one of the following
holds:

Γi(G(τ))
p(Γi, τ, µ)

Γi(G(τ))

Γi(pert(τ))

Γi

(a)

Γi(G(τ))
p(Γi, τ, µ)

Γi(G(τ))

Γi(pert(τ))

Γi

(b)

Γi(G(τ))

p(Γi, τ , µ)

Γi(G(τ))

Γi(pert(τ))

Γi

(c)

Γi(G(τ))

p(Γi, τ , µ)

Γi(G(τ))

Γi(pert(τ))

Γi

(d)

Γi(G(τ))
p(Γi, τ , µ)

Γi(pert(τ))

Γi

(e)

Figure 4.10: Illustration for the definition of paths p(Γi, τ, µ) and p(Γi, τ , µ) of Γi,
with i = 1, 2.

i
i

“thesis” — 2015/4/29 — 21:44 — page 67 — #79 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 67

Γ1(pert(τ))

Γ2(G(τ))

f ′′(τ)

p(Γ2, τ , µ)

p(Γ1, τ, µ)

(a)

Γ1(pert(τ))

Γ2(G(τ))

f ′′(τ)

p(Γ2, τ , µ)

p(Γ1, τ, µ)

(b)

Γ1(pert(τ))

Γ2(G(τ))

f ′′(τ)

p(Γ2, τ , µ)

p(Γ1, τ, µ)

(c)

Figure 4.11: The three cases of the proof of Lemma 4.4. (a) Case 1. (b) Case 2. (c)
Case 3.

Case 1: Γ1(pert(τ)) and Γ2(G(τ)) are both µ-sided (see Fig. 4.11(a)).

Case 2: Γ1(pert(τ)) and Γ2(G(τ)) are both µ-side-spined and not µ-full (see Fig. 4.11(b)).

Case 3: G(τ) is µ-full, Γ1(pert(τ)) is µ-side-spined and not µ-full, and both the
poles of τ belong to the outer face of Γ2 (see Fig. 4.11(c)).

Then, flip Γ1(pert(τ)) so that p(Γ1, τ, µ) and p(Γ2, τ , µ) delimit a face in Γ3.
If no cluster µ ∈ T exists that determines the flip of Γ1(pert(τ)), that is, if for

all clusters of T none of the above cases applies, then arbitrarily choose a flip for
Γ1(pert(τ)). We will prove later that no two clusters µ 6= ν ∈ T exist that determine
different flips for Γ1(pert(τ)).

We now proceed with the proof of Lemma 4.4, showing that the embedding Γ3 of
G satisfies the conditions of Lemma 4.1.

Claim 4.1 Embedding Γ3 satisfies Condition (i) of Lemma 4.1.

Proof: Assume, for a contradiction, that Condition (i) of Lemma 4.1 is not satis-
fied by Γ3. Consider any node µ ∈ T such that H(µ) is not connected in Γ3.

If pert(τ) orG(τ) is not µ-touched, then the connectivity ofH(µ) in Γ3 descends
from the connectivity of H(µ) in Γ2 or in Γ1, respectively, a contradiction.

If Γ1(pert(τ)) is µ-infeasible, then Γ1 is not a 〈0, 0,∞〉-drawing, a contradic-
tion. Analogously, if Γ2(G(τ)) is µ-infeasible, then Γ2 is not a 〈0, 0,∞〉-drawing, a
contradiction.

If Γ1(pert(τ)) is µ-kernelized, then, sinceH(µ) is connected in Γ1, it follows that
G(τ) is not µ-touched, a case that has been already addressed. Analogous considera-
tions apply if Γ2(G(τ)) is µ-kernelized.

i
i

“thesis” — 2015/4/29 — 21:44 — page 68 — #80 i
i

i
i

i
i

68 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

If Γ1(pert(τ)) is µ-traversable, then by Lemma 4.3 we have that Γ2(pert(τ))
is either µ-infeasible or µ-traversable. In the former case, we have that Γ2 is not a
〈0, 0,∞〉-drawing, a contradiction. In the latter case, if H(µ) is not connected in Γ3,
then Γ2(G(τ)) is µ-kernelized or µ-infeasible, hence H(µ) is not connected in Γ2, a
contradiction. Analogous considerations apply if Γ2(G(τ)) is µ-traversable.

If Γ1(pert(τ)) is µ-bisided, then Γ1(G(τ)) is µ-traversable. Then, by Lemma 4.3
we have that either Γ2(G(τ)) is either µ-infeasible or µ-traversable. In both cases, we
have already shown how to derive a contradiction. Analogous considerations apply if
Γ2(G(τ)) is µ-bisided.

Hence, the only case that remains to be considered is the one in which both
Γ1(pert(τ)) and Γ2(G(τ)) are µ-sided. Observe that Case 1 for the determination
of the flip of Γ1(pert(τ)) applies, hence Γ1(pert(τ)) is flipped in such a way that the
connected component of H(µ) induced by the vertices in Γ1(pert(τ)) and the con-
nected component of H(µ) induced by the vertices in Γ2(G(τ)) both contain vertices
incident to either f ′(τ) or f ′′(τ), hence they are connected in Γ3. It follows thatH(µ)
is connected in Γ3, a contradiction. 2

Claim 4.2 Embedding Γ3 satisfies Condition (ii) of Lemma 4.1.

Proof: Assume for a contradiction that Condition (ii) of Lemma 4.1 is not satisfied
by Γ3. Then, for some cluster µ ∈ T , we have that Γ3 contains a cycle C whose
vertices belong to µ and whose interior contains in Γ3 a vertex not belonging to µ.

Suppose first that all the edges of C belong toG(τ). Since the embedding Γ3(G(τ))
ofG(τ) in Γ3 coincides with the embedding Γ2(G(τ)) ofG(τ) in Γ2, it follows that C
contains a vertex not belonging to µ in its interior in Γ2. This contradicts Lemma 4.1.

Suppose next that all the edges of C belong to pert(τ). Since the embedding
Γ3(pert(τ)) of pert(τ) in Γ3 coincides with the embedding Γ1(pert(τ)) of pert(τ)
in Γ1, up to a flip, it follows that C contains a vertex not belonging to µ in its interior
in Γ1. This contradicts Lemma 4.1.

We can hence assume that C contains both edges of pert(τ) and edges of G(τ).
That is, C is composed of a path q(τ, µ) in pert(τ) connecting the poles of τ and of a
path q(τ , µ) in G(τ) − eτ connecting the poles of τ . Thus, each of Γ1(pert(τ)) and
Γ2(G(τ)) is either µ-full, or µ-central-spined, or µ-side-spined and not µ-full.

If Γ1(pert(τ)) is µ-central-spined, then there exist two vertices x and y that belong
to pert(τ), that do not belong to µ, and that lie on different sides of C in Γ1. This
contradicts Lemma 4.1. Analogously, if Γ2(G(τ)) is µ-central-spined, then there exist
two vertices x and y that belong to G(τ), that do not belong to µ, and that lie on
different sides of C in Γ2. This contradicts Lemma 4.1.

i
i

“thesis” — 2015/4/29 — 21:44 — page 69 — #81 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 69

If G(τ) is µ-full and pert(τ) is µ-full, then C does not contain any vertex not
belonging to µ in its interior, a contradiction.

If pert(τ) is µ-full and Γ2(G(τ)) is µ-side-spined and not µ-full, then any vertex
not belonging to µ belongs to G(τ). Since the embedding Γ3(G(τ)) of G(τ) in Γ3

coincides with the embedding Γ2(G(τ)) of G(τ) in Γ2, it follows that C contains a
vertex not belonging to µ in its interior in Γ2. This contradicts Lemma 4.1.

If Γ1(pert(τ)) and Γ2(G(τ)) are both µ-side-spined and not µ-full, or if G(τ) is
µ-full, Γ1(pert(τ)) is µ-side-spined and not µ-full, and both the poles of τ belong
to the outer face of Γ2, then Case 2 or Case 3 for the determination of the flip of
Γ1(pert(τ)) applies, respectively, hence Γ1(pert(τ)) is flipped in such a way that
p(Γ1, τ, µ) and p(Γ2, τ , µ) are both incident to either f ′(τ) or f ′′(τ) in Γ3. Since
Γ1 is a 〈0, 0,∞〉-drawing of C(G,T), by Lemma 4.1 the cycle composed of paths
p(Γ1, τ, µ) and q(τ, µ) does not contain any vertex not belonging to µ in its interior.
Hence, C contains a vertex not belonging to µ in its interior if and only if the cycle
C′ composed of q(τ , µ) and p(Γ1, τ, µ) contains a vertex not belonging to µ in its
interior. Also, since p(Γ1, τ, µ) and p(Γ2, τ , µ) both delimit a face of Γ3, we have
that C′ contains a vertex not belonging to µ in its interior if and only if the cycle C′′
composed of q(τ , µ) and p(Γ2, τ , µ) contains a vertex not belonging to µ in its interior
in Γ3. Observe that C′′ is a cycle inG(τ). Hence, if C′′ contains a vertex not belonging
to µ in its interior in Γ3, then it contains a vertex not belonging to µ in its interior in
Γ2, given that the embedding Γ3(G(τ)) of G(τ) in Γ3 coincides with the embedding
Γ2(G(τ)) of G(τ) in Γ2. This contradicts Lemma 4.1.

Finally, if G(τ) is µ-full, pert(τ) is not µ-full, and at least one of the poles of
τ does not belong to the outer face of Γ2, then there exists a cycle C′ in G(τ) that
contains all the vertices of pert(τ), except possibly for its poles, in its interior. All the
vertices of C′ belong to µ; further, at least one vertex of pert(τ) does not belong to µ.
This contradicts Lemma 4.1. 2

In order to conclude the proof of Lemma 4.4, it remains to prove that no two
clusters µ 6= ν ∈ T exist that determine different flips for Γ1(pert(τ)).

Claim 4.3 No two clusters µ 6= ν ∈ T exist that determine different flips for Γ1(pert(τ))
when constructing Γ3.

Proof: Assume, for a contradiction, that two distinct clusters µ and ν determine
different flips for Γ1(pert(τ)).

• Suppose that Case 2 or Case 3 applies to µ and that Case 2 or 3 applies to
ν to determine a different flip for Γ1(pert(τ)). Since the poles of τ are both

i
i

“thesis” — 2015/4/29 — 21:44 — page 70 — #82 i
i

i
i

i
i

70 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

contained in µ and in ν, it follows that µ is an ancestor of ν or ν is an ancestor
of µ. Assume the former, the discussion for the latter case being analogous.

– Assume first that p(Γ1, τ, µ) and p(Γ1, τ, ν) are distinct. Since µ is an
ancestor of ν, either all vertices of pert(τ) belong to µ, hence τ is µ-full,
thus contradicting the fact that Case 2 or Case 3 applies to µ, or the cycle
composed of p(Γ1, τ, µ) and p(Γ1, τ, ν) entirely belongs to µ and contains
in its interior a vertex not belonging to µ. This contradicts Lemma 4.1.

– Assume next that p(Γ1, τ, µ) and p(Γ1, τ, ν) are the same path.

* If Case 2 applies to µ, then Case 2 applies to ν as well. In fact, G(τ)
is not ν-full, given that µ is an ancestor of ν and given that G(τ)
is not µ-full. If p(Γ2, τ , µ) and p(Γ2, τ , ν) are distinct, then either
all vertices of pert(τ) belong to µ, hence τ is µ-full, thus contra-
dicting the fact that Case 2 applies to µ, or the cycle composed of
p(Γ2, τ , µ) and p(Γ2, τ , ν) entirely belongs to µ and contains in its
interior a vertex not belonging to µ. This contradicts Lemma 4.1.
Hence, p(Γ2, τ , µ) and p(Γ2, τ , ν) are the same path. However, since
p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ , µ) = p(Γ2, τ , ν), clusters µ
and ν determine the same flip for Γ1(pert(τ)), a contradiction to the
assumptions.

* If Case 3 applies to µ and Case 2 applies to ν, then we argue as
follows. If p(Γ2, τ , µ) and p(Γ2, τ , ν) are distinct, then p(Γ2, τ , ν)
delimits the outer face of Γ2, given that Case 3 applies to µ and
given that p(Γ2, τ , µ) does not delimit the outer face of Γ2. Thus,
the cycle C composed of p(Γ2, τ , ν) and of any path in pert(τ) con-
necting the poles of τ and entirely belonging to ν (such a path ex-
ists given that Γ1(pert(τ)) is ν-spined) contains in its interior in
Γ2 all the vertices of G(τ) not in p(Γ2, τ , ν). Since G(τ) is not
ν-full, C entirely belongs to ν and contains in its interior a vertex
not belonging to ν. This contradicts Lemma 4.1. If p(Γ2, τ , µ) and
p(Γ2, τ , ν) are the same path, then, since p(Γ1, τ, µ) = p(Γ1, τ, ν)
and p(Γ2, τ , µ) = p(Γ2, τ , ν), clusters µ and ν determine the same
flip for Γ1(pert(τ)), a contradiction to the assumptions.

* If Case 3 applies to both µ and ν, then p(Γ2, τ , µ) = p(Γ2, τ , ν)
is the path that connects the poles of τ , belongs to G(τ), and does
not delimit the outer face of Γ2. Since p(Γ1, τ, µ) = p(Γ1, τ, ν) and
p(Γ2, τ , µ) = p(Γ2, τ , ν), clusters µ and ν determine the same flip
for Γ1(pert(τ)), a contradiction to the assumptions.

i
i

“thesis” — 2015/4/29 — 21:44 — page 71 — #83 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 71

• Suppose next that Case 1 applies both to µ and ν to determine a different flip
for Γ1(pert(τ)).

By assumption, Γ1(pert(τ)) and Γ2(G(τ)) are µ-sided. It follows that Γ1(G(τ))
and Γ2(pert(τ)) are µ-sided, as well. In fact, they are not µ-traversable by
Lemma 4.3. Also, if they are µ-kernelized, or µ-infeasible, or µ-bisided, then
H(µ) would not be connected in Γ1 or in Γ2. This contradicts Lemma 4.1.
Analogously, Γ1(pert(τ)), Γ2(G(τ)), Γ1(G(τ)), and Γ2(pert(τ)) are ν-sided.

Assume, w.l.o.g. up to renaming f ′(τ) with f ′′(τ) in Γi, that p(Γi, τ , ν) is
incident to f ′′(τ), for i = 1, 2.

Our strategy is to show that either p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) =
p(Γ2, τ, ν) (Condition A) or that p(Γ1, τ, µ) 6= p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) (Condition B).

We first show that, if Condition A or Condition B holds, then the assump-
tion that ν and µ determine different flips for Γ1(pert(τ)) is contradicted.
Suppose first that Condition A holds. Then, p(Γ1, τ , µ) = p(Γ1, τ , ν) and
p(Γ2, τ , µ) = p(Γ2, τ , ν) and such paths are all incident to f ′′(τ), as other-
wise H(µ) or H(ν) would not be connected in Γ1 or in Γ2, which is a contra-
diction by Lemma 4.1. Hence, the flip determined for Γ1(pert(τ)) by µ and
ν is the same, a contradiction. Suppose next that Condition B holds. Then,
p(Γ1, τ , µ) 6= p(Γ1, τ , ν) and p(Γ2, τ , µ) 6= p(Γ2, τ , ν), where p(Γ1, τ , µ) and
p(Γ2, τ , µ) are incident to f ′(τ), while p(Γ1, τ , ν) and p(Γ2, τ , ν) are inci-
dent to f ′′(τ), as otherwise H(µ) or H(ν) would not be connected in Γ1 or
in Γ2, which is a contradiction by Lemma 4.1. Hence, the flip determined for
Γ1(pert(τ)) by µ and ν is the same, a contradiction.

We now prove that either Condition A or Condition B holds. Namely, we prove
by contradiction that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6= p(Γ2, τ, ν) do
not hold simultaneously. The proof that p(Γ1, τ, µ) 6= p(Γ1, τ, ν) and
p(Γ2, τ, µ) = p(Γ2, τ, ν) do not hold simultaneously is symmetrical. Since
p(Γi, τ , ν) is incident to f ′′(τ), for i = 1, 2, we have that p(Γ1, τ, µ) = p(Γ1, τ, ν)
is incident to f ′′(τ) in Γ1, as otherwise H(ν) would not be connected in Γ1,
that p(Γ1, τ , µ) is incident to f ′′(τ) in Γ1, as otherwise H(µ) would not be
connected in Γ1, that p(Γ2, τ, ν) is incident to f ′′(τ) in Γ2, as otherwise H(ν)
would not be connected in Γ2, that p(Γ2, τ, µ) is incident to f ′(τ) in Γ1, since
p(Γ2, τ, µ) 6= p(Γ2, τ, ν), and that p(Γ2, τ , µ) is incident to f ′(τ) in Γ2, as
otherwise H(µ) would not be connected in Γ2.

We distinguish two cases.

i
i

“thesis” — 2015/4/29 — 21:44 — page 72 — #84 i
i

i
i

i
i

72 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

Suppose that τ is an R-node. Denote by Vτ (µ) and by Vτ (ν) the set of vertices
in p(Γ1, τ, µ) = p(Γ1, τ, ν) belonging to µ and ν, respectively (see Fig. 4.12(a)).
Since p(Γ2, τ, µ) 6= p(Γ2, τ, ν) and since Γ2(pert(τ)) is µ-sided and ν-sided,
it follows that none of the vertices in Vτ (µ) is incident to f ′′(τ) in Γ2 and none
of the vertices in Vτ (ν) is incident to f ′(τ) in Γ2. Since τ is an R-node, all
the vertices in Vτ (µ) are incident to internal faces of Γ2(pert(τ)) or all the ver-
tices in Vτ (ν) are incident to internal faces of Γ2(pert(τ)). Suppose that all the
vertices in Vτ (µ) are incident to internal faces of Γ2(pert(τ)), the other case
being analogous (see Fig. 4.12(b)). Then, in order for H(µ) to be connected
and for Γ2(pert(τ)) to be µ-sided, a child τi of τ in T that is incident to f ′(τ)
is µ-traversable in Γ2. By Lemma 4.3, we have that τi is either µ-infeasible or
µ-traversable in Γ1. In the former case, a contradiction to the fact that Γ1 is a
〈0, 0,∞〉-drawing of C(G,T) is obtained. In the latter case, since τi is incident
to f ′(τ) in Γ1, Γ1(pert(τ)) is not µ-sided, a contradiction.

f ′(τ) f ′′(τ)

Γ1(pert(τ))

Vτ (ν)

Vτ (µ)

p(Γ1, τ, ν)

p(Γ1, τ, µ)
=

(a)

f ′(τ) f ′′(τ)

Γ2(pert(τ))

Vτ (ν)

Vτ (µ)

p(Γ2, τ, µ) p(Γ2, τ, ν)

τi

(b)

Figure 4.12: Illustration for the proof that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) do not simultaneously hold if τ is an R-node. (a) Drawing Γ1 with
p(Γ1, τ, µ) = p(Γ1, τ, ν). (b) Drawing Γ2 with p(Γ2, τ, µ) 6= p(Γ2, τ, ν).

Next, suppose that τ is a P-node. Consider the sequence τ1, τ2, . . . , τp of chil-
dren of τ that have vertices belonging to ν as they appear in Γ1(pert(τ)), where
τ1 is incident to f ′′(τ). Since H(ν) is connected in Γ1, it follows that τi is ν-
traversable in Γ1, for i = 1, . . . , p − 1, and that τp is either ν-traversable or
ν-sided. Analogous considerations hold for the sequence τ1, τ2, . . . , τq of chil-
dren of τ that have vertices belonging to µ. We distinguish two cases: Either
p 6= q (see Fig. 4.13(a)) or p = q (see Fig. 4.13(b)).

i
i

“thesis” — 2015/4/29 — 21:44 — page 73 — #85 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 73

τ1 τ2 τ3 τ4 τ5

p(Γ1, τ, ν)

p(Γ1, τ, µ)
=

Γ1(pert(τ))

ν

µ

f ′(τ)f ′′(τ)

(a)

τ1 τ2 τ3 τ4 τ5

p(Γ1, τ, ν)

p(Γ1, τ, µ)
=

Γ1(pert(τ))

ν

µ

f ′(τ)f ′′(τ)

(b)

Figure 4.13: Illustration for the proof that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) do not simultaneously hold if τ is a P-node. (a) The case p > q, with p = 4
and q = 3. (b) The case p = q = 4.

In the first case suppose, without loss of generality, that p > q. Then, for
every 1 ≤ i ≤ q, τi is ν-traversable in Γ1. By Lemma 4.3, the embedding
of pert(τi) in Γ2 is either ν-infeasible or ν-traversable. In the former case, a
contradiction to the fact that Γ2 is a 〈0, 0,∞〉-drawing of C(G,T) is obtained.
In the latter case, the child of τ that is incident to f ′(τ) in Γ2 is ν-traversable,
thus contradicting the assumption that Γ2(pert(τ)) is ν-sided. Suppose next
that p = q. If τp is not incident to f ′(τ) in Γ2, then the child of τ that is incident
to f ′(τ) in Γ2 is one of τ1, τ2, . . . , τp−1, hence, by Lemma 4.3, it is either ν-
infeasible in Γ2, thus contradicting the fact that Γ2 is a 〈0, 0,∞〉-drawing of
C(G,T), or it is ν-traversable in Γ2, thus contradicting the assumption that
Γ2(pert(τ)) is ν-sided. Analogously, if τp is not incident to f ′′(τ) in Γ2, then
the child of τ that is incident to f ′′(τ) is one of τ1, τ2, . . . , τq−1, hence, by
Lemma 4.3, it is either µ-infeasible in Γ2, thus contradicting the fact that Γ2 is
a 〈0, 0,∞〉-drawing of C(G,T), or it is µ-traversable in Γ2, thus contradicting
the assumption that Γ2(pert(τ)) is µ-sided. We have a contradiction as τp can
not be at the same time incident to both f ′(τ) and f ′′(τ).

• Finally, suppose that Case 2 or Case 3 applies to µ and that Case 1 applies to ν
to determine a different flip for Γ1(pert(τ)).

We show how to restrict to the case in which µ is an ancestor of ν. First, if ν is an
ancestor of µ, then p(Γ1, τ, µ) entirely belongs to ν, hence τ is ν-traversable,
a contradiction to the fact that Case 1 applies to ν. Second, since Case 2 or
Case 3 applies to µ, it follows that p(Γ1, τ, µ) and p(Γ2, τ , µ) are well-defined.
Also, since Case 1 applies to ν, it follows that p(Γ1, τ, ν) and p(Γ2, τ , ν) are

i
i

“thesis” — 2015/4/29 — 21:44 — page 74 — #86 i
i

i
i

i
i

74 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

also well-defined. Now suppose, for a contradiction, that µ is not an ancestor of
ν. Since ν is not an ancestor of µ, it follows that µ and ν do not share vertices.
Hence, p(Γ1, τ, µ) 6= p(Γ1, τ, ν) and p(Γ2, τ , µ) 6= p(Γ2, τ , ν). However, this
implies that µ and ν determine the same flip for Γ1(pert(τ)), a contradiction to
the assumptions. We can hence assume that µ is an ancestor of ν.

Since Case 1 applies to ν, we have that Γ1(pert(τ)) is ν-sided. It follows that
Γ2(pert(τ)) is ν-sided, as well. Namely, it is not ν-traversable by Lemma 4.3.
Also, if it is ν-kernelized, or ν-infeasible, or ν-bisided, thenH(ν) would not be
connected in Γ2, given that Γ2(G(τ)) is ν-sided and hence not ν-traversable.
This contradicts Lemma 4.1. An analogous argument proves that Γ1(G(τ)) is
ν-sided.

– Suppose that Case 2 applies to µ. Then, Γ1(pert(τ)) and Γ2(G(τ)) are
both µ-side-spined and not µ-full. If Γ1(G(τ)) is µ-central-spined, then
Γ1 contains a cycle whose vertices belong to µ containing in its interior a
vertex inG(τ) not belonging to µ. This contradicts Lemma 4.1. It follows
that Γ1(G(τ)) is µ-side-spined and not µ-full. An analogous argument
proves that Γ2(pert(τ)) is µ-side-spined and not µ-full.

Assume, without loss of generality up to renaming f ′(τ) with f ′′(τ) that
p(Γi, τ , µ) is incident to f ′′(τ) in Γi, for i = 1, 2. Then, for i = 1, 2, path
p(Γi, τ, µ) is incident to f ′′(τ) in Γi, as otherwise p(Γi, τ , µ) together
with p(Γi, τ, µ) forms a cycle that entirely belongs to µ and that contains
in its interior a vertex not belonging to µ, which by Lemma 4.1 contradicts
the assumption that Γi is a 〈0, 0,∞〉-drawing of C(G,T).

Our strategy is to show that either p(Γ1, τ, µ) = p(Γ1, τ, ν) and
p(Γ2, τ, µ) = p(Γ2, τ, ν) (Condition A) or that p(Γ1, τ, µ) 6= p(Γ1, τ, ν)
and p(Γ2, τ, µ) 6= p(Γ2, τ, ν) (Condition B).

We first show that, if Condition A or Condition B holds, then the as-
sumption that ν and µ determine different flips for Γ1(pert(τ)) is con-
tradicted. Suppose first that Condition A holds. Then, for i = 1, 2,
we have that p(Γi, τ , µ) = p(Γi, τ , ν), as otherwise H(ν) would not
be connected in Γi, which is a contradiction by Lemma 4.1. Hence, the
flip determined for Γ1(pert(τ)) by µ and ν is the same, a contradiction.
Suppose next that Condition B holds. Then, for i = 1, 2, we have that
p(Γi, τ , µ) 6= p(Γi, τ , ν), as otherwise H(ν) would not be connected in
Γi, which is a contradiction by Lemma 4.1. Hence, the flip determined for
Γ1(pert(τ)) by µ and ν is the same, a contradiction.

i
i

“thesis” — 2015/4/29 — 21:44 — page 75 — #87 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 75

We now prove that either Condition A or Condition B holds. Namely, we
prove by contradiction that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) do not simultaneously hold. The proof that p(Γ1, τ, µ) 6=
p(Γ1, τ, ν) and p(Γ2, τ, µ) = p(Γ2, τ, ν) do not simultaneously hold is
symmetrical. Hence, p(Γ1, τ, µ) = p(Γ1, τ, ν) is incident to f ′′(τ) in Γ1,
p(Γ1, τ , ν) is incident to f ′′(τ) in Γ1, as otherwise H(ν) would not be
connected in Γ1, p(Γ2, τ, ν) 6= p(Γ2, τ, µ) is incident to f ′(τ) in Γ2, and
p(Γ2, τ , ν) is incident to f ′(τ) in Γ2, as otherwise H(ν) would not be
connected in Γ2.
We distinguish two cases.
Suppose that τ is an R-node. Denote by Vτ (ν) the set of vertices in
p(Γ1, τ, µ) = p(Γ1, τ, ν) belonging to ν. Since p(Γ2, τ, µ) 6= p(Γ2, τ, ν)
and since Γ2(pert(τ)) is ν-sided, it follows that none of the vertices in
Vτ (ν) is incident to f ′′(τ) in Γ2. Hence, all the vertices in Vτ (ν) are
incident to internal faces of Γ2(pert(τ)). Then, in order for H(ν) to be
connected and for Γ2(pert(τ)) to be ν-sided, a child τi of τ in T that is
incident to f ′(τ) in Γ2 is ν-traversable. By Lemma 4.3, we have that τi
is either µ-infeasible or µ-traversable in Γ1. In the former case, a contra-
diction to the fact that Γ1 is a 〈0, 0,∞〉-drawing of C(G,T) is obtained.
In the latter case, since τ is an R-node, τi is incident to f ′(τ) in Γ1. This
contradicts the fact that Γ1(pert(τ)) is ν-sided.
Next, suppose that τ is a P-node. Let k be the number of children of
τ in T . Consider the sequence τ1, τ2, . . . , τp of children of τ that have
vertices belonging to ν as they appear in Γ1(pert(τ)), where τ1 is inci-
dent to f ′′(τ). Since H(ν) is connected in Γ1, it follows that τi is ν-
traversable in Γ1, for i = 1, . . . , p − 1, and that τp is either ν-traversable
or ν-sided. Also, consider the sequence τ1, τ2, . . . , τq of children of τ
that are µ-spined, as they appear in Γ1(pert(τ)), where τ1 is incident to
f ′′(τ). Since Γ1(pert(τ)) is µ-side-spined, it follows that τi is µ-full, for
i = 1, . . . , q − 1, and that τq is either µ-full or µ-side-spined. Observe
that p, q ≥ 1, since Γ1(pert(τ)) is ν-sided and µ-side-spined. Also ob-
serve that q < k or τq is not µ-full, as otherwise τ would be µ-full, which
contradicts the assumptions.
We distinguish some cases.

* Suppose first that p ≤ q < k. Since Γ2(pert(τ)) is µ-side-spined and
p(Γ2, τ, µ) is incident to f ′′(τ) in Γ2, it follows that τ1, τ2, . . . , τq are
the first q children of τ as they appear in Γ2(pert(τ)), possibly in
a different relative order with respect to their order in Γ1(pert(τ)),

i
i

“thesis” — 2015/4/29 — 21:44 — page 76 — #88 i
i

i
i

i
i

76 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

where one of τ1, τ2, . . . , τq is incident to f ′′(τ). Hence, the child
of τ incident to f ′(τ) does not contain any vertex belonging to ν,
which contradicts either p(Γ2, τ, µ) 6= p(Γ2, τ, ν) or the fact that
Γ2(pert(τ)) is ν-sided.

* Suppose next that p = q = k. Then, τq is not µ-full. Since
Γ2(pert(τ)) is µ-side-spined and p(Γ2, τ, µ) is incident to f ′′(τ)
in Γ2, it follows that τq is the child of τ incident to f ′(τ) in Γ2.
Thus, by Lemma 4.3, the child of τ incident to f ′′(τ) in Γ2 is ei-
ther ν-infeasible, thus contradicting the fact that Γ2 is a 〈0, 0,∞〉-
drawing of C(G,T), or it is ν-traversable, which contradicts either
p(Γ2, τ, µ) 6= p(Γ2, τ, ν) or the fact that Γ2(pert(τ)) is ν-sided.

* Suppose next that p < q = k. Then, τq is not µ-full. Since
Γ2(pert(τ)) is µ-side-spined and p(Γ2, τ, µ) is incident to f ′′(τ) in
Γ2, it follows that τq is the child of τ incident to f ′(τ) in Γ2. Hence,
no vertex in ν is incident to f ′(τ) in Γ2, which contradicts either
p(Γ2, τ, µ) 6= p(Γ2, τ, ν) or the fact that Γ2(pert(τ)) is ν-sided.

* Suppose finally that p > q. Then, all of τ1, τ2, . . . , τq are ν-traversable.
Since τ1, τ2, . . . , τq are the first q children of τ as they appear in
Γ2(pert(τ)), possibly in a different relative order, where one of
τ1, τ2, . . . , τq is incident to f ′′(τ), by Lemma 4.3 and since no child
of τ is ν-infeasible in Γ2, as otherwise Γ2 would not be a 〈0, 0,∞〉-
drawing of C(G,T), it follows that Γ2(pert(τ)) has a vertex belong-
ing to ν and incident to f ′′(τ), thus contradicting the assumption that
p(Γ1, τ, ν) is incident to f ′′(τ) or the assumption that Γ1(pert(τ)) is
ν-sided.

– Suppose that Case 3 applies to µ. Then, G(τ) is µ-full. By assumption,
Γ1(pert(τ)) is µ-side-spined and not µ-full. If at least one of the poles of
τ is not incident to the outer face of Γ1, then Γ1 contains a cycle in G(τ)
whose vertices belong to µ containing in its interior a vertex in pert(τ)
not belonging to µ. This contradicts Lemma 4.1. Assume then that both
poles of τ are incident to the outer face of Γ1. If p(Γ1, τ, µ) delimits the
outer face of Γ1, then p(Γ1, τ, µ) together with p(Γ1, τ , µ) forms a cycle
whose vertices belong to µ containing in its interior a vertex in pert(τ) not
belonging to µ, again contradicting the assumption that Γ1 is a 〈0, 0,∞〉-
drawing of C(G,T), by Lemma 4.1. Also, recall that, by assumption,
both the poles of τ are incident to the outer face of Γ2.
Assume, without loss of generality up to renaming f ′(τ) with f ′′(τ) with
that p(Γi, τ , µ) is incident to f ′′(τ) in Γi, for i = 1, 2. Hence, f ′(τ) is

i
i

“thesis” — 2015/4/29 — 21:44 — page 77 — #89 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 77

the outer face of Γi, for i = 1, 2, and p(Γi, τ , µ) delimits f ′′(τ) in Γi, for
i = 1, 2, by definition.
The reminder of the proof is exactly the same as when Case 2 applies to
µ.

This concludes the proof of the claim. 2

By Claim 4.3, no two clusters µ 6= ν ∈ T exist that determine different flips
for Γ1(pert(τ)) when constructing Γ3. Then, by Claims 4.1 and 4.2, the constructed
embedding Γ3 of C(G,T) satisfies Conditions (i) and (ii) of Lemma 4.1, for each
cluster µ, hence Γ3 is a 〈0, 0,∞〉-drawing. This concludes the proof of Lemma 4.4.

We now determine conditions for the nodes of the SPQR-tree T of G in order for
C(G,T) to admit a 〈0, 0,∞〉-drawing.

We say that an embedding Γ(sk(τ)) of sk(τ) in which the edge e representing the
parent of τ is incident to the outer face is extensible if the following condition holds:
If C(G,T) admits a 〈0, 0,∞〉-drawing in which eρ is incident to the outer face, then
it admits a 〈0, 0,∞〉-drawing in which eρ is incident to the outer face and in which
the embedding of sk(τ) is Γ(sk(τ)).

For an embedding Γ(sk(τ)) of sk(τ) and a cluster µ in T , we define an auxil-
iary graph G′(τ, µ) as follows. Graph G′(τ, µ) has one vertex vf for each face f
of Γ(sk(τ)) containing a µ-traversable virtual edge on its boundary; two vertices of
G′(τ, µ) are connected by an edge if they share a µ-traversable virtual edge. We are
now ready to prove the following main lemma.

Lemma 4.5 Let C(G,T) be a clustered graph, with G biconnected, that admits a
〈0, 0,∞〉-drawing in which the edge eρ representing the root ρ of the SPQR-tree T
of G is incident to the outer face. Then, an embedding Γ(sk(τ)) in which the edge e
representing the parent of τ is incident to the outer face is extensible if and only if the
following properties hold. For each cluster µ ∈ T :

(A) There exists no cycle in Γ(sk(τ)) that is composed of µ-spined virtual edges
e1, . . . , eh containing in its interior a virtual edge that is not µ-full;

(B) G′(τ, µ) is connected; and

(C) if G′(τ, µ) contains at least one vertex, then each virtual edge of sk(τ) which
is µ-touched and not µ-traversable shares a face with a µ-traversable virtual
edge in Γ(sk(τ)). Otherwise (that is, if G′(τ, µ) contains no vertex), all the
µ-touched virtual edges are incident to the same face of Γ(sk(τ)).

i
i

“thesis” — 2015/4/29 — 21:44 — page 78 — #90 i
i

i
i

i
i

78 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

In the following we prove Lemma 4.5. We first prove the necessity. Suppose that
an embedding Γ(sk(τ)) of sk(τ) is extensible. That is, C(G,T) admits a 〈0, 0,∞〉-
drawing in which eρ is incident to the outer face and in which the embedding of sk(τ)
is Γ(sk(τ)). We prove that Γ(sk(τ)) satisfies Properties (A), (B), and (C) by means
of suitable claims.

Claim 4.4 Γ(sk(τ)) satisfies Property (A).

Proof: No cycle (e1, . . . , eh) in Γ(sk(τ)) such that virtual edges e1, . . . , eh are
µ-spined contains in its interior a virtual edge that is not µ-full, as otherwise, in any
drawing Γ of C(G,T) in which eρ is incident to the outer face and in which the
embedding of sk(τ) is Γ(sk(τ)), there would exist a cycle whose vertices all belong
to µ enclosing a vertex not belonging to µ, thus implying that R(µ) is not simple or
that Γ contains an edge-region crossing. 2

Claim 4.5 Γ(sk(τ)) satisfies Property (B).

Proof: We have that G′(τ, µ) is connected, as otherwise, in any drawing Γ of
C(G,T) in which eρ is incident to the outer face and in which the embedding of
sk(τ) is Γ(sk(τ)), there would exist a cycle C such that none of the vertices of C
belongs to µ and such that C separates vertices belonging to µ, thus implying that
R(µ) is not simple or that Γ contains an edge-region crossing. 2

Claim 4.6 Γ(sk(τ)) satisfies Property (C).

Proof: We distinguish the case in which G′(τ, µ) contains at least one vertex and
the case in which G′(τ, µ) contains no vertex.

• Suppose that G′(τ, µ) contains at least one vertex. Refer to Fig. 4.14(a). Then,
we prove that each virtual edge of sk(τ) which is µ-touched and not
µ-traversable shares a face with a µ-traversable virtual edge in Γ(sk(τ)).

Suppose, for a contradiction, that there exists a virtual edge e of sk(τ) that is
µ-touched, that is not µ-traversable, and that does not share any face with a
µ-traversable virtual edge in Γ(sk(τ)). Consider the two faces f1

e and f2
e of

Γ(sk(τ)) incident to e. Denote by Cs the cycle of virtual edges composed of
the edges delimiting f1

e and f2
e , except for e.

By assumption, for each edge ei of Cs, the node τi of T corresponding to
ei is such that any embedding of pert(τi) is not µ-traversable. Also, in any
〈0, 0,∞〉-drawing of C(G,T), the embedding of pert(τi) is not µ-infeasible.

i
i

“thesis” — 2015/4/29 — 21:44 — page 79 — #91 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 79

Hence, by Lemma 4.2, there exists a path in pert(τi) that connects the poles
of τi, that is different from the edge connecting the poles of τi, and none of
whose vertices belongs to µ. Concatenating all such paths for all the nodes of
T corresponding to the edges of Cs results in a cycle C such that none of the
vertices of C belongs to µ and such that C passes through all the vertices of
Cs. Observe that C contains vertices of µ on both sides, namely vertices of µ
in pert(e) and vertices of µ in the pertinent graph of a virtual edge e′ of sk(τ)
which is µ-traversable; such an edge e′ exists since G′(τ, µ) contains at least
one vertex. Hence, in any drawing Γ of C(G,T) in which the embedding of
sk(τ) is Γ(sk(τ)), there exists a cycle C such that none of the vertices of C be-
longs to µ and such that C separates vertices belonging to µ, thus implying that
R(µ) is not simple or that Γ contains an edge-region crossing, a contradiction.

• Suppose that G′(τ, µ) contains no vertex. Refer to Fig. 4.14(b). We prove that
all the µ-touched virtual edges are incident to the same face of Γ(sk(τ)).

Suppose, for a contradiction, that there exists no face of Γ(sk(τ)) such that all
the µ-touched virtual edges of Γ(sk(τ)) are incident to such a face. Consider
the two faces f1

e and f2
e of Γ(sk(τ)) incident to any µ-touched virtual edge e.

Denote by C1
s and C2

s the cycles delimiting f1
e and f2

e , respectively.

By assumption, for each edge ei of C1
s (of C2

s), the node τi of T corresponding
to ei is such that any embedding of pert(τi) is not µ-traversable. Also, in any
〈0, 0,∞〉-drawing of C(G,T), the embedding of pert(τi) is not µ-infeasible.
Hence, by Lemma 4.2, there exists a path in pert(τi) that connects the poles
of τi, that is different from the edge connecting the poles of τi, and none of
whose vertices belongs to µ. Concatenating all such paths for all the nodes of
T corresponding to the edges of C1

s (resp. of C2
s) results in a cycle C1 (resp. C2)

such that none of the vertices of C1 (resp. of C2) belongs to µ and such that
C1 (resp. C2) passes through all the vertices of C1

s (resp. C2
s). Then, C1 or C2

contains vertices of µ on both sides, namely vertices of µ in pert(e) and vertices
of µ in the pertinent graph of a virtual edge e′ of sk(τ) which is not incident
to f1

e or to f2
e , respectively; such an edge e′ exists since not all the µ-touched

virtual edges are incident to the same face of Γ(sk(τ)). This implies that R(µ)
is not simple or that Γ contains an edge-region crossing.

This concludes the proof of the claim. 2

We now prove the sufficiency. Namely, suppose that Properties (A), (B), and (C)
hold for an embedding Γ(sk(τ)) of sk(τ). We prove that Γ(sk(τ)) is extensible, that
is, we show that a 〈0, 0,∞〉-drawing of C(G,T) exists in which eρ is incident to the
outer face and in which the embedding of sk(τ) is Γ(sk(τ)).

i
i

“thesis” — 2015/4/29 — 21:44 — page 80 — #92 i
i

i
i

i
i

80 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

f1e f2e
e

Cs
e′

(a)

f1e f2e
e

C2
s

e′

C1
s

(b)

Figure 4.14: Proof that Property (C) is satisfied when C(G,T) admits a 〈0, 0,∞〉-
drawing in which eρ is incident to the outer face and in which the embedding of sk(τ)
is Γ(sk(τ)). (a) G′(τ, µ) contains at least one vertex and (b) G′(τ, µ) contains no
vertex. In both figures, cycle C is represented by a dashed curve.

Let Γ′ be any 〈0, 0,∞〉-drawing of C(G,T) in which eρ is incident to the outer
face (clustered graph C(G,T) admits such a drawing by hypothesis). Let Γ′(sk(τ))
be the embedding of sk(τ) in Γ′. If Γ′(sk(τ)) coincides with Γ(sk(τ)), then there
is nothing to prove. Otherwise, assume that the two embeddings of sk(τ) do not
coincide. Observe that this implies that τ is not an S-node, as the skeleton of an
S-node is a cycle, which has a unique embedding.

Next, suppose that τ is an R-node. Then, since sk(τ) has exactly two embeddings,
which are one the flip of the other, Γ(sk(τ)) is the flip of Γ′(sk(τ)). Consider the
drawing Γ of C(G,T) obtained by flipping Γ′ around the poles of the root ρ of T ,
that is, by reverting the adjacency list of every vertex of C(G,T). Observe that Γ is
a 〈0, 0,∞〉-drawing since Γ′ is. Also, eρ is incident to the outer face of Γ since it is
incident to the outer face of Γ′. Moreover, the embedding of sk(τ) in Γ is the flip of
the embedding Γ′(sk(τ)) of sk(τ) in Γ′, hence it coincides with Γ(sk(τ)). Thus a
〈0, 0,∞〉-drawing Γ of C(G,T) in which eρ is incident to the outer face and in which
the embedding of sk(τ) is Γ(sk(τ)) exists.

It remains to consider the case in which τ is a P-node. We show how to construct
a 〈0, 0,∞〉-drawing ΓC in which eρ is incident to the outer face and in which the
embedding of sk(τ) is Γ(sk(τ)). For every neighbor τ ′ of τ in T (including its
parent), denote by Γ1(pert(τ ′)) the embedding of pert(τ ′) in Γ′. Moreover, denote by
Γ2(pert(τ ′)) the embedding of pert(τ ′) obtained by flipping Γ1(pert(τ ′)) around the
poles of τ ′. Drawing ΓC is such that, for every neighbor τ ′ of τ in T , the embedding
of pert(τ ′) is either Γ1(pert(τ ′)) or Γ2(pert(τ ′)).

The remainder of the proof is devoted to the P-node case and is structured into
three parts as follows.

i
i

“thesis” — 2015/4/29 — 21:44 — page 81 — #93 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 81

In the first part, we describe how to obtain ΓC . In particular, we show how to
choose the embedding of pert(τ ′) to be either Γ1(pert(τ ′)) or Γ2(pert(τ ′)) based on
the constraints imposed by the clusters containing vertices of pert(τ ′).

In the second part, we show that the algorithm we describe in the first part univo-
cally determines the embedding of pert(τ ′) to be either Γ1(pert(τ ′)) or Γ2(pert(τ ′)).

In the third part, we show that the performed choices actually lead to a 〈0, 0,∞〉-
drawing of C(G,T) in which eρ is incident to the outer face and in which the embed-
ding of sk(τ) is Γ(sk(τ)).

First part. We show an algorithm to determine ΓC . We fix the embedding of sk(τ)
to be Γ(sk(τ)) with an outer face that is any of the two faces incident to the virtual
edge of sk(τ) representing the parent of τ in T . Later, we will possibly modify the
choice of the outer face. We now show how to choose the embedding of pert(τ ′). This
is done according to rules that aim at satisfying Conditions (i) and (ii) of Lemma 4.1.
Namely, for each cluster µ ∈ T apply one of the following rules.

• Rules to satisfy Condition (i) of Lemma 4.1.

Consider any neighbor τ ′ of τ in T such that Γ1(pert(τ ′)) is µ-sided. Also,
consider the neighbors τ ′′ and τ ′′′ of τ in T following and preceding τ ′ in the
circular order of the neighbors of τ determined by Γ(sk(τ)), respectively. With-
out loss of generality assume that if the embedding of pert(τ ′) is Γ1(pert(τ ′)),
then a vertex in pert(τ ′) and in µ is incident to the face of Γ(sk(τ)) to which
τ ′′ is incident; and if the embedding of pert(τ ′) is Γ2(pert(τ ′)), then a vertex
in pert(τ ′) and in µ is incident to the face of Γ(sk(τ)) to which τ ′′′ is incident.

– Rule RI-1 If τ ′′ is µ-traversable and τ ′′′ is not (if τ ′′′ is µ-traversable
and τ ′′ is not), then choose the embedding of pert(τ ′) to be Γ1(pert(τ ′))
(resp. Γ2(pert(τ ′))), see Fig. 4.15(a).

– Rule RI-2 If none of τ ′′ and τ ′′′ is µ-traversable, if τ ′′ is µ-sided and
τ ′′′ is not (if τ ′′′ is µ-sided and τ ′′ is not), then choose the embedding of
pert(τ ′) to be Γ1(pert(τ ′)) (resp. Γ2(pert(τ ′))), see Fig. 4.15(b).

• Rules to satisfy Condition (ii) of Lemma 4.1.

Consider any neighbor τ ′ of τ in T such that Γ1(pert(τ ′)) is µ-side-spined and
not µ-full. Also, consider the neighbors τ ′′ and τ ′′′ of τ in T following and pre-
ceding τ ′ in the circular order of the neighbors of τ determined by Γ(sk(τ)), re-
spectively. Without loss of generality assume that if the embedding of pert(τ ′)
is Γ1(pert(τ ′)), then the path P (µ) delimiting the outer face of Γ1(pert(τ ′))
and composed only of vertices in µ is incident to the face of Γ(sk(τ)) to which

i
i

“thesis” — 2015/4/29 — 21:44 — page 82 — #94 i
i

i
i

i
i

82 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

τ ′′ τ ′ τ ′′′

(a)

τ ′′ τ ′ τ ′′′

(b)

τ ′′ τ ′ τ ′′′

(c)

Figure 4.15: Choosing the embedding of pert(τ ′) in order to satisfy Conditions (i)
and (ii) of Lemma 4.1 when τ is a P-node. (a) If τ ′′ is µ-traversable and τ ′′′ is
not, then the embedding of pert(τ ′) is Γ1(pert(τ ′)); (b) if none of τ ′′ and τ ′′′ is µ-
traversable and if τ ′′ is µ-sided, then the embedding of pert(τ ′) is Γ1(pert(τ ′)); (c)
if τ ′′ is µ-spined, then the embedding of pert(τ ′) is Γ1(pert(τ ′)).

τ ′′ is incident; and if the embedding of pert(τ ′) is Γ2(pert(τ ′)), then P (µ) is
incident to the face of Γ(sk(τ)) to which τ ′′′ is incident.

– Rule RII-1 If τ ′′ is µ-spined and τ ′′′ is not (resp. if τ ′′′ is µ-spined and
τ ′′ is not), and the face shared by τ ′ and τ ′′ in Γ(sk(τ)) (τ ′ and τ ′′′

in Γ(sk(τ))) is different from the outer face of Γ(sk(τ)), then choose
the embedding of pert(τ ′) to be Γ1(pert(τ ′)) (resp. Γ2(pert(τ ′))), see
Fig. 4.15(c).

• Suppose that the embedding of pert(τ ′), for some neighbor τ ′ of τ , has not
been determined by rules RI-1, RI-2, and RII-1 over all clusters µ ∈ T .

– Rule R0 If τ ′ is the parent of τ in T , then set the embedding of pert(τ ′)
to be Γ1(pert(τ ′)) or Γ2(pert(τ ′)) so that eρ is incident to the outer face.
Otherwise, arbitrarily set the embedding of pert(τ ′) to be Γ1(pert(τ ′)) or
Γ2(pert(τ ′)).

Denote by Γ the drawing constructed by the described algorithm. In order to
complete the construction of ΓC , we (possibly) modify the outer face of Γ. Namely,
if eρ is incident to the outer face of Γ, then we let ΓC = Γ. Otherwise, we choose
as outer face of ΓC the face of Γ that is incident to eρ and that is delimited by paths
belonging to the pertinent graphs of different neighbors of τ in T . Observe that one of
such neighbors is the parent of τ in T . Also, the choice of the outer face of ΓC does

i
i

“thesis” — 2015/4/29 — 21:44 — page 83 — #95 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 83

not alter the embedding Γ(sk(τ)) of sk(τ). Namely, a different outer face is chosen
as outer face in Γ(sk(τ)), however the circular ordering of the virtual edges around
the poles stays the same; moreover, the virtual edge representing the parent of τ in T
is still incident to the outer face of Γ(sk(τ)) in ΓC .

Second part. We now prove that the embedding choices performed when consid-
ering two distinct clusters do not conflict.

Claim 4.7 For any two clusters µ and ν (µ 6= ν), the application of the above rules
when µ is considered does not produce an embedding choice for pert(τ ′) that is con-
flicting with the one that is produced when ν is considered.

Proof: The proof is independent of the modification of the outer face of Γ to
obtain ΓC , hence we will refer to drawing Γ rather than to ΓC . The proof distinguishes
several cases.

Case 1: Suppose that the embedding of pert(τ ′) has been determined to be
Γ1(pert(τ ′)) by Rule RI-1 because τ ′ is µ-sided, because τ ′′ is µ-traversable, and
because τ ′′′ is not µ-traversable, for some cluster µ ∈ T , or by Rule RI-2 because
τ ′ is µ-sided, because τ ′′ is µ-sided, and because τ ′′′ is not µ-traversable and not
µ-sided.

Case 1A: Suppose, for a contradiction, that the embedding of pert(τ ′) has been
determined to be Γ2(pert(τ ′)) by Rule RI-1 because τ ′ is ν-sided, because τ ′′′ is ν-
traversable, and because τ ′′ is not ν-traversable, or by Rule RI-2 because τ ′ is ν-sided,
because τ ′′′ is ν-sided, and because τ ′′ is not ν-traversable and not ν-sided, for some
cluster ν ∈ T with ν 6= µ.

We have that Condition (i) of Lemma 4.1 is not satisfied by Γ′, a contradiction.
Namely, one of the two paths between the poles of τ ′ delimiting the outer face of
Γ1(pert(τ ′)), say P (µ, ν), contains vertices in µ and in ν, while the other path does
not. Hence, if Γ′ is such that τ ′′ is found before τ ′′′ when traversing the neighbors of
τ in T starting from τ ′ in the direction “defined by P (µ, ν)”, then H(ν) is not con-
nected, given that τ ′ and τ ′′ are not ν-traversable. Otherwise H(µ) is not connected,
given that τ ′ and τ ′′′ are not µ-traversable.

Case 1B: Suppose, for a contradiction, that the embedding of pert(τ ′) has been
determined by Rule RII-1 to be Γ2(pert(τ ′)) because τ ′ is ν-side-spined and not ν-
full, and because τ ′′′ is ν-spined and τ ′′ is not, for some cluster ν ∈ T with ν 6=
µ. Then one of the two paths between the poles of τ ′ delimiting the outer face of
Γ1(pert(τ ′)), say P (ν), entirely belongs to ν and the same path also contains a vertex
in µ.

This gives rise to a contradiction if µ is not a descendant of ν in T . Hence, assume
that µ is a descendant of ν in T . If Γ′ is such that τ ′′′ is found before τ ′′ when

i
i

“thesis” — 2015/4/29 — 21:44 — page 84 — #96 i
i

i
i

i
i

84 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

traversing the neighbors of τ in T starting from τ ′ in the direction “defined by P (ν)”,
thenH(µ) is not connected, given that τ ′ and τ ′′′ are not µ-traversable, thus Condition
(i) of Lemma 4.1 is not satisfied by Γ′, a contradiction. Otherwise, there exists a
cycle in Γ′ whose vertices belong to ν and whose interior contains in Γ′ a vertex not
belonging to ν, thus implying that Condition (ii) of Lemma 4.1 is not satisfied by Γ′,
a contradiction. Namely, such a cycle is composed of P (ν) and of any path belonging
to ν and connecting the poles of τ ′′′ in pert(τ ′′′); the vertex not in ν in the interior of
this cycle is either a vertex in pert(τ ′) not in ν (which exists since τ ′ is not ν-full),
or a vertex in pert(τ ′′) not in ν (which exists since τ ′′ is not ν-spined and hence not
ν-full), depending on the “position” of the outer face in Γ′.

Case 2: Suppose that the embedding of pert(τ ′) has been determined to be
Γ1(pert(τ ′)) by Rule RII-1 because τ ′ is µ-side-spined and not µ-full, and because
τ ′′ is µ-spined and τ ′′′ is not, for some cluster µ ∈ T .

Case 2A: Suppose that the embedding of pert(τ ′) has been determined to be
Γ2(pert(τ ′)) by Rule RI-1 (by Rule RI-2) because τ ′ is ν-sided, because τ ′′′ is ν-
traversable (ν-sided, respectively), and because τ ′′ is not ν-traversable (not
ν-traversable and not ν-sided), for some cluster ν ∈ T with ν 6= µ. Such a case
can be discussed analogously to Case 1B.

Case 2B: Suppose that the embedding of pert(τ ′) has been determined to be
Γ2(pert(τ ′)) by Rule RII-1 because τ ′ is ν-side-spined and not ν-full, and because
τ ′′′ is ν-spined and τ ′′ is not, for some cluster ν ∈ T with ν 6= µ. Observe that, since
µ and ν share vertices, one of them is the ancestor of the other one. Assume without
loss of generality that µ is an ancestor of ν. Since τ ′′′ is ν-spined, it is also µ-spined,
a contradiction.

This concludes the proof of the claim. 2

Third part. We now prove that the drawing ΓC resulting from the above described
algorithm is a 〈0, 0,∞〉-drawing of C(G,T) by exploiting Lemma 4.1. Observe that
edge eρ is incident to the outer face of ΓC by construction.

Claim 4.8 Drawing ΓC satisfies Condition (i) of Lemma 4.1.

Proof: Consider any cluster µ. Observe that, by Lemma 4.1,H(µ) is connected in
Γ′ since Γ′ is a 〈0, 0,∞〉-drawing. We prove that H(µ) is connected in ΓC . Observe
that H(µ) is connected in ΓC if and only if it is connected in Γ. Hence, we will
refer to drawing Γ rather than to ΓC . Suppose, for a contradiction, that H(µ) is not
connected in Γ.

For any neighbor τ ′ of τ in T , we can assume that Γ1(pert(τ ′)) is neither µ-
infeasible, nor µ-kernelized, nor µ-bisided. Namely:

i
i

“thesis” — 2015/4/29 — 21:44 — page 85 — #97 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 85

• If Γ1(pert(τ ′)) is µ-infeasible, we have that H(µ) is not connected in Γ′, given
that the embedding of pert(τ ′) in Γ′ is the same as in Γ, up to a flip, thus leading
to a contradiction.

• If Γ1(pert(τ ′)) is µ-kernelized, then either there exists a neighbor of τ in T
different from τ ′ containing a vertex in µ, thus implying that H(µ) is not con-
nected in Γ′, given that the embedding of pert(τ ′) in Γ′ is the same as in Γ, up
to a flip, or there exists no neighbor of τ in T different from τ ′ containing a
vertex in µ, thus implying that H(µ) is connected in Γ; in both cases this leads
to a contradiction.

• If Γ1(pert(τ ′)) is µ-bisided, then, in order for H(µ) to be connected in Γ′, we
have that Γ1(pert(τ ′′)) is µ-traversable for each neighbor τ ′′ of τ in T different
from τ ′. Since the embedding of pert(τ ′′) in Γ′ is the same as in Γ, up to a flip,
it follows that τ ′′ is µ-traversable in Γ, as well, thus H(µ) is connected in Γ,
thus leading to a contradiction.

Hence, we can assume that, for each neighbor τ ′ of τ in T , Γ1(pert(τ ′)) (and
hence Γ2(pert(τ ′))) is either µ-sided, or µ-traversable, or it contains no vertex of µ.
Consider a maximal sequence τ1, τ2, . . . , τk of neighbors of τ in T , ordered as in
Γ(sk(τ)), such that τi contains a vertex in µ. We distinguish two cases.

• If there exists no neighbor τ ′ of τ in T such that Γ1(pert(τ ′)) is µ-traversable,
then, by Property (C) of Γ(sk(τ)), there exist at most two neighbors τ1 and τ2
of τ in T such that Γ1(pert(τ1)) and Γ1(pert(τ2)) are µ-sided, and moreover
τ1 and τ2 are adjacent in Γ(sk(τ)). By construction, the embedding of pert(τ1)
is chosen to be Γ1(pert(τ1)) or Γ2(pert(τ1)) so that a vertex in pert(τ1) and in
µ is incident to the face of Γ(sk(τ)) to which τ2 is incident. Analogously, the
embedding of pert(τ2) is chosen to be Γ1(pert(τ2)) or Γ2(pert(τ2)) so that a
vertex in pert(τ2) and in µ is incident to the face of Γ(sk(τ)) to which τ1 is
incident. Hence, the subgraph of H(µ) in Γ induced by the vertices in τ1 and
the subgraph of H(µ) in Γ induced by the vertices in τ2 are connected by an
edge; moreover, both such subgraphs are connected. It follows that H(µ) is
connected in Γ, a contradiction.

• If there exists at least one neighbor of τ in T whose embedding in Γ′ is µ-
traversable, then, by Properties (B) and (C) of Γ(sk(τ)), the order in Γ(sk(τ))
of the neighbors of τ in T is τ1, τ2, . . . , τk, where τ2, . . . , τk−1 are µ-traversable,
where τ1 and τk are µ-sided (and they might not exist), and where k ≥ 3. By
construction, the embedding of pert(τ1), if τ1 exists, is chosen to be

i
i

“thesis” — 2015/4/29 — 21:44 — page 86 — #98 i
i

i
i

i
i

86 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

Γ1(pert(τ1)) or Γ2(pert(τ1)) so that a vertex in pert(τ1) and in µ is incident
to the face of Γ(sk(τ)) to which τ2 is incident. Analogously, the embedding
of pert(τk), if τk exists, is chosen to be Γ1(pert(τk)) or Γ2(pert(τk)) so that
a vertex in pert(τk) and in µ is incident to the face of Γ(sk(τ)) to which τk−1

is incident. Hence, the subgraph of H(µ) in Γ induced by the vertices in τ1
is connected by an edge to the subgraph of H(µ) in Γ induced by the vertices
in τ2, . . . , τk−1; moreover, the subgraph of H(µ) in Γ induced by the vertices
in τk is connected by an edge to the subgraph of H(µ) in Γ induced by the
vertices in τ2, . . . , τk−1; furthermore, these three subgraphs are connected. It
follows that H(µ) is connected in Γ, a contradiction.

This concludes the proof of the claim. 2

Claim 4.9 Drawing ΓC satisfies Condition (ii) of Lemma 4.1.

Proof: We prove that ΓC contains no cycle whose vertices all belong to the same
cluster µ and whose interior contains a vertex v not in µ. We first prove this statement
for drawing Γ, and we will later show how modifying the outer face of Γ to obtain
ΓC does not create a cycle whose vertices all belong to the same cluster µ and whose
interior contains a vertex not in µ.

Suppose, for a contradiction, that Γ contains a cycle C whose vertices all belong
to the same cluster µ and whose interior contains a vertex v not in µ. First, we dis-
cuss the existence of a cycle C violating Condition (ii) of Lemma 4.1 in the drawing
constructed before.

If C entirely belongs to pert(τ ′), for some neighbor τ ′ of τ in T , then C contains v
in its interior also in Γ′, given that the embedding of pert(τ ′) in Γ is the same as in Γ′,
up to a flip. However, by Lemma 4.1, this implies that Γ′ is not a 〈0, 0,∞〉-drawing,
a contradiction.

Otherwise, C is composed of two paths connecting the poles of τ , where the first
path Pµ(τ ′′) entirely belongs to pert(τ ′′) and the second path Pµ(τ ′′′) entirely be-
longs to pert(τ ′′′), for two distinct neighbors τ ′′ and τ ′′′ of τ in T . Hence,
Γ1(pert(τ ′′)) and Γ1(pert(τ ′′′)) (and hence Γ2(pert(τ ′′)) and Γ2(pert(τ ′′′))) are
µ-spined. Moreover, they are both µ-side-spined (and possibly µ-full). Namely, if
one of them, say Γ1(pert(τ ′′)), is µ-central-spined, then C contains a vertex not in µ
in Γ′, thus implying that Γ′ does not satisfy Condition (ii) of Lemma 4.1 and hence
that Γ′ is not a 〈0, 0,∞〉-drawing, a contradiction.

Assume that Γ1(pert(τ ′′)) and Γ1(pert(τ ′′′)) (and, hence, Γ2(pert(τ ′′)) and
Γ2(pert(τ ′′′))) are both µ-side-spined (possibly µ-full). By Property (A) of Γ(sk(τ)),
all the virtual edges, if any, that lie inside the cycle composed of the virtual edges

i
i

“thesis” — 2015/4/29 — 21:44 — page 87 — #99 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 87

representing τ ′′ and τ ′′′ in Γ(sk(τ)) are µ-full. It follows that, if C contains a vertex
not in µ in its interior, then such a vertex belongs to pert(τ ′′) or to pert(τ ′′′). Suppose
the former, the discussion for the latter case being analogous. Observe that this implies
that Γ1(pert(τ ′′)) is not µ-full. Then, denote by Qµ(τ ′′) the path that is composed
only of vertices of µ, that connects the poles of τ , and that delimits the outer face of
Γ1(pert(τ ′′)).

Consider the two neighbors σ1 and σ2 of τ in T such that the virtual edges repre-
senting σ1 and σ2 are consecutive with the virtual edge representing τ ′′ in Γ(sk(τ)).
Assume, w.l.o.g., that the virtual edge representing σ1 is internal to the cycle com-
posed of the virtual edges representing τ ′′ and τ ′′′ in Γ(sk(τ)) (if any virtual edge
internal to such a cycle exists) or that σ1 coincides with τ ′′′ (otherwise).

If σ2 is not µ-spined, then by Rule RII-1, the embedding of pert(τ ′′) is chosen
in such a way that Qµ(τ ′′) is incident to the face of Γ(sk(τ)) the virtual edge repre-
senting σ1 is incident to. However, this implies that C does not contain any vertex not
belonging to µ in its interior, a contradiction.

Otherwise, σ2 is µ-spined, and Rule RII-1 was applied to choose the embedding
of pert(τ ′′) in such a way that Qµ(τ ′′) is incident to the face of Γ(sk(τ)) the virtual
edge representing σ2 is incident to.

It follows that the virtual edges representing σ2 and τ ′′ delimit the outer face of
Γ(sk(τ)). Namely, if that’s not the case, then the cycle that is composed of the virtual
edges representing σ2 and τ ′′′ would contain the virtual edge representing τ ′′, which is
not µ-full, in its interior in Γ(sk(τ)), thus contradicting the fact that Γ(sk(τ)) satisfies
Property (A). However, that the virtual edges representing σ2 and τ ′′ delimit the outer
face of Γ(sk(τ)) contradicts the assumption that Rule RII-1 was applied to choose the
embedding of pert(τ ′′) in such a way that Qµ(τ ′′) is incident to the face of Γ(sk(τ))
the virtual edge representing σ2 is incident to, thus obtaining a contradiction.

This completes the proof that Γ does not contain a cycle C whose vertices all
belong to the same cluster µ and whose interior contains a vertex v not in µ.

Now we deal with ΓC . If ΓC has the same outer face as Γ, then there is nothing
to prove. Otherwise, suppose, for a contradiction, that ΓC contains a cycle C whose
vertices all belong to the same cluster µ and whose interior contains a vertex v not in
µ. Since Γ and ΓC coincide when restricted to the pertinent graphs of the children of
τ in T , it follows that C is composed of a path Pµ(σ) in the pertinent graph of the
parent σ of τ in T and of a path Pµ(σ′) in the pertinent graph of a neighbor σ′ 6= σ
of τ in T . Also, since rule R0 sets the embedding of pert(σ) so that eρ is incident to
the outer face, it follows that either rule RI-1, or rule RI-2, or rule RII-1 was applied
to determine the embedding of pert(σ) to be either Γ1(pert(σ)) or Γ2(pert(σ)), so
that eρ is not incident to the outer face of Γ. We distinguish two cases based on which
rule was applied to determine the embedding of pert(σ).

i
i

“thesis” — 2015/4/29 — 21:44 — page 88 — #100 i
i

i
i

i
i

88 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

Suppose first that rule RII-1 was applied to determine the embedding of pert(σ).
By the assumptions of rule RII-1, Γ1(pert(σ)) is ν-side-spined and not ν-full, for
some cluster ν ∈ T (possibly ν = µ), and the embedding of the pertinent graph
of a neighbor σ′ of σ in Γ(sk(τ)) is ν-spined. Also, since eρ is not incident to the
outer face of Γ, it follows that the path Pν(σ) in pert(σ) that connects the poles of
σ, that delimits the outer face of Γ1(pert(σ)), and that entirely belongs to ν contains
eρ. However, since the embedding of pert(σ) in ΓC coincides with the embedding of
pert(σ) in Γ′ and since eρ is incident to the outer face of Γ′, it follows that the cycle
C′ composed of Pν(σ) and of any path in pert(σ′) that connects the poles of σ′ and
that entirely belongs to ν (such a path exists because σ′ is ν-spined) contains in its
interior in Γ′ a vertex not belonging to ν (namely any vertex in pert(σ) not in ν; such
a vertex exists because pert(σ) is not ν-full). Thus, Γ′ does not satisfy Condition (ii)
of Lemma 4.1, a contradiction.

Suppose next that rule RI-1 or rule RI-2 was applied to determine the embedding
of pert(σ). By the assumptions of rules RI-1 and RI-2, Γ1(pert(σ)) is ν-sided, for
some cluster ν ∈ T , and the embedding of the pertinent graph of a neighbor σ′ of σ
in Γ(sk(τ)) is ν-traversable or ν-sided.

• If Γ1(pert(σ)) is µ-central-spined, then Γ and Γ′ contain cycles that entirely
belong to µ and that contain in their interior vertices not belonging to µ (namely
vertices in pert(σ)), thus contradicting the fact that Γ and Γ′ are 〈0, 0,∞〉-
drawings of C(G,T).

• If Γ1(pert(σ)) is µ-side-spined and the path that connects the poles of σ, that
delimits the outer face of Γ1(pert(σ)), and that entirely belongs to µ contains
eρ, then Γ′ contains a cycle that entirely belongs to µ and that contains in its
interior a vertex not belonging to µ (namely a vertex in pert(σ)), thus contra-
dicting the fact that Γ′ is a 〈0, 0,∞〉-drawing of C(G,T).

• If Γ1(pert(σ)) is µ-side-spined and the path that connects the poles of σ, that
delimits the outer face of Γ1(pert(σ)), and that entirely belongs to µ does not
contain eρ, then Γ contains a cycle that entirely belongs to µ and that contains
in its interior a vertex not belonging to µ (namely a vertex in pert(σ)), thus
contradicting the fact that Γ is a 〈0, 0,∞〉-drawing of C(G,T).

We can hence assume that pert(σ) is µ-full. Denote by σ1, σ2, . . . , σl the order of
the children of τ as in Γ(sk(τ)), where σ1 is incident to the outer face of Γ(sk(τ)) in
ΓC , while σl is incident to the outer face of Γ(sk(τ)) in Γ.

If any µ-full child σj of τ in T exists, then all of σ1, σ2, . . . , σj are µ-full, as
otherwise Γ would not satisfy Condition (ii) of Lemma 4.1. Denote by f the largest

i
i

“thesis” — 2015/4/29 — 21:44 — page 89 — #101 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 89

index such that σ1, σ2, . . . , σf are µ-full. Also, if any ν-traversable child σj of τ in
T exists, then all of σ1, σ2, . . . , σj are ν-traversable, as otherwise Γ would not satisfy
Condition (i) of Lemma 4.1. Denote by t the largest index such that σ1, σ2, . . . , σt are
ν-traversable.

• If t ≥ f > 0, then every µ-full child of τ is ν-traversable. All the µ-full
children of τ occur consecutively in Γ′(sk(τ)), as otherwise Γ′ does not satisfy
Condition (ii) of Lemma 4.1. Since f > 0, at least one µ-full and ν-traversable
child of τ exists, and it is next to σ in Γ′(sk(τ)). Hence, either a child of τ that
is not ν-traversable exists, thus implying that H(ν) is not connected in Γ′ and
hence that Γ′ does not satisfy Condition (i) of Lemma 4.1, a contradiction, or
every child of τ is ν-traversable, thus implying that rules RI-1 and RI-2 were
not applied to determine the embedding of pert(σ), a contradiction.

• If f ≥ t > 0, then every ν-traversable child of τ is µ-full. All the µ-full
children of τ occur consecutively in Γ′(sk(τ)), as otherwise Γ′ does not satisfy
Condition (ii) of Lemma 4.1. Since t > 0, at least one µ-full and ν-traversable
child of τ exists. Hence, either a child of τ exists that is not ν-traversable and
not µ-full exists, thus implying that H(ν) is not connected in Γ′ and hence that
Γ′ does not satisfy Condition (i) of Lemma 4.1, or every child of τ is µ-full, thus
contradicting the assumption that C contains a vertex not in µ in its interior.

• If t = 0, then σ1 is ν-sided, as otherwise neither rule RI-1 nor rule RII-2 would
be applied to determine the embedding of pert(σ). It follows that σ1 is incident
to the outer face of Γ′(sk(τ)). Thus, if σ1 is µ-spined, then Γ′ does not satisfy
Condition (ii) of Lemma 4.1, a contradiction, while if σ1 is not µ-spined (and
some other child of τ is), then Γ does not satisfy Condition (ii) of Lemma 4.1,
a contradiction.

• If f = 0, then there exists exactly one child of τ that is µ-spined. If σ1 is not
µ-spined, then Γ does not satisfy Condition (ii) of Lemma 4.1, a contradiction.
Otherwise σ1 is µ-spined. Hence, σ1 is next to σ in Γ′(sk(τ)). Thus, if σ1 is
ν-traversable, then either every child of τ is ν-traversable, thus implying that
rules RI-1 and RI-2 were not applied to determine the embedding of pert(σ),
a contradiction, or a child of τ that is not ν-traversable exists, thus implying
that H(ν) is not connected in Γ′ and hence that Γ′ does not satisfy Condition
(i) of Lemma 4.1, a contradiction. Finally, if σ1 is ν-sided, then H(ν) is not
connected either in Γ or in Γ′, a contradiction.

This concludes the proof of the claim. 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 90 — #102 i
i

i
i

i
i

90 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

Claims 4.4–4.6 prove that Properties (A), (B), and (C) of Lemma 4.5 are necessary
in order for an embedding Γ(sk(τ)) in which the edge e representing the parent of τ is
incident to the outer face to be extensible. The sufficiency of Properties (A), (B), and
(C) of Lemma 4.5 is easily proved as described above if τ is an S-node or an R-node;
Claims 4.7–4.9 prove the sufficiency of Properties (A), (B), and (C) of Lemma 4.5 if
τ is a P-node. This completes the proof of Lemma 4.5.

We are now ready to give an algorithm for testing whether a given clustered graph
admits a 〈0, 0,∞〉-drawing.

Theorem 4.4 LetC(G,T) be a clustered graph such thatG is biconnected. There ex-
ists a polynomial-time algorithm to test whetherC(G,T) admits a 〈0, 0,∞〉-drawing.

Proof: Let T be the SPQR-tree of G. Consider any Q-node ρ of T and root T at ρ.
Such a choice corresponds to assuming that any considered planar embedding of G
has the edge eρ of G corresponding to ρ incident to the outer face. In the following,
we describe how to test whether C(G,T) admits a 〈0, 0,∞〉-drawing under the above
assumption. The repetition of such a test for all possible choices of ρ results in a test
of whether C(G,T) admits a 〈0, 0,∞〉-drawing.

First, we perform a preprocessing step to compute the following information.
For each node τ ∈ T and for each cluster µ ∈ T , we label τ (and the virtual

edge representing τ in the skeleton of the parent of τ) with flags stating whether τ is
(i) µ-touched, (ii) τ is µ-full, and (iii) τ is µ-spined.

Observe that such information can be easily computed in polynomial time based
on whether any vertex of pert(τ) different from its poles belongs to µ, on whether
all the vertices of pert(τ) belong to µ, and on whether there exists a path in pert(τ)
connecting the poles of τ and entirely belonging to µ, respectively. In particular, such
information does not change if the embedding of pert(τ) varies.

Also, for each node τ ∈ T and for each cluster µ ∈ T , we label τ (and the
virtual edge representing τ in the skeleton of the parent of τ) with a flag stating
whether τ is µ-traversable in any planar embedding that is not µ-infeasible. Namely,
by Lemma 4.3, if an embedding of pert(τ) is µ-traversable, then every embedding
of pert(τ) that is not µ-infeasible is µ-traversable. To compute this information, we
traverse T bottom-up while computing, for each encountered node τ ′ of T , whether
H(τ ′, µ) has a connected component that contains f ′(τ ′) and f ′′(τ ′) in any planar
embedding of pert(τ ′). In particular:

• If τ ′ is a Q-node, then we label τ ′ as µ-traversable if and only if one of the poles
of τ ′ belongs to µ;

i
i

“thesis” — 2015/4/29 — 21:44 — page 91 — #103 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 91

• if τ ′ is an S-node, then we label τ ′ as µ-traversable if and only if at least one of
the children of τ ′ is labeled as µ-traversable;

• if τ ′ is a P-node, then we label τ ′ as µ-traversable if and only if every child of
τ ′ is labeled as µ-traversable;

• if τ ′ is an R-node, then we label τ ′ as µ-traversable if and only if, in the unique
(up to a flip) planar embedding Γ(sk(τ ′)) of sk(τ ′), there exists a sequence
(τ1, τ2, . . . , τx) of children of τ such that: (1) τj is a child of τ that is labeled as
µ-traversable, for every 1 ≤ j ≤ x, (2) the virtual edges representing τ1 and τx
are incident to the two faces to which the virtual edge representing the parent of
τ is incident to, and (3) the virtual edges representing τj and τj+1 are incident
to a common face in Γ(sk(τ ′)), for every 1 ≤ j ≤ x− 1.

Observe that, whether pert(τ) is µ-sided, µ-bisided, µ-kernelized, µ-infeasible,
µ-side-spined, or µ-central-spined depends on the actual embedding of pert(τ).

Second, we traverse T bottom-up. For every P-node and every R-node τ of T , the
visible nodes of τ are the children of τ that are not S-nodes plus the children of each
S-node that is a child of τ . At each step, we consider either a P-node or an R-node
τ with visible nodes τ1, . . . , τk. We inductively assume that, for each visible node
τi, with 1 ≤ i ≤ k, an extensible embedding Γ(pert(τi)) has been computed, to-
gether with the information whether Γ(pert(τi)) is µ-traversable, µ-sided, µ-bisided,
µ-kernelized, µ-infeasible, µ-side-spined, or µ-central-spined, for each cluster µ in T .

We show how to test whether an extensible embedding Γ(pert(τ)) of pert(τ)
exists. Such a test consists of two phases. We first test whether sk(τ) admits an
extensible embedding Γ(sk(τ)). In the negative case, we can conclude that C(G,T)
has no 〈0, 0,∞〉-drawing in which eρ is incident to the outer face. In the positive
case, we also test whether a flip of each Γ(pert(τi)) exists such that the resulting
embedding Γ(pert(τ)) is extensible.

Extensible embedding of the skeleton of τ .
Suppose that τ is an R-node. Then, sk(τ) has a unique embedding, up to a flip. We

hence test whether Properties (A), (B), and (C) of Lemma 4.5 are satisfied. Observe
that such a test can be easily performed in polynomial time, based on the information
on whether the visible nodes of µ (and hence the children of τ) are µ-spined, µ-full,
µ-touched, and µ-traversable.

Suppose that τ is a P-node. We check whether there exists an extensible embed-
ding Γ(sk(τ)) of sk(τ) as follows. We impose constraints on the ordering of the
virtual edges of τ .

A first set of constraints establishes that Γ(sk(τ)) satisfies Property (A) of
Lemma 4.5. Namely, for each cluster µ:

i
i

“thesis” — 2015/4/29 — 21:44 — page 92 — #104 i
i

i
i

i
i

92 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

(a) We constrain all the µ-full virtual edges to be consecutive;

(b) if there exists no µ-full virtual edge, then we constrain each pair of µ-spined
virtual edges to be consecutive; and

(c) if there exists at least one µ-full virtual edge, then, for each µ-spined virtual edge,
we constrain such an edge and all the µ-full virtual edges to be consecutive.

A second set of constraints establishes that Γ(sk(τ)) satisfies Properties (B) and
(C) of Lemma 4.5. Namely, for each cluster µ:

(a) We constrain all the µ-traversable virtual edges to be consecutive;

(b) if there exists no µ-traversable virtual edge, then we constrain each pair of µ-
touched virtual edges to be consecutive; and

(c) if there exists at least one µ-traversable virtual edge, then, for each µ-touched
virtual edge, we constrain such an edge and all the µ-full virtual edges to be
consecutive.

We check whether an ordering of the virtual edges of sk(τ) that enforces all these
constraints exists by using the PQ-tree data structure [BL76]. If such an ordering does
not exist, we conclude that sk(τ) admits no extensible embedding. Otherwise, we
have an embedding Γ(sk(τ)) of sk(τ) which satisfies Properties (A)–(C), hence it is
extensible.

Extensible embedding of the pertinent graph of τ .
We now determine, for each node τ of T that is either an R- or a P-node, an

extensible embedding Γ(pert(τ)) of pert(τ), if one exists. This is done by choosing
the flip of the embedding Γ(pert(τi)) of each visible node τi of τ in such a way that
Γ(pert(τ)) satisfy Properties (i) and (ii) of Lemma 4.1. Observe that the choice of
the flip of the embedding Γ(pert(τi)) of each visible node τi of τ , together with the
choice of the embedding of sk(τ) to be Γ(sk(τ)), completely determines Γ(pert(τ)).

We will construct a 2-SAT formula F such that pert(τ) admits an extensible em-
bedding if and only if F is satisfiable. We initialize F = ∅. Then, for each visible
node τi of τ , we assign an arbitrary flip to τi and define a boolean variable xi that is
positive if τi has the assigned flip and negative otherwise.

We first add some clauses to F in order to ensure that Γ(pert(τ)) satisfies Property
(ii) of Lemma 4.1.

For each cluster µ, we consider the embedded subgraph Γµ(sk(τ)) of Γ(sk(τ))
containing all the µ-spined virtual edges. Note that, since Γ(sk(τ)) satisfies Property

i
i

“thesis” — 2015/4/29 — 21:44 — page 93 — #105 i
i

i
i

i
i

4.3. DRAWINGS OF CLUSTERED GRAPHS WITH CROSSINGS 93

(A) of Lemma 4.5, each edge of Γµ(sk(τ)) that is not incident to the outer face of
Γµ(sk(τ)) is µ-full. Hence, no flip choice has to be done for these edges.

Consider any edge g in Γµ(sk(τ)) such that g is incident to the external face and
to an internal face fg of Γµ(sk(τ)). Consider each visible node τi of τ such that:
(i) either g corresponds to τi or g corresponds to the S-node which is the parent of τi
and (ii) Γ(pert(τi)) is either µ-side-spined or µ-central-spined.

Then, if Γ(pert(τi)) is µ-central-spined, then we conclude that pert(τ) has no
extensible embedding (with e incident to the outer face). Otherwise, Γ(pert(τi)) is
µ-side-spined. In this case, add clause {xi} to F if the default flip of Γ(pert(τi)) does
not place any vertex not in µ on fg , and add clause {¬xi} to F if the default flip of
Γ(pert(τi)) places a vertex not in µ on fg .

We next add some clauses to F in order to ensure that Γ(pert(τ)) satisfy Property
(i) of Lemma 4.1.

Suppose that there exists a visible node τi of τ such that: (i) Γ(pert(τi)) is µ-
bisided; and (ii) if τi is child of an S-node σ, then no child of σ is µ-traversable.

Then, we check:

(a) Whether all the visible nodes of τ that are children of τ , except for τi, are µ-
traversable; and

(b) whether, for each S-node γ that is child of τ and that is not the parent of τi, at
least one child of γ is µ-traversable.

If one of the checks fails, we conclude that pert(τ) has no extensible embedding
(with e incident to the outer face), otherwise we do not add any clause to F and we
continue as follows.

Suppose that there exists a visible node τi of τ such that:
(i) Γ(pert(τi)) is µ-sided; (ii) if τi is child of an S-node σ, then no child of σ is

µ-traversable; and (iii) τi shares exactly one face with a µ-traversable or µ-sided node
τj .

Then, add clause {xi} to F if the default flip of Γ(pert(τi)) places the vertices of
pert(τi) belonging to µ on the face that τi shares with τj , and add clause {¬xi} to F
otherwise.

Suppose that there exists an S-node σ child of τ such that:
(i) no child of σ is µ-traversable; and (ii) no child of τ different from σ is µ-

touched.
Consider each pair of visible nodes τi and τj children of σ that are both µ-sided.
Then, add clauses (xi∨¬xj) and (¬xi∨xj) to F if the default flips of Γ(pert(τi))

and of Γ(pert(τj)) place vertices of pert(τi) and vertices of pert(τj) belonging to µ
on the same face. Otherwise, add clauses (xi ∨ xj) and (¬xi ∨ ¬xj) to F .

i
i

“thesis” — 2015/4/29 — 21:44 — page 94 — #106 i
i

i
i

i
i

94 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

Observe that all the described checks and embedding choices, and the construction
and solution of the 2-SAT formula can be easily performed in polynomial time. Once
an embedding Γ(pert(τ)) of pert(τ) has been computed, by traversing Γ(pert(τ))
it can be determined in polynomial time whether such an embedding is µ-sided,
µ-bisided, µ-kernelized, µ-side-spined, or µ-central-spined. By Lemma 4.4, if a
〈0, 0,∞〉-drawing ofC(G,T) exists, then there exists a 〈0, 0,∞〉-drawing ofC(G,T)
in which the embedding of pert(τ) is Γ(pert(τ)) or its flip. This allows the bottom-
up visit of T to go through. The correctness of the embedding choices performed in
order to construct Γ(pert(τ)) follows from Lemmata 4.1, 4.4, and 4.5. This concludes
the proof of the theorem. 2

We now turn our attention to establish bounds on the minimum value of γ in a
〈0, 0, γ〉-drawing of a clustered graph.

Theorem 4.5 Let C(G,T) be a clustered graph. There exists an algorithm to com-
pute a 〈0, 0, γ〉-drawing of C(G,T) with γ ∈ O(n3), if any such drawing exists. If
C(G,T) is flat, then γ ∈ O(n2).

Proof: Suppose thatC(G,T) admits a 〈0, 0,∞〉-drawing. Then, consider the drawing
Γ of the underlying graph G in any such a drawing. For each cluster µ, place a vertex
uµ,f inside any face f of Γ that contains at least one vertex belonging to µ, and connect
uµ,f to all the vertices of µ incident to f . Note that, the graph composed by the vertices
of µ and by the added vertices uµ,fi is connected. Then, construct a spanning tree of
such a graph and draw R(µ) slightly surrounding such a spanning tree. The cubic
bound on γ comes from the fact that each of the O(n) clusters crosses each of the
O(n) other clusters a linear number of times. On the other hand, if C(G,T) is flat,
then each of the O(n) clusters crosses each of the O(n) other clusters just once. 2

4.4 Lower bounds

In this section we give lower bounds on the number of ee-, er-, and rr-crossings in
〈α, β, γ〉-drawings of clustered graphs.

First, we prove an auxiliary lemma concerning the crossing number in graphs
without a cluster hierarchy. Given a graph G, we define G(m) as the multigraph
obtained by replacing each edge of G with a set of m multiple edges. For each pair
(u, v) of vertices, we denote by S(u, v) the set of multiple edges connecting u and v.

Lemma 4.6 Graph G(m) has crossing number cr(G(m)) ≥ m2 · cr(G).

i
i

“thesis” — 2015/4/29 — 21:44 — page 95 — #107 i
i

i
i

i
i

4.4. LOWER BOUNDS 95

u v

[uv]1 [vu]1

[uv]2 [vu]2

[uv]3 [vu]3

[uv]4 [vu]4

(a)

a

b

c

d

e

(b)

Figure 4.16: Illustrations for the proof of Theorem 4.6. (a) Edges and clusters in
M(u, v). (b) Clustered graph C(G,T).

Proof: Consider a drawing Γ of G(m) with the minimum number cr(G(m)) of
crossings.

First, observe that in Γ no edge intersects itself, no two edges between the same
pair of vertices intersect, and each pair of edges crosses at most once. Namely, if any
of these conditions does not hold, it is easy to modify Γ to obtain another drawing of
G(m) with a smaller number of crossings, which is not possible by hypothesis (see,
e.g., [PT00a]).

We show that there exists a drawing Γ′ of G(m) with cr(G(m)) crossings in
which, for each pair of vertices u and v, all the edges between u and v cross the
same set of edges in the same order. Let emin(u, v) be any edge with the minimum
number of crossings among the edges of S(u, v). Redraw all the edges in S(u, v) \
emin(u, v) so that they intersect the same set of edges as emin(u, v), in the same order
as emin(u, v). Repeating this operation for each set S(u, v) yields a drawing Γ′ with
the required property.

Starting from Γ′, we construct a drawing ΓG of G. For each set of edges S(u, v)
remove all edges except for one edge e∗(u, v). The resulting drawing ΓG of G has
at least cr(G) crossings, by definition. For any two edges e∗(u, v) and e∗(w, z) that
cross in ΓG, we have that each edge in S(u, v) crosses each edge in S(w, z), by the
properties of Γ′. Hence Γ′ contains at least m2 · cr(G) crossings. 2

We prove a lower bound on the total number of crossings in an 〈α, β, γ〉-drawing
of a clustered graph when all the three types of crossings are admitted.

i
i

“thesis” — 2015/4/29 — 21:44 — page 96 — #108 i
i

i
i

i
i

96 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

Theorem 4.6 There exists an n-vertex non-c-connected flat clustered graph C(G,T)
that admits 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings, and such that α+β+γ ∈
Ω(n2) in every 〈α, β, γ〉-drawing of C(G,T).

Proof: Clustered graph C(G,T) is as follows. Initialize graph G with five ver-
tices a, b, c, d, e. For each two vertices u, v ∈ {a, b, c, d, e}, with u 6= v, and for
i = 1, . . . ,m, add to G vertices [uv]i, [vu]i, and edges (u, [uv]i) and (v, [vu]i),
and add to T a cluster µ(u, v)i = {[uv]i, [vu]i}. Vertices a, b, c, d, e belong to
clusters µa, µb, µc, µd, µe, respectively. See Fig. 4.16. We denote by M(u, v) =
{(u, [uv]i), (v, [vu]i), µ(u, v)i|i = 1, . . . ,m}.

First, we prove that C admits 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings. Con-
sider a drawing Γ∗ ofK5 on vertices {a, b, c, d, e}with one crossing. Assume, without
loss of generality, that the crossing is on (a, b) and (c, d). For each pair of vertices
u, v ∈ {a, b, c, d, e}, with (u, v) /∈ {(a, b), (c, d)}, replace edge (u, v) in Γ∗ with
M(u, v) in such a way that the drawing of the edges and clusters inM(u, v) is arbitrar-
ily close to the drawing of (u, v). It remains to draw edges and clusters inM(a, b) and
M(c, d). This is done differently for 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings.

〈∞, 0, 0〉-drawing Replace (a, b) and (c, d) in Γ∗ with M(a, b) and M(c, d) in such
a way that the drawing of the edges and clusters in M(a, b) (in M(c, d)) is
arbitrarily close to the drawing of (a, b) (of (c, d)) and for each 1 ≤ i, j ≤
m, edge (a, [ab]i) crosses edge (c, [cd]j), while edges (b, [ba]i) and (d, [dc]i),
and regions R(µ(a, b)i) and R(µ(c, d)j) are not involved in any crossing. See
Fig. 4.17(a).

〈0,∞, 0〉-drawing Replace (a, b) and (c, d) in Γ∗ with M(a, b) and M(c, d) in such
a way that the drawing of the edges and clusters in M(a, b) (in M(c, d)) is
arbitrarily close to the drawing of (a, b) (of (c, d)) and for each 1 ≤ i, j ≤
m, edge (a, [ab]i) crosses region R(µ(c, d)j), while edges (b, [ba]i), (c, [cd]i),
and (d, [dc]j), and region R(µ(a, b)i) are not involved in any crossing. See
Fig. 4.17(b).

〈0, 0,∞〉-drawing Replace (a, b) and (c, d) in Γ∗ with M(a, b) and M(c, d) in such
a way that the drawing of the edges and clusters in M(a, b) (in M(c, d)) is
arbitrarily close to the drawing of (a, b) (of (c, d)) and for each 1 ≤ i, j ≤ m,
region R(µ(a, b)i) crosses region R(µ(c, d)j), while edges (a, [ab]i), (b, [ba]i),
(c, [cd]j), and (d, [dc]i) are not involved in any crossing. See Fig. 4.17(c).

Second, we show that α+ β+ γ ∈ Ω(n2) in every 〈α, β, γ〉-drawing of C(G,T).
Consider any such a drawing Γ. Starting from Γ, we obtain a drawing Γ′ of a sub-
division of K5(m) as follows. For each u, v ∈ {a, b, c, d, e}, with u 6= v, and for

i
i

“thesis” — 2015/4/29 — 21:44 — page 97 — #109 i
i

i
i

i
i

4.4. LOWER BOUNDS 97

a

b

c

d

e

(a)

a

b

c

d

e

(b)

a

b

c

d

e

(c)

Figure 4.17: (a) 〈∞, 0, 0〉-drawing of C. (b) 〈0,∞, 0〉-drawing of C. (c) 〈0, 0,∞〉-
drawing of C.

each i = 1, . . . ,m, insert a drawing of edge ([uv]i, [vu]i) inside R(µ(u, v)i) and re-
move region R(µ(u, v)i). Further, remove regions R(µa), R(µb), R(µc), R(µd), and
R(µe). The obtained graph is a subdivision of K5(m). Hence, by Lemma 4.6, Γ′

has Ω(n2) crossings. Moreover, each crossing in Γ′ corresponds either to an edge-
edge crossing, or to an edge-region crossing, or to a region-region crossing in Γ, thus
proving the theorem. 2

We now turn our attention to drawings in which only one type of crossings is
allowed. In this setting, we show that the majority of the upper bounds presented in
the previous section are tight by giving lower bounds on the number of crossings of
〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings. As a corollary of Theorem 4.6, there
exists a clustered graph C(G,T) such that α ∈ Ω(n2) in every 〈α, 0, 0〉-drawing of
C(G,T), such that β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C(G,T), and such that
γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C(G,T). However, in the following we
present quadratic lower bounds on restricted classes of clustered graphs and a cubic
lower bound for 〈0, 0,∞〉-drawings of clustered graphs.

We first consider 〈∞, 0, 0〉-drawings. We give two lower bounds, which deal with
c-connected and non-c-connected clustered graphs, respectively.

Theorem 4.7 There exists a c-connected flat clustered graph C(G,T) such that α ∈
Ω(n2) in every 〈α, 0, 0〉-drawing of C(G,T).

Proof: We first describe C(G,T). Graph G is a subdivision of K5(m), with m =
n−5

9 , where the set of edges S(d, e) has been removed. Tree T is such that µ2 = {d},
µ3 = {e}, and all the other vertices belong to µ1. See Fig. 4.18(a). Since, in any
〈∞, 0, 0〉-drawing Γ of C(G,T), both d and e must be outside any cycle composed

i
i

“thesis” — 2015/4/29 — 21:44 — page 98 — #110 i
i

i
i

i
i

98 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

of vertices of µ1 (as otherwise they would lie inside R(µ1), see Fig. 4.18(b)), a set
of m length-2 paths can be drawn in Γ between d and e without creating other cross-
ings, thus obtaining a drawing of a subdivision of K5(m) in which the crossings are
the same as in Γ (see Fig. 4.18(c)). Since cr(K5) = 1 and since m = Ω(n), by
Lemma 4.6, α ∈ Ω(n2). 2

a

b

c

d

e

(a)

a

b

c

e

d

(b)

a

b

c

e

d

(c)

Figure 4.18: Illustration for the proof of Theorem 4.7. Vertices in µ1 are black, vertices in µ2

are white, and vertices in µ3 are gray. (a) Graph G. (b) Vertices d and e must be outside all the
cycles composed of vertices of µ1. (c) Graph G′′, where the length-2 paths connecting d and e
are dashed.

Theorem 4.8 There exists a non-c-connected flat clustered graph C(G,T), where G
is a matching, such that α ∈ Ω(n2) in every 〈α, 0, 0〉-drawing of C(G,T).

Proof: Clustered graph C(G,T) is constructed as follows. Tree T is a star graph with
five leaves µ1, . . . , µ5. For each i 6= j with 1 ≤ i, j ≤ 5, add n

20 vertices to µi and to
µj and construct a matching between these two sets of vertices.

Consider any 〈α, 0, 0〉-drawing Γ of C(G,T) such that α is minimum. We prove
that Γ does not contain any edge-edge crossing inside the regions representing clus-
ters. This implies that, contracting the regions to single points yields a drawing of a
subdivision of K5(n/20), and Lemma 4.6 applies to obtain the claimed lower bound
for α.

Assume, for a contradiction, that a crossing between two edges e1 and e2 occurs
inside the regionR(µ) representing a cluster µ. Since Γ has no edge-region crossings,
both e1 and e2 connect a vertex in µ with a vertex not in µ. Then, one might place
the endvertex of e1 belonging to µ arbitrarily close to the boundary of R(µ) in such a
way that it does not cross e2 inside R(µ). Since this operation reduces the number of
crossings, we have a contradiction to the fact that α is minimum.

i
i

“thesis” — 2015/4/29 — 21:44 — page 99 — #111 i
i

i
i

i
i

4.4. LOWER BOUNDS 99

Then, we add a vertex to each cluster µi and connect it to all the vertices of µi.
Observe that, since no two edges cross inside the region representing a cluster, such
vertices and edges can be added without creating any new crossings.

Finally, removing from Γ the drawings of the regions representing the clusters
leads to a drawing of a subdivision of K5(n/20) with α crossings. By Lemma 4.6,
α ∈ Ω(n2). 2

We now prove some lower bounds on the number of er-crossings in 〈0,∞, 0〉-
drawings of clustered graphs. In the case of non-c-connected flat clustered graphs, a
quadratic lower bound directly follows from Theorem 4.6, as stated in the following.

Corollary 4.1 There exists a non-c-connected flat clustered graph C(G,T) such that
β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C(G,T).

Next, we deal with the c-connected case and present a quadratic and a linear lower
bound for non-flat and flat cluster hierarchies, respectively.

Theorem 4.9 There exists a c-connected non-flat clustered graph C(G,T) such that
β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C(G,T).

Proof: Let G be an (n + 2)-vertex triconnected planar graph such that for i =
1, . . . , n3 , G contains a 3-cycle Ci = (ai, bi, ci). Further, for i = 1, . . . , n3 − 1, G has
edges (ai, ai+1), (bi, bi+1), (ci, ci+1). Finally, G contains two vertices va and vb such
that va is connected to a1, b1, c1 and vb is connected to an

3
, bn

3
, cn

3
. Tree T is defined

as follows: µ1 = {a1, b1, c1} and, for each i = 2, . . . , n3 , µi = µi−1 ∪ {ai, bi, ci};
moreover µa = {va} and µb = {vb}. See Fig. 4.19(a).

Note that, in any planar embedding of G, there exists a set S of at least n6 nested
3-cycles, and all such cycles contain either va or vb, say vb, in their interior. Let Ci be
any of such cycles. For each cluster µ containing ai, bi, and ci, not all the edges of Ci
can be drawn entirely inside the region R(µ) representing µ in any 〈0,∞, 0〉-drawing
of C(G,T), as otherwise R(µ) would enclose vb. This implies that Ci intersects the
border of R(µ) twice, hence creating an edge-region crossing. Since there exist Ω(n)
cycles in S, each of which is contained in Ω(n) clusters, we have that any 〈0, β, 0〉-
drawing of C(G,T) has β = Ω(n2) edge-region crossings. 2

Theorem 4.10 There exists a c-connected flat clustered graph C(G,T) such that β ∈
Ω(n) in every 〈0, β, 0〉-drawing of C(G,T).

Proof: The underlying graph G is defined as in the proof of Theorem 4.9. Tree T is
such that, for i = 1, . . . , n, there exists a cluster µi containing vertices ai, bi, and ci;
moreover, µa = {va} and µb = {vb}. See Fig. 4.19(b).

i
i

“thesis” — 2015/4/29 — 21:44 — page 100 — #112 i
i

i
i

i
i

100 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

va

vb

(a)

va

vb

(b)

Figure 4.19: (a) Illustration for Theorem 4.9. (b) Illustration for Theorem 4.10.

In any planar embedding of G there exists a set S of at least n6 nested 3-cycles,
and all such cycles contain either va or vb, say vb, in their interior. Let Ci be any of
such cycles. Not all the edges of Ci can be drawn entirely inside the regionR(µi) rep-
resenting µi in any 〈0,∞, 0〉-drawing of C(G,T), as otherwise R(µi) would enclose
vb. This implies that Ci intersects the border of R(µi) twice. Since there exist Ω(n)
cycles in S, we have that any 〈0, β, 0〉-drawing of C(G,T) has β = Ω(n) edge-region
crossings. 2

Finally, we prove lower bounds on the number of rr-crossings in 〈0, 0,∞〉-drawings
of clustered graphs. We only consider non-c-connected clustered graphs, since a c-
connected clustered graph either does not admit any 〈0, 0,∞〉-drawing or is c-planar.
We distinguish two cases based on whether the considered clustered graphs are flat or
not.

Theorem 4.11 There exists a non-c-connected flat clustered graph C(G,T), where
G is outerplanar, such that γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C(G,T).

Proof: We first describe C(G,T). Refer to Fig. 4.20(a). Consider a cycle C of n
vertices v1, . . . , vn, such that n is even. For i = 1, . . . , n, add to C a vertex ui and
connect it to vi and vi+1, where vn+1 = v1. Denote by G the resulting outerplanar
graph. Tree T is such that vertices v1, . . . , vn belong to the same cluster µ∗ and, for
i = 1, . . . , n/2, vertices ui and un/2+i belong to µi.

Since all vertices u1, . . . , un have to lie outside region R(µ∗) in any 〈0, 0,∞〉-
drawing of C(G,T), the embedding of G is outerplanar. Hence, for any i 6= j ∈
{1, . . . , n/2}, cluster µi intersects cluster µj , thus proving the theorem. 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 101 — #113 i
i

i
i

i
i

4.5. RELATIONSHIPS BETWEEN α, β AND γ 101

v1
v2

v3

v6

v4
v5u1

u2

u3

u4

u5

u6
(a)

v1
v2

v3

v8

v6
v7u1

u2
u4

u6

u7

u8

v4 v5

u3 u5

u7u7

(b)

Figure 4.20: (a) Illustration for Theorem 4.11. (b) Illustration for Theorem 4.12.

Theorem 4.12 There exists a non-c-connected non-flat clustered graphC(G,T), where
G is outerplanar, such that γ ∈ Ω(n3) in every 〈0, 0, γ〉-drawing of C(G,T).

Proof: We first describe C(G,T). Refer to Fig. 4.20(b). Graph G is an outerplanar
graph constructed as in the proof of Theorem 4.11, such that n is a multiple of 4.
Tree T is defined as follows. Set µ1 = {u1} and µ2 = {u2}. Then, for each i =
3, 4, . . . , n, set µi = µi−2 ∪ {ui}. Finally, set µ∗ = {v1, . . . , vn}.

Since all vertices u1, . . . , un have to lie outside region R(µ∗), in any 〈0, 0,∞〉-
drawing of C(G,T) the embedding of G is outerplanar.

We claim that, for each i ∈ {n2 , n2 + 2, . . . , n} and j ∈ {n2 + 1, n2 + 3, . . . , n−1},
the border of region R(µi) intersects Ω(n) times the border of region R(µj). Observe
that the claim implies the theorem.

We prove the claim. Consider the border B(µi) of R(µi), for any i ∈ {n2 , n2 +
2, . . . , n}. First, for each 2 ≤ k ≤ n

2 such that k is even, B(µi) properly crosses
edge (vk, uk) in a point pk and edge (vk+1, uk) in a point p′k, given that µi contains
uk and does not contain vk and vk+1. Second, for each 1 ≤ h ≤ n

2 such that h is
odd, B(µi) does not cross edges (vh, uh), given that µi contains neither uh, nor vh,
nor vk+1. Third, the intersection point of B(µi) with G that comes after pk and p′k is
pk+2, as otherwise B(µi) would not be a simple curve or an er-crossing would occur.
Analogous considerations hold for each j ∈ {n2 + 1, n2 + 3, . . . , n − 1}. Hence, the
part of B(µi) between p′k and pk+2 not containing pk intersects the part of B(µj)
between p′k+1 and pk+3. This concludes the proof of the theorem. 2

4.5 Relationships between α, β and γ

In this section we discuss the interplay between ee-, er-, and rr-crossings for the
realizability of 〈α, β, γ〉-drawings of clustered graphs.

i
i

“thesis” — 2015/4/29 — 21:44 — page 102 — #114 i
i

i
i

i
i

102 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

As a first observation in this direction, we note that the result proved in Theo-
rem 4.6 shows that there exist c-graphs for which allowing ee-, er-, and rr-crossing at
the same time does not reduce the total number of crossings with respect to allowing
only one type of crossings.

Next, we study the following question: suppose that a clustered graph C(G,T)
admits a 〈1, 0, 0〉-drawing (resp. a 〈0, 1, 0〉-drawing, resp. a 〈0, 0, 1〉-drawing); does
this imply that C(G,T) admits a 〈0, β, 0〉-drawing and a 〈0, 0, γ〉-drawing (resp. an
〈α, 0, 0〉-drawing and a 〈0, 0, γ〉-drawing, resp. an 〈α, 0, 0〉-drawing and a 〈0, β, 0〉-
drawing) with small number of crossings?

In the following, we prove that the answer to this question is often negative, as we
can only prove (Theorem 4.13) that every graph admitting a drawing with one single
er-crossing also admits a drawing with O(n) ee-crossings, while in many other cases
we can prove (Theorem 4.14) the existence of graphs that, even admitting a drawing
with one single crossing of one type, require up to a quadratic number of crossings of
a different type.

We first present Theorem 4.13. Observe that this theorem gives a stronger result
than the one needed to answer the above question, as it proves that every 〈α, β, γ〉-
drawing of a clustered graph can be transformed into a 〈α+ β ·O(n), 0, γ〉-drawing.

Theorem 4.13 Any n-vertex clustered graph admitting a 〈0, β, 0〉-drawing also ad-
mits an 〈α, 0, 0〉-drawing with α ∈ O(βn).

Proof: Let Γ be a 〈0, β, 0〉-drawing of a clustered graph C(G,T). We construct an
〈α, 0, 0〉-drawing of C(G,T) with α ∈ O(βn) by modifying Γ as follows. For each
cluster µ ∈ T , consider the set of edges that cross the boundary of R(µ) at least
twice. Partition this set into two sets Ein and Eout as follows. Each edge whose
endvertices both belong to µ is in Ein; each edge none of whose endvertices belongs
to µ is in Eout; all the other edges are arbitrarily placed either in Ein or in Eout.
Fig. 4.21(a) represents a cluster µ and the corresponding set Eout. We describe the
construction for Eout. For each edge e ∈ Eout consider the set of curves obtained as
e ∩ R(µ), except for the curves having the endvertices of e as endpoints. Consider
the set S that is the union of the sets of curves obtained from all the edges of Eout.
Starting from any point of the boundary ofR(µ), follow such a boundary in clockwise
direction and assign increasing integer labels to the endpoints of all the curves in S.
See Fig. 4.21(b). Consider a curve ζ ∈ S such that there exists no other curve ζ ′ ∈ S
whose both endpoints have a label that is between the labels of the two endpoints of
ζ. Then, consider the edge e such that ζ is a portion of e. Consider two points p1 and
p2 of e arbitrarily close to the two endpoints of ζ, respectively, and not contained into
R(µ). Redraw the portion of e between p1 and p2 as a curve outside R(µ) following

i
i

“thesis” — 2015/4/29 — 21:44 — page 103 — #115 i
i

i
i

i
i

4.5. RELATIONSHIPS BETWEEN α, β AND γ 103

(a)

10

1
234

5 6
7

9

8

(b)

10

1
234

5 6
7

9

8

p1

p2

e

v

u

ζ

(c)

10

1
234

5 6
7

9

8

(d)

Figure 4.21: Illustration for Theorem 4.13. (a) A cluster µ with a set of edges crossing
R(µ) at least twice and belonging to Eout. (b) The curves belonging to S are repre-
sented by dashed curve segments, while the other portions of the edges are represented
by solid curve segments. The intersection points between curves in S and R(µ) are
labeled with increasing integers. (c) The curve ζ between intersection points 6 and
8 that is a portion of edge e = (u, v) is selected, since there exists no curve ζ ′ ∈ S
whose both endpoints have a label that is between 6 and 8. The old drawing of curve
ζ is represented by a dotted curve segment, while the new drawing of ζ is represented
by a fat solid curve. Note that the new drawing of ζ crosses all the edges that cross
the boundary of R(µ) between 6 and 8. (d) The final drawing obtained by applying
the described procedure to all the curves in S.

clockwise the boundaryB(ζ, µ) ofR(µ) between the smallest and the largest endpoint
of ζ, and arbitrarily close to B(ζ, µ) in such a way that it crosses only the edges that
cross B(ζ, µ) and the edges that used to cross the portion of e between p1 and p2

before redrawing it. See Fig. 4.21(c), where the curve ζ between 6 and 8 is redrawn.
Remove ζ from S and repeat this procedure until S is empty. Fig. 4.21(d) shows
the final drawing obtained by applying the described procedure to the drawing in
Fig. 4.21(a).

The construction for Ein is analogous, with the portion of e being redrawn inside

i
i

“thesis” — 2015/4/29 — 21:44 — page 104 — #116 i
i

i
i

i
i

104 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

R(µ). Observe that, every time the portion of an edge e between p1 and p2, corre-
sponding to a curve ζ ∈ S , is redrawn, an er-crossing is removed from the drawing
and at most O(n) ee-crossings between e and the edges crossing B(ζ, µ) are added to
the drawing. This concludes the proof of the theorem. 2

In Theorem 4.14 we prove that there exist graphs that, even admitting a drawing
with one single crossing of one type, require up to a quadratic number of crossings of
a different type.

Theorem 4.14 There exist clustered graphs C1, C2, and C3 such that:

(i) C1 admits a 〈1, 0, 0〉-drawing, β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C1, and
γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C1;

(ii) C2 admits a 〈0, 1, 0〉-drawing, α ∈ Ω(n) in every 〈α, 0, 0〉-drawing of C2, and
γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C2;

(iii) C3 admits 〈0, 0, 1〉-drawing, α ∈ Ω(n2) in every 〈α, 0, 0〉-drawing, and β ∈
Ω(n) in every 〈0, β, 0〉-drawing of C3.

Proof: We start by describing a clustered graph C∗(G∗, T ∗), that will be used as
a template for the graphs in the proof. Graph G∗ is obtained as follows.Refer to
Fig. 4.22(a). Initialize G∗ = K5(n) on vertices {a, b, c, d, e}. First, for each u, v ∈
{a, b, c, d, e}, with u 6= v, replace the set of n multiple edges S(u, v) with a set
S′(u, v) of n length-2 paths between u and v. Then, remove from G∗ sets S′(a, d),
S′(c, e), S′(a, e), and S′(c, d). Finally, for i = 1, . . . , n, add to G∗ vertices
[ae]i, [ea]i, [cd]i, [dc]i, and edges (a, [ae]i), (e, [ea]i), (c, [cd]i), (d, [dc]i). For i =
1, . . . ,m, T ∗ contains clusters µ(a, e)i = {[ae]i, [ea]i} and µ(c, d)i = {[cd]i, [dc]i}.
Denote by M(a, e) = {(a, [ae]i), (e, [ea]i), µ(a, e)i|i = 1, . . . , n} and M(c, d) =
{(c, [cd]i), (d, [dc]i), µ(c, d)i|i = 1, . . . , n}.

Clustered graph C1(G1, T1) is obtained by adding edges (a, d) and (c, e) to G∗

and by setting T1 = T ∗. A 〈1, 0, 0〉-drawing of C1 is depicted in Fig. 4.22(b), where
edges (a, d) and (c, e) cross.

Clustered graph C2(G2, T2) is obtained by adding edge (c, e) toG∗ and by adding
a cluster µ(a, d) = {a, d} to T ∗. A 〈0, 1, 0〉-drawing of C2 is depicted in Fig. 4.22(c),
where edge (c, e) and region R(µ(a, d)) cross.

Clustered graph C3(G3, T3) is obtained by setting G3 = G∗ and by adding clus-
ters µ(a, d) = {a, d} and µ(c, e) = {c, e} to T ∗. A 〈0, 0, 1〉-drawing ofC3 is depicted
in Fig. 4.22(d), where regions R(µ(a, d)) and R(µ(c, e)) cross.

The lower bounds claimed in the theorem can be obtained with arguments analo-
gous to those used in the proof of Theorem 4.6.

i
i

“thesis” — 2015/4/29 — 21:44 — page 105 — #117 i
i

i
i

i
i

4.5. RELATIONSHIPS BETWEEN α, β AND γ 105

a

b

c

de

(a)

a

b

c

de

(b)

a

b

c

de

(c)

a

b

c

de

(d)

Figure 4.22: Illustration for the proof of Theorem 4.14. (a) C-graph C∗: Dotted lines
are placeholders for gadgets. (b) A 〈1, 0, 0〉-drawing of C1, (c) a 〈0, 1, 0〉-drawing of
C2, and (d) a 〈0, 0, 1〉-drawing of C3.

For example, consider any 〈0, β, 0〉-drawing Γβ ofC1 which minimizes β. For i =
1, . . . , n, draw an edge ([ae]i, [eai]) inside regionR(µ(a, e)i) and an edge ([cd]i, [dci])
inside region R(µ(c, d)i), and remove such regions. Then, remove edges (a, d) and
(c, e) and draw two sets S(a, d) and S(c, e) of n multiple edges arbitrarily close to
the drawings of (a, d) and (c, e). The obtained drawing Γ′β is a drawing of a subdivi-
sion of K5(n), and hence contain Ω(n2) crossings. Since Γβ is a 〈0,∞, 0〉-drawing,
each crossing in Γ′β involves exactly one edge in {([ae]i, [eai]), ([cd]i, [dci])}. Also,
since Γβ minimizes β, edges in {(a, d), (c, e)} are not involved in any crossing in Γ′β ,
since both such edges are adjacent to an edge belonging toM(a, e) and to an edge be-
longing to M(c, d) (recall that adjacent edges do not cross in any drawing of a graph
whose number of crossings is minimum). Thus, each crossing in Γ′β corresponds to
an er-crossing in Γβ , which implies that β ∈ Ω(n2).

i
i

“thesis” — 2015/4/29 — 21:44 — page 106 — #118 i
i

i
i

i
i

106 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

This concludes the proof of the theorem. 2

4.6 Complexity

In this section we study the problem of minimizing the number of crossings in 〈α, β, γ〉-
drawings.

We define the problem (α, β, γ)-CLUSTERCROSSINGNUMBER((α, β, γ)-CCN)
as follows. Given a clustered graph C(G,T) and an integer k > 0, problem (α, β, γ)-
CCN asks whether C(G,T) admits a 〈α, β, γ〉-drawing with α+ β + γ ≤ k.

First, we prove that problem (α, β, γ)-CCN belongs to class NP.

Lemma 4.7 Problem (α, β, γ)-CCN is in NP.

Proof: Similarly to the proof that the CROSSINGNUMBER problem is in NP [GJ83],
we need to “guess” a drawing of C(G,T) with α ee-crossings, with β er-crossings,
and with γ rr-crossings, for each choices of α, β, and γ satisfying α + β + γ ≤ k.
This is done as follows. Let m be the number of edge-cluster pairs 〈e, µ〉 such that
one end-vertex of e is in µ and the other one is not. Let 0 ≤ p ≤ γ be a guess on the
number of pairs of clusters that intersect each other. Let E be a guess on the rotation
schemes of the vertices of G. Arbitrarily orient each edge in G; also, arbitrarily fix
a “starting point” on the boundary of each cluster in T and orient such a boundary in
any way.

For each edge e, guess a sequence of crossings x1, x2, . . . , xk(e) occurring along e
while traversing it according to its orientation. Each of such crossings xi is associated
with: (1) the edge e′ that crosses e in xi or the cluster µ′ such that the boundary of
R(µ′) crosses e in xi; and (2) a boolean value b(xi) stating whether e′ (resp. the
boundary of R(µ′)) crosses e from left to right according to the orientations of e and
e′ (resp. of e and the boundary of R(µ′)).

Analogously, for each cluster µ, guess a sequence of crossings x1, x2, . . . , xk(µ)

occurring along the boundary of R(µ) while traversing it from its starting point ac-
cording to its orientation. Again, each of such crossings xi is associated with: (1)
the edge e′ that crosses the boundary of R(µ) in xi or the cluster µ′ such that the
boundary of R(µ′) crosses the boundary of R(µ) in xi; and (2) a boolean value b(xi)
stating whether e′ (resp. the boundary of R(µ′)) crosses the boundary of R(µ) from
left to right according to the orientations of the boundary of R(µ) and e′ (resp. of the
boundary of R(µ) and the boundary of R(µ′)). Observe that the guessed crossings
respect constraints C1, C2, and C3.

Crossings are guessed in such a way that there is a total number of α crossings
between edge-edge pairs, a total number of 2β + 2m crossings between edge-cluster

i
i

“thesis” — 2015/4/29 — 21:44 — page 107 — #119 i
i

i
i

i
i

4.6. COMPLEXITY 107

pairs, and a total number of 2γ + 2p crossings between cluster-cluster pairs, so that p
pairs of clusters have a crossing.

We construct a graph G∗ with a fixed rotation scheme around each vertex as fol-
lows. Start with G∗ having the same vertex set of G and containing no edge. For
each edge e in G, add to G∗ a path starting at one end-vertex of e, ending at the other
end-vertex of e, and containing a vertex for each crossing associated with e. For each
cluster µ in T , add to G∗ a cycle containing a vertex for each crossing associated with
µ. This is done in such a way that one single vertex is introduced in G∗ for each
guessed crossing. The rotation scheme of each vertex in G∗ that is also a vertex in G
is the one in E . The rotation scheme of each vertex in G∗ corresponding to a crossing
xi is determined according to b(xi).

Check in linear time whether the constructed graphG∗ with a fixed rotation scheme
around each vertex is planar. For each cluster µ, check in linear time whether the cycle
representing the boundary of R(µ) contains in its interior all and only the vertices of
G and the clusters in T (that is, all the vertices of the cycles representing such clusters)
it has to contain. Observe that, if the checks succeed and a planar drawing of G∗ with
the a fixed rotation scheme around each vertex can be constructed, the corresponding
drawing of C(G,T) is an 〈α, β, γ〉-drawing. 2

Second, we prove that (α, β, γ)-CCN is NP-complete, even if the underlying graph
is planar, namely a forest of star graphs, by means of a reduction from the CROSS-
INGNUMBER problem.

Theorem 4.15 Problem (α, β, γ)-CCN is NP-complete, even in the case in which the
underlying graph is a forest of star graphs.

Proof: The membership in NP is proved in Lemma 4.7.
The NP-hardness is proved by means of a polynomial-time reduction from the

CROSSINGNUMBER problem, which has been proved to be NP-complete by Garey
and Johnson [GJ83]. Given a graph G∗ and an integer k∗ > 0, the CROSSINGNUM-
BER problem consists of deciding whetherG∗ admits a drawing with at most k∗ cross-
ings.

We describe how to construct an instance 〈C(G,T), k〉 of (α, β, γ)-CCN starting
from an instance 〈G∗, k∗〉 of CROSSINGNUMBER.

Initialize G = G∗ and T = ρ. For each edge (ui, uj) of G∗, subdivide (ui, uj)
with two subdivision vertices u′i and u′j , add a cluster µi,j to T containing u′i and u′j
as a child of ρ, and remove edge (u′i, u

′
j) from G and from G∗. See Fig.4.23. Further,

set k = k∗. Note that, graph G is a forest of star graphs. Also, instance 〈C(G,T) , k〉
can be constructed in polynomial time.

i
i

“thesis” — 2015/4/29 — 21:44 — page 108 — #120 i
i

i
i

i
i

108 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

(a) (b)

Figure 4.23: Illustration for the proof of Theorem 4.15: A part of graph G∗ (a) and
the corresponding part of C(G,T) (b).

We show that instance 〈C(G,T), k〉 has a solution if and only if instance 〈G∗, k∗〉
has a solution. Both directions of the proof use techniques similar to those used in
Section 4.4.

Suppose that 〈G∗, k∗〉 admits a solution, that is, G∗ has a drawing Γ∗ with at
most k∗ crossings. An 〈α, β, γ〉-drawing Γ of C(G,T) with α + β + γ ≤ k can
be constructed by subdividing twice each edge (ui, uj) of G∗ and by replacing the
central edge (u′i, u

′
j) of each length-3 path representing an edge (ui, uj) of G∗ with a

cluster whose drawing is arbitrarily close to the drawing of (u′i, u
′
j). By construction,

each crossing between two edges in Γ∗ corresponds to either an ee-crossing, or to an
er-crossing, or to a rr-crossing in Γ. Hence, drawing Γ contains the same number of
crossings as Γ∗, that is, at most k∗ = k.

Suppose that 〈C(G,T), k〉 admits a solution, that is, C(G,T) has an 〈α, β, γ〉-
drawing Γ with α + β + γ ≤ k. A drawing Γ∗ of G∗ with at most k∗ crossings can
be constructed by replacing each cluster µi,j = {u′i, u′j} with an edge between u′i
and u′j inside R(µi,j) and by replacing each length-3 path P (i, j) = (ui, u

′
i, u
′
j , uj)

with an edge (ui, uj) whose drawing is the same as the drawing of P (i, j) in Γ. By
construction, each crossing (that is either an ee-crossing, or an er-crossing, or an rr-
crossing) in Γ corresponds to a crossing between two edges in Γ∗. Hence, drawing Γ∗

contains the same number of crossings as Γ, that is, at most k = k∗.
This concludes the proof of the theorem. 2

As for the problems considered in the previous sections, it is interesting to study
the (α, β, γ)-CCN problem when only one out of α, β, and γ is allowed to be different
from 0. We call α-CCN, β-CCN, and γ-CCN the corresponding decision problems.

We observe that the proof of Theorem 4.15 can be easily modified to show that
all of α-CCN, β-CCN, and γ-CCN are NP-complete, even in the case in which the

i
i

“thesis” — 2015/4/29 — 21:44 — page 109 — #121 i
i

i
i

i
i

4.6. COMPLEXITY 109

underlying graph is a forest of star graphs.
In the following we prove that stronger results can be found for α-CCN and β-

CCN, by giving NP-hardness proofs for more restricted clustered graph classes.

Theorem 4.16 Problem α-CCN is NP-complete even in the case in which the under-
lying graph is a matching.

Proof: The membership in NP follows from Lemma 4.7.
The NP-hardness is proved by means of a polynomial-time reduction from the

known CROSSINGNUMBER problem [GJ83].
We describe how to construct an instance 〈C(G,T) , k〉 of α-CCN starting from an

instance 〈G∗, k∗〉 of CROSSINGNUMBER. See Figs. 4.24(a)-(b).
Initialize G = G∗ and T = ρ. Subdivide each edge of G with two subdivision

vertices. For each vertex vi of G, add a cluster µi to T as a child of ρ containing all
the neighbors of vi, and remove from G vertex vi and its incident edges.

Further, set k = k∗. Note that graph G is a matching. Also, instance 〈C(G,T), k〉
can be constructed in polynomial time.

v1

v2

v3

v4
v5

v6

v7

(a)

C1
C2

C3

C4

C5

C6

C7

(b)

Figure 4.24: (a) Graph G∗ in the proof of Theorem 4.16. (b) The clustered graph C(G,T)
corresponding to G∗.

We show that instance 〈C(G,T), k〉 has a solution if and only if instance 〈G∗, k∗〉
has a solution.

Suppose that 〈G∗, k∗〉 admits a solution, that is, G∗ has a drawing Γ∗ with at most
k∗ crossings. An 〈α, 0, 0〉-drawing Γ of C(G,T) with α ≤ k can be constructed as
follows. Initialize Γ = Γ∗. For each vertex vi of G∗, draw a small disk di around
it, and, for each edge e incident to vi, place a vertex v′i on the intersection between

i
i

“thesis” — 2015/4/29 — 21:44 — page 110 — #122 i
i

i
i

i
i

110 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

e and the boundary of di. Then, replace each edge e = (vi, vj) in Γ with edge
(v′i, v

′
j). Finally, remove each vertex vi of G∗ from Γ and represent each cluster µi in

Γ as a region slightly surrounding disk di. Since each edge in Γ is represented as a
Jordan curve that is a subset of the Jordan curve representing an edge in Γ∗, drawing
Γ contains at most the same number of crossings as Γ∗.

Suppose that 〈C(G,T), k〉 admits a solution, that is, C(G,T) has an 〈α, 0, 0〉-
drawing Γ with α ≤ k. A drawing Γ∗ of G∗ with at most k∗ crossings can be con-
structed as follows. Place vertex vi on any interior point of region R(µi). For each
intersection point p between the boundary of R(µi) and an edge incident to µi, draw
a curve connecting vi to p so that such curves do not cross each other. Remove each
vertex v′i and, for each edge e incident to v′i, the part of e which lies inside R(µi).
Also, remove all the regions representing clusters of T . The crossings in the result-
ing drawing Γ∗ of G∗ are a subset of the ee-crossings in Γ. Namely, the curves that
exist in Γ∗ and do not exist in Γ do not cross any edge of G∗, given that Γ has no
er-crossing. This concludes the proof of the theorem. 2

Theorem 4.17 Problem β-CCN is NP-complete even for c-connected flat clustered
graphs in which the underlying graph is a triconnected planar multigraph.

Proof: The membership in NP follows from Lemma 4.7.
The NP -hardness is proved by means of a polynomial-time reduction from the

NP -complete problem PLANAR STEINER TREE (STPG) [GJ77] (see also Section 8.4
for further results on the STPG problem contained in this thesis), which is defined as
follows: Given a planar graph G(V,E) whose edges have weights w : E → N, given
a set S ⊂ V of terminals, and given an integer k, the STPG problem asks whether
there exists a tree T ∗(V ∗, E∗) such that (1) V ∗ ⊆ V , (2) E∗ ⊆ E, (3) S ⊆ V ∗, and
(4)

∑
e∈E∗ w(e) ≤ k. The edge weights in w are bounded by a polynomial function

p(n) (see [GJ77]). We are going to use the variant of STPG in which (A)G is a subdi-
vision of a triconnected planar graph, where each subdivision vertex is not a terminal,
and (B) all the edge weights are equal to 1.

In the following we sketch a reduction from STPG to STPG with the described
properties. LetG be any edge-weighted planar graph. AugmentG to any triconnected
planar graph G′(V ′, E′) by adding dummy edges and by assigning weight w(e) =
n ·p(n) to each dummy edge e. Then, replace each edge e ofG′ with a path P (e) with
w(e) edges, each with weight 1, hence obtaining a planar graph G′′(V ′′, E′′). Let the
terminals of G′′ be the same terminals of G. Note that, by construction, G′′ satisfies
Properties (A) and (B). Also, since |V ′′| ∈ O(n2 · p(n)), the described reduction is
polynomial.

i
i

“thesis” — 2015/4/29 — 21:44 — page 111 — #123 i
i

i
i

i
i

4.6. COMPLEXITY 111

We prove that 〈G,S, k〉 is a positive instance of STPG if and only if 〈G′′, S, k〉 is
a positive instance of the considered variant of STPG.

Suppose that 〈G,S, k〉 is a positive instance of STPG. Starting from the solution
T ∗ of 〈G,S, k〉, we construct a solution T � of 〈G′′, S, k〉 by replacing each edge e
with path P (e). By construction,

∑
e∈T� w(e) =

∑
e∈T∗ w(e) ≤ k.

Suppose that 〈G′′, S, k〉 is a positive instance of the variant of STPG. Let
T �(V �, E�) be the solution of 〈G′′, S, k〉. Assume that T � is the optimal solution
to 〈G′′, S, k〉, i.e., there exists no tree T](V], E]) such that T](V], E]) is a solution
to 〈G′′, S, k〉 and

∑
e∈E] w(e) <

∑
e∈E� w(e). Observe that, if an edge of a path

P (e) belongs to E�, then all the edges of P (e) belong to E�. Moreover, no edge of
a path P (e) such that e is a dummy edge belongs to E�, since the total weight of the
edges of each path P (e) such that e is a dummy edge is n · p(n). Starting from T �,
we construct a solution T ∗ of 〈G,S, k〉 by replacing all the edges of each path P (e)
with an edge e. By construction,

∑
e∈T∗ w(e) =

∑
e∈T� w(e) ≤ k.

Next we show a polynomial-time reduction from the variant of STPG in which
all the instances satisfy Properties (A) and (B) to β-CCN. Refer to Fig. 4.25. Let
〈G,S, k〉 be an instance of the variant of STPG. Since G is a subdivision of a tri-
connected planar graph, it admits a unique planar embedding, up to a flip and to the
choice of the outer face. Construct a planar embedding ΓG of G. Construct the dual
graph H of ΓG. Note that, since G is a subdivision of a triconnected planar graph,
its dual H is a planar triconnected multigraph. For each terminal s ∈ S, consider the
set EG(s) of the edges incident to s in G and consider the face fs of H composed of
the edges that are dual to the edges in EG(s); add s to the vertex set of H , embed it
inside fs, and connect it to the vertices incident to fs. Define the inclusion tree T as
follows. For each vertex si ∈ S, with 1 ≤ i ≤ |S|, T has a cluster µi = {si}; all the
other vertices in the vertex set of H belong to the same cluster ν. Then, the instance
of β-CCNis 〈C(H,T), k〉.

We show that 〈C(H,T), k〉 admits a solution if and only if 〈G,S, k〉 does.
Suppose that 〈G,S, k〉 admits a solution T ∗. Consider a terminal vertex s∗ ∈ S

and construct a planar embedding of H such that s∗ is incident to the outer face.
Construct a drawing of cluster ν as a simple region R(ν) that entirely encloses H ,
except for a small region surrounding T ∗ (observe that such a simple region R(ν)
exists since s∗ is incident to the outer face and s∗ ∈ T ∗). Draw each cluster µi as
a region R(µi) surrounding si sufficiently small so that it does not intersect R(ν).
Observe that the resulting drawing of C(H,T) is a 〈0,∞, 0〉-drawing. Moreover,
R(ν) intersects all and only the edges dual to edges in T ∗, hence there are at most k
edge-region crossings, that is, C(H,T) is a 〈0, β, 0〉-drawing with β ≤ k.

Suppose thatC(H,T) admits a 〈0, β, 0〉-drawing Γ with β ≤ k edge-region cross-
ings and assume that Γ is optimal (that is, there is no 〈0,∞, 0〉-drawing with fewer

i
i

“thesis” — 2015/4/29 — 21:44 — page 112 — #124 i
i

i
i

i
i

112 CHAPTER 4. RELAXING THE CONSTRAINTS OF C-PLANARITY

s∗

Figure 4.25: Illustration for the proof of Theorem 4.17. Solid (black) lines are edges of G;
dashed (red) and dotted (blue) lines are edges of H; green edges are the edges of T ∗; black
circles and white squares are non-terminal vertices and terminals in G, respectively; finally, red
circles and white squares are vertices in H .

er-crossings). Consider the graph T ∗ composed of the edges that are dual to the edges
of H participating in some edge-region crossing. We claim that T ∗ has at least one
edge incident to each terminal in S and that T ∗ is connected. The claim implies that
T ∗ is a solution to the instance 〈G,S, k〉 of STPG, since T ∗ has at most k edges and
since Γ is optimal. Consider any terminal s ∈ S. If none of the edges incident to s
in G belongs to T ∗, it follows that none of the edges of H incident to face fs has a
crossing with the region R(ν) representing ν in Γ. Observe that, since Γ is optimal,
there exists a terminal s∗ incident to the outer face of Γ. If s 6= s∗, then since all the
vertices incident to fs have to lie inside R(ν), either R(ν) is not a simple region or it
contains s, in both cases contradicting the assumption that Γ is a 〈0,∞, 0〉-drawing.
Also, if s = s∗, then either R(ν) is not a simple region or it contains all the vertices
of H , and hence also vertices not in ν, in both cases contradicting the assumption that
Γ is a 〈0,∞, 0〉-drawing. Suppose that T ∗ contains (at least) two connected compo-
nents T ∗1 and T ∗2 . At least one of them, say T ∗2 , does not contain any edge that is dual
to an edge incident to the outer face of Γ. Therefore, R(ν) is not a simple region, a
contradiction. This concludes the proof of the theorem. 2

4.7 Open Problems

Given a clustered graph whose underlying graph is planar we defined and studied its
〈α, β, γ〉-drawings, where the number of ee-, er-, and rr-crossings is equal to α, β,
and γ, respectively.

i
i

“thesis” — 2015/4/29 — 21:44 — page 113 — #125 i
i

i
i

i
i

4.7. OPEN PROBLEMS 113

This chapter opens several problems. First, some of them are identified by non-
tight bounds in the tables of the Introduction. Second, in order to study how allowing
different types of crossings impacts the features of the drawings, we concentrated
most of the attention on 〈α, β, γ〉-drawings where two out of α, β, and γ are equal to
zero. It would be interesting to study classes of clustered graphs that have drawings
where the values of α, β, and γ are balanced in some way. Third, we have seen that
not all clustered graphs whose underlying graph is planar admit 〈0, 0,∞〉-drawings.
It would be interesting to characterize the class of clustered graphs that admit one and
to extend our testing algorithm to simply-connected clustered graphs.

i
i

“thesis” — 2015/4/29 — 21:44 — page 114 — #126 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 115 — #127 i
i

i
i

i
i

Chapter 5

Planar Embeddings with Small and
Uniform Faces

Motivated by finding planar embeddings that lead to drawings with favorable aesthet-
ics, in this chapter1 we study the problems MINMAXFACE and UNIFORMFACES of
embedding a given biconnected multi-graph such that the largest face is as small as
possible and such that all faces have the same size, respectively. Our study is fur-
ther justified by the fact that there exist many computationally challeging problems
that have been proved hard even for planar graphs for which efficient algorithms are
known only if the input graphs have low degree. In particular, the C-PLANARITY
problem was proved polynomial-time solvable for plane clustered graphs with small
faces [JKK+09, DF09], or equivalently, whose dual graph has small degree.

We prove a complexity dichotomy for MINMAXFACE and show that deciding
whether the maximum is at most k is polynomial-time solvable for k ≤ 4 and NP -
complete for k ≥ 5. Further, we give a 6-approximation for minimizing the maximum
face in a planar embedding. For UNIFORMFACES, we show that the problem is NP -
complete for odd k ≥ 7 and even k ≥ 10. Moreover, we characterize the biconnected
planar multi-graphs admitting 3- and 4-uniform embeddings (in a k-uniform embed-
ding all faces have size k) and give an efficient algorithm for testing the existence of
a 6-uniform embedding.

1The contents of this chapter are a joint work with Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter,
appeared in [LJKR14] and carried out during a visit period in the Department of Applied Mathematics at
Charles University of Prague. Thanks to Bartosz Walczak for fruitful discussions.

115

i
i

“thesis” — 2015/4/29 — 21:44 — page 116 — #128 i
i

i
i

i
i

116 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

5.1 Introduction

While there are infinitely many ways to embed a connected planar graph into the
plane without edge crossings, these embeddings can be grouped into a finite number
of equivalence classes, so-called combinatorial embeddings, where two embeddings
are equivalent if the clockwise order around each vertex is the same. Many algorithms
for drawing planar graphs require that the input graph is provided together with a com-
binatorial embedding, which the algorithm preserves. Since the aesthetic properties
of the drawing often depend critically on the chosen embedding, e.g. the number of
bends in orthogonal drawings, it is natural to ask for a planar embedding that will lead
to the best results.

In many cases the problem of optimizing some cost function over all combinatorial
embeddings is NP -complete. For example, it is known that it is NP -complete to test
the existence of an embedding that admits an orthogonal drawing without bends or an
upward planar embedding [GT01a]. On the other hand, there are efficient algorithms
for minimizing various measures such as the radius of the dual [ADP11, BM88] and
attempts to minimize the number of bends in orthogonal drawings subject to some
restrictions [BKRW14, BRW13, DLV98].

Usually, choosing a planar embedding is considered as deciding the circular order-
ing of edges around vertices. It can, however, also be equivalently viewed as choosing
the set of facial cycles, i.e., which cycles become face boundaries. In this sense it is
natural to seek an embedding whose facial cycles have favorable properties. For ex-
ample, Gutwenger and Mutzel [GM04] give algorithms for computing an embedding
that maximizes the size of the outer face. The most general form of this problem is as
follows. The input consists of a graph and a cost function on the cycles of the graph,
and we seek a planar embedding where the sum of the costs of the facial cycles is
minimum. This general version of the problem has been introduced and studied by
Mutzel and Weiskircher [MW99]. Woeginger [Woe02] shows that it is NP -complete
even when assigning cost 0 to all cycles of size up to k and cost 1 for longer cycles.
Mutzel and Weiskircher [MW99] propose an ILP formulation for this problem based
on SPQR-trees.

In this chapter, we focus on two specific problems of this type, aimed at reducing
the visual complexity and eliminating certain artifacts related to face sizes from draw-
ings. Namely, large faces in the interior of a drawing may be perceived as holes and
consequently interpreted as an artifact of the graph. Similarly, if the graph has faces
of vastly different sizes, this may leave the impression that the drawn graph is highly
irregular. However, rather than being a structural property of the graph, it is quite
possible that the artifacts in the drawing rather stem from a poor embedding choice
and can be avoided by choosing a more suitable planar embedding.

i
i

“thesis” — 2015/4/29 — 21:44 — page 117 — #129 i
i

i
i

i
i

5.2. PRELIMINARIES 117

We thus propose two problems. First, to avoid large faces in the drawing, we seek
to minimize the size of the largest face; we call this problem MINMAXFACE. Second,
we study the problem of recognizing those graphs that admit perfectly uniform face
sizes; we call this problem UNIFORMFACES. Both problems can be solved by the ILP
approach of Mutzel and Weiskircher [MW99] but were not known to be NP -hard.

Our Contributions. First, in Section 5.3, we study the computational complexity
of MINMAXFACE and its decision version k-MINMAXFACE, which asks whether
the input graph can be embedded such that the maximum face size is at most k. We
prove a complexity dichotomy for this problem and show that k-MINMAXFACE is
polynomial-time solvable for k ≤ 4 and NP -complete for k ≥ 5. Our hardness
result for k ≥ 5 strengthens Woeginger’s result [Woe02], which states that it is NP -
complete to minimize the number of faces of size greater than k for k ≥ 4, whereas
our reduction shows that it is in fact NP -complete to decide whether such faces can
be completely avoided. Furthermore, we give an efficient 6-approximation for MIN-
MAXFACE. Our result for k ≤ 4 suggests a possible strategy to try to answer the
C-PLANARITY problem in some cases. In fact, given an instance C(G,T) of the
C-PLANARITY problem one could first test whether the underlying graph G allows
for an embedding E whose every faces have size at most 4 and then run one of the
algorithms by Jelínková et al. [JKK+09] or by Di Battista and Frati [DF09] to test the
C-PLANARITY of C(G,T) when the planar embedding of G is E .

Second, in Section 5.4, we study the problem of recognizing graphs that ad-
mit perfectly uniform face sizes (UNIFORMFACES), which is a special case of k-
MINMAXFACE. An embedding is k-uniform if all faces have size k. We characterize
the biconnected multi-graphs admitting a k-uniform embedding for k = 3, 4 and give
an efficient recognition algorithm for k = 6. Finally, we show that for odd k ≥ 7 and
even k ≥ 10, it is NP -complete to decide whether a planar graph admits a k-uniform
embedding.

5.2 Preliminaries

Unless specified otherwise, throughout the rest of the chapter we will consider graphs
without loops, but with possible multiple edges.

To handle the decomposition of a biconnected multi-graph into its triconnected
components we use SPQR-trees. Refer to Chapter 2 and to [DT90, DT96b, DT96a].
Recall that, planar embeddings of G correspond bijectively to planar embeddings of
all skeletons of its SPQR-tree T ; the choices are the orderings of the parallel edges in
P-nodes and the embeddings of the R-node skeletons, which are unique up to a flip.

i
i

“thesis” — 2015/4/29 — 21:44 — page 118 — #130 i
i

i
i

i
i

118 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

When considering rooted SPQR-trees, we assume that the embedding of G is such
that the root edge is incident to the outer face, which is equivalent to the parent edge
being incident to the outer face in each skeleton. We refer the reader to Chapter 2 for
the related concepts of reference edge, pertinent graph, expansion graph, skeleton,
and virtual edge. We remark that in a planar embedding of G, the poles of any node µ
of T are incident to the outer face of the pertinent graph pert(µ) of µ. Hence, in the
following we only consider embeddings of the pertinent graphs with their poles lying
on the same face.

5.3 Minimizing the Maximum Face

In this section we present our results on MINMAXFACE. We first strengthen the
result of Woeginger [Woe02] and show that k-MINMAXFACE is NP -complete for
k ≥ 5 and then present efficient algorithms for k = 3, 4. In particular, the hardness
result also implies that the problem MINMAXFACE is NP -hard. Finally, we give an
efficient 6-approximation for MINMAXFACE on biconnected graphs. Recall that we
allow graphs to have multiple edges.

Theorem 5.1 k-MINMAXFACE is NP -complete for any k ≥ 5.

Proof: Clearly, the problem is in NP, since we can simply guess a planar embed-
ding and verify in polynomial time that all faces have size at most k.

We show hardness for k = 5 and in the end briefly sketch how to adapt the proof
for k > 5. We give a reduction from PLANAR 3-SAT with the additional assumption
that each variable occurs three times and each clause has size two or three. Further,
we can assume that if a variable occurs three times, then it appears twice as a positive
literal and once as a negative literal. This variant is NP -complete [FKMP95, Lemma
2.1].

We construct gadgets where some of the edges are in fact two parallel paths, one
consisting of a single edge and one of length 2 or 3. The ordering of these paths then
decides which of the faces incident to the gadget edge is incident to a path of length 1
and which is incident to a path of length 2 or 3; see Fig. 5.1a. Due to this use, we also
call these gadgets (1, 2)- and (1, 3)-edges, respectively.

Now consider a variable x whose positive literals occur d+ times. Note that the
negative literal hence occurs 3 − d+ times. We represent x by a variable gadget
consisting of two cycles C+ and C− of lengths 5 − d+ and 5 − (3 − d+) = 2 +
d+, respectively, sharing one edge. The shared edge is actually a (1, 3)-edge, called
variable edge, and in C+ (in C−), we replace d+ of its edges (3− d+ of its edges) by
(1, 2)-edges, called positive (negative) literal edges, respectively; see Fig. 5.1b. We

i
i

“thesis” — 2015/4/29 — 21:44 — page 119 — #131 i
i

i
i

i
i

5.3. MINIMIZING THE MAXIMUM FACE 119

1

3

1

1

4
u v

2
u

u

v

v

(a)

f+

f−

2

1

2

1

3

1

2

1

pos. literal

neg. literal

(b)

f+

f−

2

1

2

1

3

1

2

1

pos. literal

neg. literal

(c)

Figure 5.1: Illustration of the gadgets for the proof of Theorem 5.1. (a) (1, 2)-edge,
(1, 3)-edge, and (1, 4)-edge. (b) A variable gadget for a variable that occurs twice as
a positive literal and once as a negative literal. Changing the flip of the (1, 3)-edge
in the middle (variable edge) forces flipping the upper two literal edges. (c) A clause
gadget for a clause of size 3.

denote the faces bounded solely by C+ and C− by f+ and f−, respectively. Without
loss of generality, we assume that the gadget is embedded so that f+ and f− are
inner faces, and we denote the outer face by f0. The gadget represents truth values
as follows. A literal edge represents the truth value true if and only if its path of
length 1 is incident to the outer face. A variable edge represents value true if and
only if its path of length 1 is incident to f+. If the variable edge represents value true,
then f− is incident to a path of length 3 of the variable edge. Hence, all negative literal
edges must transmit value false. A symmetric argument shows that if the variable
edge encodes value false, then all positive literal edges must transmit value false.
On the other hand, given a truth value for variable x, choosing the flips of the variable
edge and all literal edges accordingly yields an embedding where each inner face has
size at most 5.

A clause gadget for a clause of size 3 consists of a cycle of three (1, 2)-edges that
correspond bijectively to the literals occurring in it; see Fig. 5.1c. Similarly, a clause
of size 2 consists of a cycle on four edges, two of which are (1, 2)-edges corresponding
to the literals. The encoding is such that a literal edge has its path of length 2 incident
to the inner face of the clause gadget if and only if such a literal has value false.
Clearly, the inner face has size at most 5 if and only if at most two literals transmit
value false, otherwise the size is 6. Thus, the inner face of the clause gadget has
size at most 5 if and only if at least one the literals transmit value true.

i
i

“thesis” — 2015/4/29 — 21:44 — page 120 — #132 i
i

i
i

i
i

120 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

We now construct a graph Gϕ as follows. We create for each variable a corre-
sponding variable gadget and for each clause a corresponding clause gadget. We then
identify literal edges of variables and clauses that correspond to the same literal. By
adhering to the planar embedding of the variable–clause graph of ϕ, the resulting
graph Gϕ is planar and can be embedded such that all inner faces of the gadgets are
faces of the graph. Denote this plane graph by Hϕ. To obtain Gϕ, we arbitrarily
triangulate all faces of Hϕ that are not internal faces of a gadget. Then, the only em-
bedding choices of Gϕ are the flips of the (1, 2)- and (1, 3)-edges. We claim that Gϕ
admits an embedding where every face has size at most 5 if and only if ϕ is satisfiable.

If G is satisfiable, pick a satisfying truth assignment. We flip each variable edge
and each literal edge to encode its truth value in the assignment. As argued above,
every inner face of a variable now has size at most 5, and, since each clause contains
at least one satisfied literal, also the inner faces of the clause gadgets have size at
most 5. Conversely, given a planar embedding of Gϕ where each face has size at
most 5, we construct a satisfying truth assignment for ϕ by assigning a variable the
truth value encoded by the variable edge in the corresponding gadget. Due to the above
properties, it follows that all edges corresponding to a negative literal must contribute
a path of length 2 to each clause gadget containing such a literal. However, each inner
face of a clause gadget has only size 5, and hence at least one of the literal edges must
contribute a path of only length 1, i.e., the clause contains a satisfied literal. Since the
construction of Gϕ can clearly be done in polynomial time, this finishes the proof for
k = 5.

For k > 5, it suffices to lengthen all cycles of the construction by k− 5 edges. All
arguments naturally carry over. 2

Polynomial-Time Algorithm for Small Faces

Next, we show that k-MINMAXFACE is polynomial-time solvable for k = 3, 4. Note
that, if the input graph is simple, the problem for k = 3 is solvable if and only if
the input graph is maximal planar. A bit more work is necessary if we allow parallel
edges.

LetG be a biconnected planar graph. We devise a dynamic program on the SPQR-
tree T of G. Let T be rooted at an arbitrary Q-node and let µ be a node of T . We call
the clockwise and counterclockwise paths connecting the poles of µ along the outer
face the boundary paths of pert(µ). We say that an embedding of pert(µ) has type
(a, b) if and only if all its inner faces have size at most k and its boundary paths have
length a and b, respectively. Such an embedding is also called an (a, b)-embedding.
We assume that a ≤ b.

i
i

“thesis” — 2015/4/29 — 21:44 — page 121 — #133 i
i

i
i

i
i

5.3. MINIMIZING THE MAXIMUM FACE 121

Clearly, each of the two boundary paths of pert(µ) in an embedding Eµ of type
(a, b) will be a proper subpath of the boundary of a face in any embedding ofG where
the embedding of pert(µ) is Eµ. Hence, when seeking an embedding where all faces
have size at most k, we are only interested in the embedding Eµ if 1 ≤ a ≤ b ≤ k−1.
We define a partial order on the embedding types by (a′, b′) � (a, b) if and only if
a′ ≤ a and b′ ≤ b. Replacing an (a, b)-embedding Eµ of pert(µ) by (a reflection of)
an (a′, b′)-embedding E ′µ with (a′, b′) � (a, b) does not create faces of size more than
k; all inner faces of E ′µ have size at most k by assumption, and the only other faces
affected are the two faces incident to the two boundary paths of E ′µ, whose length does
not increase. We thus seek to compute for each node µ the minimal pairs (a, b) for
which it admits an (a, b)-embedding. We remark that pert(µ) can admit an embedding
of type (1, b) for any value of b only if µ is either a P-node or a Q-node.

We now present the algorithm for k = 3, which works even if we allow parallel
edges.

Theorem 5.2 3-MINMAXFACE can be solved in linear time for biconnected graphs.

Proof: Clearly, the only interesting types of embeddings are (1, 1), (1, 2) and
(2, 2) and � defines a total ordering on them. We thus seek to determine for each
pertinent graph bottom-up in the SPQR-tree the smallest type (with respect to �) of
a valid planar embedding. For Q-nodes this is (1, 1). Now consider an R-node or S-
node µ. By the above remark its only possible type of embedding can be (2, 2). Since
every face is bounded by at least three edges, it is not hard to see that pert(µ) admits
a (2, 2)-embedding if and only if every face of sk(µ) has size 3 and all children admit
(1, 1)-embeddings.

For a P-node, we observe that none of its children can have a (1, 2)-embedding,
as no two P-node can be adjacent. Thus, all children admit either a (1, 1)-embedding,
then they are Q-nodes, or they admit a (2, 2)-embedding. We denote the virtual edges
in sk(µ) by (1, 1)-edges and (2, 2)-edges, respectively, according to the type of em-
bedding the corresponding graph admits. To obtain an embedding where all faces
have size at most 3, we have to choose the embedding of sk(µ) in such a way that
every (2, 2)-edge is adjacent to either two (1, 1)-edges or to a (1, 1)-edge and the par-
ent edge. Let a and b denote the number of (1, 1)-edges and (2, 2)-edges in sk(µ),
respectively. Clearly, an ordering satisfying these requirements exists if and only if
a ≥ b − 1; otherwise we necessarily have two adjacent (2, 2)-edges. To find a good
sequence, we proceed as follows. If a = b−1, the sequence must alternatingly consist
of (2, 2)-edges and (1, 1)-edges, starting with a (1, 1)-edge. The type of the resulting
embedding is (2, 2) and one cannot do better. If a = b, we do the same, but the type of
the resulting embedding is (1, 2); again one cannot do better. Finally, if a ≥ b+ 1, we

i
i

“thesis” — 2015/4/29 — 21:44 — page 122 — #134 i
i

i
i

i
i

122 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

again do the same, and finally append the remaining (1, 1)-edges. Then the resulting
embedding has type (1, 1).

Clearly, we can process each node µ in time proportional to the size of its skeleton.
The graph admits an embedding if and only if the pertinent graph of the child of the
root admits some valid embedding. 2

We now deal with the case k = 4, which is similar but more complicated. The rel-
evant types are (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), and (3, 3). We note that precisely the
two elements (2, 2) and (1, 3) are incomparable with respect to�. Thus, it seems that,
rather than computing only the single smallest type for which each pertinent graph
admits an embedding, we are now forced to find all minimum pairs for which the
pertinent graph admits a corresponding embedding. However, by the above observa-
tion, if a pertinent graph pert(µ) admits a (1, 3)-embedding, then µmust be a P-node.
However, if the parent of µ is an S-node or an R-node, then using a (1, 3)-embedding
results in a face of size at least 5. Thus, such an embedding can only be used if the
parent is the root Q-node. If there is the choice of a (2, 2)-embedding in this case,
it can of course also be used at the root. Therefore, we can mostly ignore the (1, 3)-
case and consider the linearly ordered embedding types (1, 1), (1, 2), (2, 2), (2, 3) and
(3, 3). The type (1, 3) is only relevant for P-nodes whose pertinent graph admits an
embedding of type (1, 3) embedding but no embedding of type (2, 2).

Theorem 5.3 4-MINMAXFACE can be solved inO(n1.5) time for biconnected graphs.

Proof: We process the SPQR-tree of the input graph in a bottom-up fashion. The
pertinent graphs of Q-nodes admit embeddings of type (1, 1).

Now consider an S- or an R-node µ. All faces of sk(µ) must have size at most 4.
Moreover, since all faces have length at least 3, a valid embedding of pert(µ) does
not exist if some child only allows embeddings of type (1, 3), (2, 3) or (3, 3). Thus,
the only freedom is to choose the flips of the pertinent graphs admitting only (1, 2)-
embeddings. A face can receive only a single path of length 2 from one of its incident
edges, and this is possible only if the face is a triangle and none of its incident edges
is a (2, 2)-edge. We thus seek a matching between the (1, 2)-edges and their incident
faces that can receive a path of length 2. Depending on the size of the faces incident
to the parent edge and whether they need to receive a path of length 2 in order to find
a valid embedding, the type is either (2, 2) (if both faces are triangles and they do not
need to receive a path of length 2), (2, 3) (if one is a triangle that does not need to
receive a path of length 2) or (3, 3) (remaining cases).

Now consider a P-node. Each child must have an embedding of type (1, 1), (2, 2),
(2, 3) or (3, 3). Again, we denote the edges whose corresponding pertinent graph
admits an embedding of type (a, b) as (a, b)-edges.

i
i

“thesis” — 2015/4/29 — 21:44 — page 123 — #135 i
i

i
i

i
i

5.3. MINIMIZING THE MAXIMUM FACE 123

First observe that removing in any embedding all (2, 2)-edges except for one and
placing them next to the single (2, 2)-edge we did not remove results in a valid em-
bedding whose boundary paths do not increase. Thus, we can assume without loss of
generality that there is at most one (2, 2)-edge. Moreover, if there is a (2, 3)-edge, we
can actually move the (2, 2)-edge next to it without increasing the size of any face.
Thus, if there are any (2, 3)-edges we can even assume that there is no (2, 2)-edge.

Let us first assume that there is no (2, 3)-edge. We then have to choose the embed-
ding such that (1, 1)-edges alternate with (3, 3)-edges and the single (2, 2)-edge. We
append any excess of (1, 1)-edges at the end. Let a denote the number of (1, 1)-edges
and let b denote the total number of (2, 2)- and (3, 3)-edges. A valid embedding exists
only if a ≥ b− 1. In this case a suitable sequence always exists. If possible, we start
and end with a (1, 1)-edge, resulting in a (1, 1)-embedding. If this is not the case, we
try to start with a (1, 1) and put the (2, 2) in the end if it exists. Then we obtain a
(1, 2)-embedding if there is a (2, 2)-edge and a (1, 3)-embedding otherwise. If this is
also not possible since a = b− 1, we start with the (2, 2)-edge if it exists. This results
in either a (2, 3) or a (3, 3)-embedding.

Assume now that there exist (2, 3)-edges. We first observe that recursively merg-
ing pairs of (2, 3)-edges into single (3, 3)-edges by placing them adjacent in the skele-
ton of the P-node and by flipping their embeddings in such a way that their sides of
length 2 are incident to the same face, we did not remove results in a valid embedding
whose boundary paths do not increase. Thus, we can assume without loss of general-
ity that there is at most one (2, 3)-edge. As already observed, we can also assume that
the remaining edges are only (1, 1)-edges and (3, 3)-edges. We then have to choose
the embedding such that (1, 1)-edges alternate with (3, 3)-edges and the single (2, 3)-
edge. We append any excess of (1, 1)-edges at the end. Let a denote the number
of (1, 1)-edges and let b denote the total number of (2, 3)- and (3, 3)-edges. A valid
embedding exists only if a ≥ b− 1. In this case a suitable sequence always exists. If
possible, we start and end with a (1, 1)-edge, resulting in a (1, 1)-embedding. If this
is not the case, we try to start with a (1, 1) and put the (2, 3)-edge in the end, thus
obtaining a (1, 2)-embedding. If this is also not possible since a = b − 1, we start
with the (2, 3)-edge. This results in a (2, 3)-embedding.

The bottleneck concerning the running time is finding the matching for treating
the R-node, which can be solved in O(n1.5) time [Gab83]. 2

Approximation Algorithm

In this section, we present a constant-factor approximation algorithm for the problem
of minimizing the largest face in an embedding of a biconnected graph G = (V,E).

i
i

“thesis” — 2015/4/29 — 21:44 — page 124 — #136 i
i

i
i

i
i

124 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

We again solve the problem by dynamic programming on the SPQR-tree of G.
Let G be a biconnected planar graph, and let T be its SPQR-tree, rooted at an

arbitrary Q-node. Let µ be a node of T . We shall consider the embeddings of pert(µ)
where the two poles are embedded on the outer face. We also include the parent edge
in the embedding, by drawing it in the outer face. In such an embedding of sk(µ), the
two faces incident to the parent edge are called the outer faces, while the remaining
faces are inner faces.

Recall that an (a, b)-embedding of pert(µ) is an embedding whose boundary
paths have lengths a and b, where we always assume that a ≤ b. We say that an
(a, b)-embedding of pert(µ) is out-minimal if for any (a′, b′)-embedding of pert(µ),
we have a ≤ a′ and b ≤ b′. Note that an out-minimal embedding need not exist;
e.g., pert(µ) may admit a (2, 4)-embedding and a (3, 3)-embedding, but no (a, b)-
embedding with a ≤ 2 and b ≤ 3. We will later show, however, that such a situation
can only occur when µ is an S-node.

Let OPT(G) denote the smallest integer k such that G has an embedding whose
every face has size at most k. For a node µ of T , we say that an embedding of pert(µ)
is c-approximate, if each inner face of the embedding has size at most c · OPT(G).

Call an embedding of pert(µ) neat if it is out-minimal and 6-approximate. The
main result of this section is the next proposition.

Proposition 1 Let G be a biconnected planar graph with SPQR tree T , rooted at an
arbitrary Q-node. Then the pertinent graph of every Q-node, P-node or R-node of T
has a neat embedding, and this embedding may be computed in polynomial time.

Since the pertinent graph of the root of T is the whole graphG, the proposition implies
a polynomial 6-approximation algorithm for minimization of largest face.

Our proof of Proposition 1 is constructive. Fix a node µ of T which is not an
S-node. We now describe an algorithm that computes a neat embedding of pert(µ),
assuming that neat embeddings are available for the pertinent graphs of all the descen-
dant nodes of µ that are not S-nodes. We distinguish cases based on the type of the
node µ.

Non-root Q-nodes. As a base case, suppose that µ is a non-root Q-node of T . Then
pert(µ) is a single edge, and its unique embedding is clearly neat.

P-nodes. Next, suppose that µ is a P-node with k child nodes µ1, . . . , µk, repre-
sented by k skeleton edges e1, . . . , ek. Let Gi be the expansion graph of ei. We
construct the expanded skeleton sk∗(µ) as follows: if for some i the child node µi is

i
i

“thesis” — 2015/4/29 — 21:44 — page 125 — #137 i
i

i
i

i
i

5.3. MINIMIZING THE MAXIMUM FACE 125

an S-node whose skeleton is a path of lengthm, replace the edge ei by a path of length
m, whose edges correspond in a natural way to the edges of sk(µi).

Every edge e′ of the expanded skeleton corresponds to a node µ′ of T which is a
child or a grand-child of µ. Moreover, µ′ is not an S-node, and we may thus assume
that we have already computed a neat embedding for pert(µ′). Note that pert(µ′) is
the expansion graph of e′.

For each i ∈ {1, . . . , k} define `i to be the smallest value such that Gi has an
embedding with boundary path of length `i. We compute `i as follows: if µi is not
and S-node, then we already know a neat (ai, bi)-embedding of Gi, and we may put
`i = ai. If, on the other hand, µi is an S-node, then let m be the number of edges in
the path sk(µi), and let G1

i , G
2
i , . . . , G

m
i be the expansion graphs of the edges of the

path. For each Gji , we have already computed a neat (aj , bj)-embedding, so we may
now put `i =

∑m
j=1 aj . Clearly, this value of `i corresponds to the definition given

above.
We now fix two distinct indices α, β ∈ {1, . . . , k}, so that the values `α and `β

are as small as possible; formally, `α = min{`i; i = 1, . . . , k} and `β = min{`i; i =
1, . . . , k and i 6= α}.

Let us fix an embedding of sk(µ) in which eα and eβ are adjacent to the outer
faces. We extend this embedding of sk(µ) into an embedding of pert(µ) by replacing
each edge of sk∗(µ) by a neat embedding of its expansion graph, in such a way that the
two boundary paths have lengths `α and `β . Let E be the resulting (`α, `β)-embedding
of pert(µ).

We now show that E is neat. From the definitions of `α and `β , we easily see that
E is out-minimal. It remains to show that it is 6-approximate. Let f be any inner face
of E . If f is an inner face of the expansion graph Gi of some ei, then f is an inner
face of some previously constructed neat embedding, hence |f | ≤ 6 · OPT(G).

Suppose then that f is not the inner face of any Gi. Then the boundary of f
intersects two distinct expansion graphs Gi and Gj . Hence the boundary of f is
the union of two paths Pi and Pj , with Pi ⊆ Gi and Pj ⊆ Gj . Let di and dj
be the lengths of Pi and Pj , respectively, and assume that di ≤ dj . It follows that
|f | = di + dj ≤ 2dj . We claim that every embedding of G has a face of size at least
dj/2. If µj is not an S-node, this follows from the fact that Pj is a boundary path
in an out-minimal embedding of Gj , hence any other embedding of Gj must have a
boundary path of length at least dj . If, on the other hand, µj is an S-node, then in
every embedding of Gj , the two boundary paths have total length at least dj , so every
embedding of Gj has a boundary path of length at least dj/2 and thus G has a face
of size at least dj/2. We conclude that |f | ≤ 2dj ≤ 4 · OPT(G), showing that E is
indeed neat.

i
i

“thesis” — 2015/4/29 — 21:44 — page 126 — #138 i
i

i
i

i
i

126 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

R-nodes. Suppose now that µ is an R-node. As with P-nodes, we define the ex-
panded skeleton sk ∗ (µ) by replacing each edge of sk(µ) corresponding to an S-node
by a path of appropriate length. The graph sk ∗ (µ) together with the parent edge
forms a subdivision of a 3-connected graph. In particular, its embedding is deter-
mined uniquely up to a flip and a choice of outer face. Fix an embedding of sk∗(µ)
and the parent edge, so that the parent edge is on the outer face. Let f1 and f2 be the
two faces incident to the parent edge of µ.

Let e be an edge of sk∗(µ), let Ge be its expansion graph, and let Ee be a neat
(a, b)-embedding of Ge, for some a ≤ b. The boundary path of Ee of length a will be
called the short side of Ee, while the boundary path of length b will be the long side.
If a = b, we choose the long side and short side arbitrarily.

Our goal is to extend the embedding of sk∗(µ) into an embedding of pert(µ) by
replacing each edge e of sk∗(µ) with a copy of Ee. In doing so, we have to choose
which of the two faces incident to e will be adjacent to the short side of Ee.

First of all, if e is an edge of sk∗(µ) incident to one of the outer faces f1 or f2,
we embed Ee in such a way that its short side is adjacent to the outer face. Since f1

and f2 do not share an edge in sk∗(µ), such an embedding is always possible, and
guarantees that the resulting embedding of pert(µ) will be out-minimal.

It remains to determine the orientation of Ee for the edges e that are not incident
to the outer faces, in such a way that the largest face of the resulting embedding
will be as small as possible. Rather than solving this task optimally, we formulate a
linear programming relaxation, and then apply a rounding step which will guarantee
a constant factor approximation.

Intuitively, the linear program works as follows: given an edge e incident to a pair
of faces f and g, and a corresponding graph Ge with a short side of length a and a
long side of length b, rather than assigning the short side to one face and the long side
to the other, we assign to each of the two faces a fractional value in the interval [a, b],
so that the two values assigned by e to f and g have sum a + b, and the maximum
total amount assigned to a single face of sk∗(µ) from its incident edges is as small as
possible.

More precisely, we consider the linear program with the set of variables

{M} ∪ {xe,f ; e is an edge adjacent to face f},

where the goal is to minimize M subject to the following constraints:

• For every edge e adjacent to a pair of faces f and g, we have the constraints
xe,f + xe,g = a + b, a ≤ xe,f ≤ b and a ≤ xe,g ≤ b, where a ≤ b are the
lengths of the two boundary paths of Ee.

i
i

“thesis” — 2015/4/29 — 21:44 — page 127 — #139 i
i

i
i

i
i

5.3. MINIMIZING THE MAXIMUM FACE 127

• Moreover, if an edge e is adjacent to an outer face f ∈ {f1, f2} as well as an
inner face g, then we set xe,f = a and xe,g = b, with a and b as above.

• For every inner face f of sk∗(µ), we have the constraint
∑
e xe,f ≤ M , where

the sum is over all edges incident to f .

Given an optimal solution of the above linear program, we determine the embed-
ding of pert(µ) as follows: for an edge e of sk∗(µ) incident to two inner faces f and
g, if xe,f ≤ xe,g , embed Ee with its short side incident to f and long side incident to
g. Let Eµ be the resulting embedding.

We claim that Eµ is neat. We have already seen that Eµ is out-minimal, so it
remains to show that every inner face of Eµ has size at most 6 · OPT(G). Let us
say that an inner face of Eµ is deep if it is also an inner face of some Ee, and it is
shallow if it corresponds to a face of sk∗(µ). Note that the deep faces have size at
most 6 · OPT(G), since all the Ee are neat embeddings, so we only need to estimate
the size of the shallow faces.

Let OPTout denote the minimum k such that pert(µ) has an out-minimal embed-
ding whose every shallow face has size at most k. We claim that OPTout ≤ 3·OPT(G).
To see this, consider an embedding of pert(µ) in which each face has size at most
OPT(G). In this embedding, replace each subembedding of Ge by a copy of Ee, with-
out increasing the size of any shallow face. This can be done, because each Ee is
out-minimal. Call the resulting embedding E ′. Next, for every edge e of sk∗(µ) ad-
jacent to f1 or f2, flip Ee so that its short side is incident to f1 or f2. Let E ′′ be the
resulting embedding of pert(µ). Clearly, E ′′ is out-minimal.

In E ′′, some inner shallow face f adjacent to f1 or f2 may have larger size than
the corresponding face of E ′; however, for such an f , its size in E ′′ is at most equal to
the sum of the sizes of f , f1 and f2 in E ′. In particular, each inner shallow face has
size at most 3 · OPT(G) in E ′′, and hence OPTout ≤ 3 · OPT(G), as claimed.

We will now show that each shallow face of Eµ has size at most 2 · OPTout. Let
M be the value of optimum solution to the linear program defined above. Clearly,
M ≤ OPTout, since from an out-minimal embedding with shallow faces of size at
most OPTout, we may directly construct a feasible solution of the linear program with
value OPTout. Let f be a shallow face of Eµ. Let e be an edge of sk∗(µ) incident
to f , and let g be the other face incident to e. Let a and b be the lengths of the
short side and long side of Ee, respectively. If xe,f ≤ xe,g , then Ee contributes to
the boundary of f by its short side, which has length a. Otherwise, f has the long
side of Ee on its boundary, but that may only happen when xe,f ≥ xe,g , and hence
b ≤ a + b = xe,f + xe,g ≤ 2xe,f . From this, we see that f has size at most∑
e 2xe,f ≤ 2M , with the previous sum ranging over all edges of sk∗(µ) incident

to f .

i
i

“thesis” — 2015/4/29 — 21:44 — page 128 — #140 i
i

i
i

i
i

128 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

Thus, for every shallow face f of Eµ, we have |f | ≤ 2M ≤ 2 · OPTout ≤ 6 ·
OPT(G), showing that Eµ is neat.

The root Q-node. Finally, suppose that µ is the root of the SPQR-tree T . That
means that µ is a Q-node, and its skeleton is formed by two parallel edges e1 and e2,
where the expansion graph of e1 is a single edge and the expansion graph G2 of e2 is
the pertinent graph of the unique child node µ′ of µ. If µ′ is not an S-node, we already
have a neat (a, b)-embedding E2 ofG2, and by inserting the edge e1 to this embedding
in such a way that the outer face has size a + 1, we clearly obtain a neat embedding
of G. If µ′ is an S-node, then G2 is a chain of biconnected graphs G1

2, G
2
2, . . . , G

k
2 ,

and for each Gi2 we have a neat (ai, bi)-embedding. Combining these embedding
in an obvious way, and adding the edge e1, we get an embedding of G whose outer
face has size 1 + a1 + a2 + · · · + ak, and whose unique inner shallow face has size
1+b1 +b2 + · · ·+bk. Since in each embedding ofG, the two faces incident to e1 have
total size at least 2 + a1 + · · ·+ ak + b1 + · · ·+ bk, we conclude that our embedding
of G is neat.

This completes the proof of Proposition 1, and yields a 6-approximation algorithm
for the minimization of largest face in biconnected graphs.

Theorem 5.4 A 6-approximation for MINMAXFACE in biconnected graphs can be
computed in polynomial time.

5.4 Perfectly Uniform Face Sizes

In this section we study the problem of deciding whether a biconnected planar graph
admits a k-uniform embedding. Note that, due to Euler’s formula, a connected planar
graph with n vertices and m edges has f = m − n + 2 faces. In order to admit an
embedding where every face has size k, it is necessary that 2m = fk. Hence there is
at most one value of k for which the graph may admit a k-uniform embedding.

In the following, we characterize the graphs admitting 3-uniform and 4-uniform
embeddings, and we give an efficient algorithm for testing whether a graph admits
a 6-uniform embedding. Finally, we show that testing whether a graph admits a k-
uniform embedding is NP -complete for odd k ≥ 7 and even k ≥ 10. We leave open
the cases k = 5 and k = 8.

Our characterizations and our testing algorithm use the recursive structure of the
SPQR-tree. To this end, it is necessary to consider embeddings of pertinent graphs,
where we only require that the interior faces have size k, whereas the outer face may
have different size, although it must not be too large. We call such an embedding

i
i

“thesis” — 2015/4/29 — 21:44 — page 129 — #141 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 129

almost k-uniform. The following lemma states that the size of the outer face in such
an embedding depends only on the number of vertices and edges in the pertinent
graph.

Lemma 5.1 Let G be a graph with n vertices and m edges with an almost k-uniform
embedding. Then the outer face has length ` = k(n−m− 1) + 2m.

Proof: Let f denote the number of faces of G in a planar embedding, which us
uniquely determined by Euler’s formula n−m+ f = 2. By double counting, we find
that (f − 1) · k+ ` = 2m. Euler’s formula implies that f = 2 +m− n, and plugging
this into the second formula, we obtain that (1+m−n) ·k+ ` = 2m or, equivalently,
` = k(n−m− 1) + 2m. 2

Thus, for small values of k, where the two boundary paths of the pertinent graph
may have only few different lengths, the type of an almost k-uniform embedding is
essentially fixed.

Characterization for k = 3, 4

For 3-uniform embeddings first observe that every facial cycle must be a triangle. If
the input graph is simple, then this implies that it must be a triangulation. Then the
graph is 3-connected and the planar embedding is uniquely determined. We charac-
terize the multi-graphs that have such an embedding.

Theorem 5.5 A biconnected planar graphG admits 3-uniform embedding if and only
if its SPQR-tree satisfies all of the following conditions.

(i) S- and R-nodes are only adjacent to Q- and P-nodes.
(ii) Every R-node skeleton is a planar triangulation.

(iii) Every S-node skeleton has size 3.
(iv) Every P-node with k neighbors has k even and precisely k/2 of the neighbors

are Q-nodes.

Proof: It is not hard to see that all conditions are necessary. We prove sufficiency.
To this end, we choose the embeddings of the R-node skeletons arbitrarily, and we
embed the P-node skeletons such that virtual edges corresponding to Q-node and non-
Q-node neighbors alternate. We claim that in the resulting planar embedding of G all
faces have size 3.

To this end, root the SPQR-tree T of G at an arbitrary edge e and consider the
embedding e incident to the outer face.

i
i

“thesis” — 2015/4/29 — 21:44 — page 130 — #142 i
i

i
i

i
i

130 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

Claim 5.1 1. If µ is a Q-node or a P-node whose parent is not a Q-node, then it
has an almost 3-uniform embedding of type (1, 1).

2. If µ is an S-node, an R-node, or a P-node whose parent is a Q-node, then it has
an almost 3-uniform embedding of type (2, 2).

We prove this by induction on the height of the node in the SPQR-tree. Clearly,
the statement holds for Q-nodes. Now consider an internal node µ and assume that
the claim holds for all children.

If µ is an S-node, then the clockwise (counterclockwise) path of pert(µ) between
the poles along the outer face is the concatenation of the clockwise path (counter-
clockwise) paths of the pertinent graphs of its children. By property (iii) there are
only two children and by property (i) they are either Q- or P-nodes. By the inductive
hypothesis, their embeddings are almost 3-uniform and have type (1, 1), and hence
the type of the embedding of pert(µ) is (2, 2).

If µ is an R-node, then its clockwise (counterclockwise) path between the poles
is the concatenation of the clockwise (counterclockwise) paths of the pertinent graphs
corresponding to the edges on the clockwise (counterclockwise) path between the
poles. By property (ii) each of these paths has length 2 in sk(µ) and the children are
either Q- or P-nodes. Thus, by the inductive hypothesis, their embeddings have type
(1, 1).

If µ is a P-node whose parent is not a Q-node, then, by our choice of the planar
embedding, the two outer paths in sk(µ) are edges corresponding to Q-nodes, and the
claim follows from the inductive hypothesis. If the parent of µ is a Q-node, then, again
by the embedding choice, the two edges outer paths in sk(µ) are edges corresponding
to S- or R-nodes, and again the inductive hypothesis implies the claim. This finishes
the proof of the claim.

Let now µ denote the Q-node corresponding to the root edge e and consider the
two faces incident to e, which show up as faces in sk(µ). Let µ′ be the neighbor of µ
in the SPQR-tree. Then µ′ is either an S-node, an R-node, or a P-node whose parent
is a Q-node. In all cases the embedding of pert(µ′) has type (2, 2), and hence the two
faces incident to e have size 3. Since e was chosen arbitrarily, it follows that each face
has size 3. 2

Corollary 5.1 It can be tested in linear time whether a biconnected planar graph
admits a 3-regular dual.

For 4-uniform embeddings observe that every facial cycle must be a simple cycle
of length 4. Since every planar graph containing a cycle of odd length also has a face
of odd length in any planar embedding, it follows that the graph must be bipartite.

i
i

“thesis” — 2015/4/29 — 21:44 — page 131 — #143 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 131

Now, if the graph is simple, the graph must be planar, bipartite and each face must
have size 4. It is well known (and follows from Euler’s formula) that this is the case
if and only if the graph has 2n− 4 edges; the maximum number of edges for a simple
bipartite planar graph. Again, if the graph is not simple more work is necessary. For
a virtual edge e in a skeleton sk(µ), we denote by me and ne the number of edges in
its expansion graph.

Theorem 5.6 A biconnected planar graph admits a 4-regular dual if and only if it is
bipartite and satisfies the following conditions.

(i) For each P-node either all expansion graphs satisfy me = 2ne − 4, or half of
them satisfy me = 2ne − 5 and the other half are Q-nodes.

(ii) For each S- or R-node all faces have size 3 or 4; the expansion graphs of all
edges incident to faces of size 4 satisfy me = 2ne − 3 and for each triangular
face, there is precisely one edge whose expansion graph satisfies me = 2ne− 4,
the others satisfy me = 2ne − 3.

Proof: We choose the planar embedding as follows. For each P-node, if half of the
neighbors are Q-nodes, then we choose the embedding such that Q-nodes and non-Q-
nodes alternate. All remaining embedding choices can be done arbitrarily. We claim
that in the resulting embedding all faces have size 4.

As in the proof of Theorem 5.5, root the SPQR-tree T of G at an arbitrary edge e
and consider the embedding as having e incident to the outer face.

Claim 5.2 For each node µ of T in the embedding of pert(µ) without the parent
edge denote by `µ and rµ the length of the clockwise and counterclockwise path on
the outer face connecting the poles of µ.

1. Each internal face of pert(µ) has size 4.
2. If µ is a Q-node or a P-node with Q-node neighbors whose parent is not a

Q-node, then pert(µ) has an almost 4-uniform embedding of type (1, 1).
3. If µ is a P-node whose neighbors all satisfy me = 2ne − 4, or µ is an S- or

an R-node whose parent satisfies me = 2ne − 4, then pert(µ) has an almost
4-uniform embedding of type (2, 2).

4. If µ is a P-node with Q-node neighbors whose parent is a Q-node, or if µ is
an S- or an R-node whose parent is a Q-node or satisfies me = 2ne − 3, then
pert(µ) has an almost 4-uniform embedding of type (3, 3).

The proof of the claim is by structural induction on the SPQR-tree. Clearly, it
holds for the leaves, which are Q-nodes. Now consider an internal node µ.

If µ is a P-node, with Q-node neighbors whose parent is not a Q-node then, by
property (i) all children have almost 4-uniform embeddings. Further, the children that

i
i

“thesis” — 2015/4/29 — 21:44 — page 132 — #144 i
i

i
i

i
i

132 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

are not Q-nodes satisfy me = 2ne − 4, and hence, their outer face has size 6 by
Lemma 5.1. It must hence be an S- or an R-node and, by the inductive hypothesis,
their embeddings have type (3, 3). Thus, the alternation of Q-nodes and these children
ensures that inner faces have size 4. Moreover, since the parent is not a Q-node, the
linear ordering of the children (excluding the parent) starts and ends with a Q-node.
Hence the embedding of pert(µ) has type (1, 1).

If µ is a P-node whose neighbors all satisfy me = 2ne − 4, then all children
have almost 4-uniform embeddings whose outer faces have size 4 by Lemma 5.1.
Since a non-P-node cannot have an embedding of type (1, x) for any value of x, their
embeddings have type (2, 2). This implies the inductive hypothesis.

If µ is a P-node with Q-node neighbors whose parent is a Q-node, then one more
than half of its children satisfy me = 2ne − 4 and hence have almost 4-uniform
embeddings of type (3, 3). The alternation of Q-nodes and these children implies the
statement.

If µ is an S- or an R-node whose parent satisfies me = 2ne− 3 (or it is a Q-node),
the internal faces have size 4 according to the inductive hypothesis and property (ii).
A similar argument shows that the embedding has type (3, 3).

If µ is an S- or an R-node whose parent satisfies me = 2ne−4, then the two faces
incident to the parent edge are triangles, and the children all satisfy me = 2ne − 3,
and hence have almost 4-uniform embeddings of type (1, 1). Thus the embedding of
pert(µ) has type (2, 2). This finishes the proof of the claim, and as it immediately
implies that every face has size 4, also the proof of the theorem. 2

Corollary 5.2 It can be tested in linear time whether a biconnected planar graph
admits a 4-regular dual.

Testing Algorithm for 6-Uniform Embeddings

To test the existence of a 6-uniform embedding, we again use bottom-up traversal of
the SPQR-tree and are therefore interested in the types of almost 6-uniform embed-
dings of pertinent graphs. Clearly, each of the two boundary paths of a pertinent graph,
may have length at most 5. Thus, only embedding of type (a, b) with 1 ≤ a ≤ b ≤ 5
are relevant. Although, by Lemma 5.1 the value of a+ b is fixed, this does usually not
uniquely determine the values a and b in this case. For example, at first sight it may
seem that if the outer face of a pertinent graph has length 6, then uniform embeddings
of type (1, 5), (2, 4) and (3, 3) may all be possible. However, as we will argue in the
following, only one of these choices is relevant in any situation.

In order to admit a k-uniform embedding with k even, it is necessary that the graph
is bipartite. In particular, this implies that also the outer face of any pertinent graph

i
i

“thesis” — 2015/4/29 — 21:44 — page 133 — #145 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 133

must have even length. For a 6-uniform embedding the length of the face must be
in {2, 4, 6, 8, 10}. Let us now investigate for each such length the possible types of
almost 6-uniform embeddings.

For length 2 and length 10, the types must be (1, 1) and (5, 5), respectively. For
length 4, the type must be (1, 3) or (2, 2). However, the poles of sk(µ) are either in
the same color class of the bipartite graph of G, then only (2, 2) is possible, or they
belong to different color classes, then only (1, 3) is possible. For length 6, the possible
types are (1, 5), (2, 4) and (3, 3). However, type (1, 5) implies that one of the paths
consists of a single edge, i.e., µ is a P-node. However, due to the path of length 5 on
the other boundary, we need another parallel edge to achieve faces of size 6. However,
such an edge must be a Q-node child of µ, showing that (1, 5) cannot occur. Thus only
(2, 4) and (3, 3) are actually possible. Again, the color class of the poles determines
the pair uniquely. Finally, for length 8, the possible types are (3, 5) and (4, 4) and
again the color classes uniquely determine the type.

Thus, we know for each internal node µ precisely what must be the type of an
almost 6-uniform embedding of pert(µ) if one exists. It remains to check whether for
each node µ, assuming that all children admit an almost 6-uniform embedding of the
correct type, it is possible to put them together to an almost 6-uniform embedding of
pert(µ) of the correct type. For this, we need to decide (i) an embedding of sk(µ)
and (ii) for each child whether to use the to mirror its almost k-uniform embedding.
We refer to the latter decision as choosing the flip of the child.

For S-nodes, which must necessarily have length at most 6, we can simply try all
ways to choose the flips of the children and see whether one of them gives the correct
values.

For a P-node, observe that, in order to obtain an almost 6-uniform embedding, the
boundary paths of the children must be either all odd or all even. If they are all even,
then all pertinent graphs of children must have types (2, 2), (2, 4) or (4, 4). Clearly,
the children with types (2, 2) and (4, 4) have to alternate in the sequence, the children
of type (2, 4) can be inserted at an arbitrary place. Let a and b denote the number
of children of type (2, 2) and (4, 4), respectively. It is necessary that |a − b| = 1,
otherwise they cannot alternate. If a > b, then the type of pert(µ) must be (2, 2), if
b < a, it must be (4, 4) and if a = b, then it must be (2, 4).

The case that all paths are odd is similar but slightly more complicated as there are
more possible embedding types for the children. The possible types are (1, 1), (3, 3),
(3, 5), and (5, 5) (recall that (1, 3) and (1, 5) cannot occur in a P-node). Again, we call
the corresponding virtual edges (1, 1)-, (3, 3)-, (3, 5)- and (5, 5)-edges, respectively.

We now perform some simple groupings of such virtual edges that can be assumed
to be placed consecutively in any valid embedding. We view these consecutive edges
as a single child whose outer boundary paths determine its type of embedding. First,

i
i

“thesis” — 2015/4/29 — 21:44 — page 134 — #146 i
i

i
i

i
i

134 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

observe that if there is no (3, 5)-edge but a (3, 3)-edge, then all children must nec-
essarily be of type (3, 3). In this case any embedding of sk(µ) works and yields an
embedding of type (3, 3) for pert(µ). Otherwise, we group the (3, 5)-edges together
with all (3, 3)-edges into one big chunk, which then represents a child of type (3, 5).
Thus, we can assume that no (3, 3)-edge exists. Next, observe that the (3, 5)-edges
must occur in pairs whose interior face is bounded by two paths of length 3. Viewed
as one graph, the type of their embedding is (5, 5). Note that, due to the pairing, one
(3, 5) might be left over. In this case, we start the ordering for the embedding of sk(µ)
with the (3, 5)-edge. We then alternatingly insert (1, 1)-edges and (5, 5)-edges. If we
manage to use up all virtual edges, we have found a valid embedding. Otherwise,
since we only followed necessary conditions, a valid embedding does not exist.

For an R-node µ, observe that each face of the skeleton has size at least 3. Thus
children whose almost 6-uniform embedding has type (x, 5) for some value of x im-
mediately exclude the existence of a 6-uniform embedding for pert(µ). It now re-
mains to choose the flips of the almost 6-uniform embeddings of the children. Note
that for children whose type (a, b) is such that a = b, this choice does not matter.
Thus, only the flips of children of types (1, 3) and (2, 4) matter. We initially consider
each face as having a demand of 6. However, for each edge of type (a, b) incident
to a face f , we remove from the demand of face f the amount min{a, b}, and rather
conceptually replace the edge by a (0, |a − b|)-edge. Due to the above observation,
the only types of edges remaining are (0, 0) and (0, 2). Clearly, we can ignore the
(0, 0)-edges. The remaining (0, 2)-edges can pass two units of boundary length into
one of their incident faces. We now consider the demand of each face. Clearly, it is
necessary that these demands are even. We then model this as a matching problem,
where each (0, 2)-edge has capacity 1, and each face has capacity half its demand. We
then seek a generalized perfect matching in the incidence graph of faces and vertices
with positive capacity such that each vertex is matched to exactly as many edges as its
capacity. This can be solved in O(n1.5) time by an algorithm due to Gabow [Gab83].
Clearly an embedding exists if and only the corresponding matching exists. We thus
have proved the following theorem.

Theorem 5.7 It can be tested in O(n1.5) time whether a biconnected planar graph
admits a 6-uniform embedding.

Uniform Embeddings with Large Faces

We prove NP -hardness for testing the existence of a k-uniform embedding for k = 7
and k ≥ 9 by giving a reduction from the NP -complete problem PLANAR POSITIVE
1-IN-3-SAT where each variable occurs at least twice and at most three times and

i
i

“thesis” — 2015/4/29 — 21:44 — page 135 — #147 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 135

each clause has size two or three. The NP -completeness of this version of satisfiabil-
ity follows from the results of Moore and Robson [MR01], as shown by the following
Theorem.

Theorem 5.8 PLANAR POSITIVE 1-IN-3-SAT isNP -complete even if each variable
occurs two or three times and each clause has size two or three.

Proof: Clearly the problem is in NP. For the hardness proof, we reduce from
the NP -complete problem CUBIC PLANAR MONOTONE 1-IN-3-SAT, a variant of
planar 3-SAT where each variable occurs three times and each clause consists of three
literals that are either all positive or all negative [MR01]. We denote 1-in-3 clauses as
(x, y, z) (or (x, y) for clauses of size two) where x, y, z are literals.

Consider a planar embedding of the variable–clause graph and a clause C =
(¬x, y, z) where a variable x occurs negated. We now replace C by two clauses
C ′ = (x′, y, z) and C ′′ = (x′, x), where x′ is a new variable. Observe that, in the
variable–clause graph this corresponds to subdividing the edge xC twice. Thus, the
resulting variable–clause graph remains planar. Further, the clause C ′′ ensures that,
in any satisfying 1-in-3 truth assignment, the variables x and x′ have complemen-
tary truth values, i.e., x′ is the negation of x. Thus the resulting instance of PLANAR
POSITIVE 1-IN-3-SAT is equivalent to the original one. Moreover, the new instance
has one fewer negated literal. After O(n) such operations, we obtain an equivalent
instance where all literals are positive. Obviously the resulting formula satisfies the
claimed properties and the reduction can be performed in polynomial time. 2

Theorem 5.9 k-UNIFORMFACES is NP -complete for all odd k ≥ 7.

Proof: We reduce from PLANAR POSITIVE 1-IN-3-SAT where each variable oc-
curs two or three times and each clause has size two or three, which is NP -complete
by Theorem 5.8. Let ϕ be such a formula with n variables, C clauses and L literals
(total number of literals in all clauses), and let Gϕ be its variable–clause graph em-
bedded in the plane. We add an additional vertex s, which we call sink into the outer
face and connect each variable to the sink in such a way that no two edges incident to
s cross. Call this augmented graph G′ϕ. Note that, due to the crossings, edges may be
subdivided into several pieces, which we call arcs.

In the following we will construct gadgets modeling a flow-like problem on G′ϕ.
Each variable has 2k − 1 units of flow, where d is the degree in G′ϕ. It sends one unit
of flow into each incident edge. For the remaining units of flow, it takes a decision.
Either it sends the remaining flow to the sink (value false), or it evenly distributes
it to all incident edges leading to a clause (value true). We then construct gadgets

i
i

“thesis” — 2015/4/29 — 21:44 — page 136 — #148 i
i

i
i

i
i

136 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

for the arcs, which simply pass on the information from one end to the other and
crossing gadgets, which pass the information over crossings. Here it is crucial that the
crossover happens between information flows of different sizes. The only crossings
happen between variable–clause connections, which carry either one or two units of
flow and variable–sink connections, which carry either one or three/four units of flow
(depending on the degree of the variable). Since our construction is such that flows
cannot be split, this allows to cross over these information flows. The clauses gadgets
are constructed such that there is a face that has size d if and only if it receives as
incoming flow the number of incident variables plus one, which models the fact that
precisely one of them must be assigned the truth value true.

Next, we observe that for a satisfying truth assignment, there are preciselyC satis-
fied literals and L−C unsatisfied literals in the formula. Each satisfied literal ensures
that only one unit is sent towards the sink, whereas each unsatisfied literal ensures that
two units are sent towards the sink. Thus, there are precisely C+2(L−C) = 2L−C
units of flow sent to s via n edges. We design a gadget that admits an embedding
where every face has size d no matter how the incoming flow is distributed to the
edges incident to s, we call this the sink gadget. Let now Hϕ denote the graph ob-
tained from Gϕ by replacing each variable, arc, crossing, clause, and the sink by a
corresponding gadget. To ensure that the embedding of Hϕ follows the embedding of
Gϕ, we triangulate each face of Hϕ that corresponds to a face of Gϕ and then insert
into each triangle a construction that ensures that each of the internal faces has size
d. This fixes the planar embedding of Hϕ except for the decisions that are modeled
by the gadgets. It is then clear that Hϕ admits a planar embedding if an only if ϕ is
satisfiable.

We now give a more detailed overview of the construction. The basic tool for
passing information are wheels whose outer cycle has d vertices for d = 3, 4, 5, and
whose inner edges are subdivided (k − 1)/2 times such that all inner faces have size
k; see Fig. 5.2(a). Note that this is possible since k is odd. We then designate two
adjacent vertices of the outer cycle as poles u and v, where it attaches to the rest of the
graph. The flip of this gadget then decides with of the two face incident to its outside
is incident to a path of length 1 and which is incident to a path of length d − 1. We
call these two paths the boundary paths. In this respect, and since there internal faces
always have size k, and hence are not relevant, these constructions behave like a single
edge where one side has length 1 and the other one has length d−1. We therefore call
them (1, 2)-, (1, 3)- and (1, 4)-edges, respectively. We use them to model the flows
from the above description.

We are now ready to describe our gadgets. A variable of degree d in G′ϕ (recall
that d = 2 or d = 3), the gadget is a cycle of length k− d such that d edges are (1, 2)-
edges (the output edges) and one is an (1, d− 1)-edge (the sink edge); see Fig. 5.2(b)

i
i

“thesis” — 2015/4/29 — 21:44 — page 137 — #149 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 137

(a)

1
2

1

2

1

2

1

3

1
2

1

2

1

4

(b)

Figure 5.2: Illustration of the gadgets for the proof of Theorem 5.9 in the case d = 7.
(a) (1, 2)-edge, (1, 3)-edge, and (1, 4)-edge; the poles are shaded, the subdivision
vertices are small squares. (b) Variable gadgets for variables occurring two (above)
and three times (below), respectively. The (1, k)-edges are represented thick and the
numbers give the lengths of the respective boundary paths. Note that simultaneously
exchanging the numbers at each edge also gives an embedding where the inner face
has size d, and these are the only two such choices. The edge at the bottom is the sink
edge, the (1, 2)-edges are the output edges.

for variable gadgets for k = 7. Clearly, for the inner face f to have size k, either all
(1, 2)-edges must be embedded such that their boundary paths of length 2 are incident
to it and the (1, d−1)-edge must be embedded such that its boundary path of length 1
is incident to f , or all (1, 2)-edges and the (1, k − 1)-edge must be flipped. This
precisely models the flows emanated by a variable as described above.

We use pipe gadgets to transport flow along an arc. By construction, each arc
transports flows from exactly one of the three sets {1, 2}, {1, 3} and {1, 4}. We give
separate pipes for them. Let the set of flow values be {1, d}. The gadget is a cycle
of length k − d+ 1 where two nonadjacent edges are (1, d)-edges, one input and one
output edge. Clearly, there are k−d−1 edges contributing length 1 to the inner face of
the gadgets. Thus, the two (1, d)-edges must together contribute paths of length d+1,
which occurs if and only if the information encoded by the input edge is transferred
to the output edge.

For a clause of degree d inGϕ (recall that d = 2 or d = 3), the gadget is a cycle of
length k − 1 where d edges are (1, 2)-edges. Obviously, the inner face f has size k if

i
i

“thesis” — 2015/4/29 — 21:44 — page 138 — #150 i
i

i
i

i
i

138 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

1 3

1

2

1

2

1 3

(a)

1 3

1

2

1

2

1 3

1 2

1

2
2

1 4 1 4

1

(b)

Figure 5.3: Illustration of the crossing gadgets for the proof of Theorem 5.9 in the
case d = 7. (a) A crossing gadget for two edges, one carrying values in {1, 2} and
one in {1, 3}. Observe that simultaneously exchanging the numbers at opposite edges
results again in an inner face of size d, and this can be done independently for both
pairs. (b) A crossing gadget for two edges, one carrying values in {1, 2} and the other
in {1, 4}. The dashed lines show where further gadgets attach, the length of the dotted
paths depends on d, for d = 7 their length would be 0.

and only if precisely one of the (1, 2)-edges has its boundary path of length 2 incident
to f . Thus, the gadget correctly models a 1-in-3-SAT clause.

For a crossing, one of the two edges transports values in {1, 2} and the other
values in {1, 3} or in {1, 4}. If it is {1, 3}, we simply use a cycle of length 4, where
two opposite edges are (1, 2)-edges and the other two opposite edges are (1, 3)-edges;
see Fig. 5.3(a). From each pair of opposite edges, we designate one as the input edge
and one as the output edge. It is not hard to see that the inner face has size k if and
only if the state from each input edge is correctly transferred to the output edge. Of
course, the same approach could be used for the case {1, 4}, however, this would
require k ≥ 8. Instead, we use a different approach; see Fig. 5.3(b) for an illustration.
First, we split the information into two separate pieces, one that transmits a value in
{1, 2} and one that transmits a value in {1, 3} (note that the sum of the differences
between the upper and the lower values remains constant). Then we cross over the
part of the sink edge carrying the flow in {1, 3} as before. To cross the part of the
sink edge carrying flow in {1, 2} with the variable–clause arc, we use a gadget we
call flow switch. It consists of a cycle of length k − 2 where four edges are (1, 2)-
edges, and for each pair of opposite (1, 2)-edges one is declared the input and one
is the output. Note that, unlike the above crossing gadget, this does not necessarily
transfer the input information to the correct output edge. It only requires that half of

i
i

“thesis” — 2015/4/29 — 21:44 — page 139 — #151 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 139

1

2

1

2

1

2

1

3

1

2

1

4

2 2

11

1 1 1

2 2 2

22 2

11 1

11 1

2 2 2

Figure 5.4: Splitting the sink edges into (1, 2)-edges that form a cycle. The face above
the construction is the inner face of the sink. The length of the dotted paths can be
adjusted to accommodate for all values of d ≥ 7 (length 0 for the one adjacent to the
(1, 4)-edge for d = 7).

the (1, 2)-edges have a boundary path of length 2 in the inner face. However, the fact
that, afterwards, we use a symmetric construction as for splitting the flow in {1, 4}
to merge the two flows on the sink edges after the crossing back into a flow in {1, 4}
enforces this behavior.

We can now construct a graphH ′ϕ by replacing each variable by a variable gadget,
each clause by a clause gadget, each crossing by a crossing gadget and each arc by a
corresponding pipe gadget. The gadgets are joined to each other by identifying cor-
responding input and output edges of the gadgets (i.e., we identify the corresponding
construction), taking into account the embedding of G′ϕ. For the sink, we first attach
to each of the output edges of the pipe gadgets leading there, a corresponding variable
gadget via its sink edge to split the flow arriving there into (1, 2)-edges. We identify
the endpoints of these (1, 2)-edges such that they form a simple cycle whose interior
faces represents the sink. See Fig 5.4.

We now arbitrarily triangulate, possibly by inserting vertices, all faces corre-
sponding to a face of G′ϕ that are not internal faces of a gadget and insert into each
of the resulting triangles a vertex connected to each triangle vertex by a path of
length (k − 1)/2. This ensures that all resulting subfaces of the triangles have size k
and at the same time the embedding of H ′ϕ is fixed except for the flips of the (1, d)-
edges. Using the above arguments, it is not hard to see that ϕ admits a satisfying
1-in-3 truth assignment if and only if Hϕ admits a planar embedding where each face
has size k except for the face representing the sink vertex, which is bounded by L
(1, 2)-edges and has size 2L − C. To complete the proof, we present a construction

i
i

“thesis” — 2015/4/29 — 21:44 — page 140 — #152 i
i

i
i

i
i

140 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

for the interior of the sink that always allows an embedding where all inner faces have
size k as long as the outer face has size 2L−C, i.e., C edges have a boundary path of
length 1 at the inner face, and the remaining L− C have a boundary path of length 2
at the inner face.

This works in two steps. First, we build a shift ring, which allows to shift the
information encoded in a subset of the edges by one unit to the left or the right. The
shift ring consists of a ring of pairs of flow switches as shown in Fig. 5.5. Its inner

1

2

1

1
1 2

2

1
21 12 1 21

21

1

2

2

1

2

21

1

2

1

1

2

21

2

1

2

21

2

2

.

2 1 2 1

21 21
1

Figure 5.5: Illustration of a shift ring consisting of several flow switches. The gray
edges on the left and right boundary are identified. The red arrows illustrate the flow
of information, where the states of two (1, 2)-edges carrying different information is
transposed in the circular ordering compared to the inner face of the shift ring (above
the construction) and the outer face of the shift ring(below the construction).

and outer face is bounded by L (1, 2)-edges. There is a natural bijection between
the (1, 2)-edges on the inner and on the outer ring, but the shift ring allows to ex-
change the state of two adjacent edges. We then nest sufficiently many shift rings (L2

certainly suffice), which allows us to assume that, in the innermost face, the edges
whose boundary paths have length 2 are consecutive, and the first one (in clockwise
direction) is at a specific position. Second, assuming that the innermost face has the
configuration of its (1, 2)-edges as described above, we simply triangulate it arbitrar-
ily and insert into each triangle the construction that makes every face have size k.
This concludes the construction of the sink gadget, and thus the proof. 2

Theorem 5.10 k-UNIFORMFACES is NP -complete for all even k ≥ 10.

Proof: The proof runs along the lines of the proof of Theorem 5.9. For this proof,
however, we need the additional assumption that number L of literals is even. If
it is not the case, we take a variable x that occurs only twice (subdivide an edge to
introduce such a variable as in the proof of Theorem 5.8 if none exists). We then create

i
i

“thesis” — 2015/4/29 — 21:44 — page 141 — #153 i
i

i
i

i
i

5.4. PERFECTLY UNIFORM FACE SIZES 141

Figure 5.6: Construction for subdividing a face of even length (bold) into faces of
arbitrary size d (here d = 8).

new variables u, v, w and add the clause (x, u, v) and twice the clause (u, v, w). If x
has the value true, then setting u = v = false and w = true satisfies the new
clauses, and if x = false, then u = true, v = w = false satisfies them. Thus
the resulting formula is equivalent to the original one, has an even number of literals,
and satisfies all the conditions of Theorem 5.8.

Now the proof essentially reuses the construction from Theorem 5.9 for such a
formula. However, since all faces have to have even size, it is not possible to construct
a (1, 2)-edge (or (1, k)-edges with k even for that matter); its outer face would have
to have odd length while all interior faces have even length, which is not possible. We
thus use (1, 3)-edges to transmit information for all the gadgets. The sink edges can
then use (1, 5)- and (1, 7)-edges. A crossing gadget for a (1, 3)-edge and a (1, 5)-
edge requires a face of size 10. A (1, 7)-edge can be split into a (1, 3) and a (1, 5)-
edge for the corresponding crossing gadget. By choosing suitably long pipes, we can
ensure that all faces that are not internal to a gadget have even length. Such a face
can then be subdivided into faces of size d by adding a new vertex incident to all
vertices of the face and subdividing every second of these edges d − 3 times; see
Fig 5.6. For the sink, we first distribute the information to (1, 3)-edges using variable
gadgets and then use corresponding shift rings made of flow switches for (1, 3)-edges.
Now, in the innermost face of the shift ring, there are L (1, 3)-edges of which C have
length 1 in the inner face and L − C have length 3, and they can be assumed to be
en bloc, starting at a specific edge. The total length of the innermost face then is
3(L − C) + C = 3L − 2C, which is even due to our assumption on L. Thus, the
construction making every face have size d can be done as described above. 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 142 — #154 i
i

i
i

i
i

142 CHAPTER 5. EMBEDDINGS WITH SMALL AND UNIFORM FACES

5.5 Open Problems.

In this chapter, we study problems MINMAXFACE and UNIFORMFACES. We show
NP -hardness results for both problems as well as polynomial-time algorithms for
several values of the face sizes. Observe that, our polynomial-time algorithms for
MINMAXFACE when k ≤ 4 allow us to try to answer the C-PLANARITY problem
for some instances. Further, we give a 6-approximation for minimizing the maximum
face in a planar embedding.

Some interesting open questions are left open. What is the complexity of k-
UNIFORMFACES for k = 5 and k = 8? Are UNIFORMFACES and MINMAXFACE
polynomial-time solvable for biconnected series-parallel graphs? And, more in gen-
eral, are such problems FPT with respect to treewidth?

i
i

“thesis” — 2015/4/29 — 21:44 — page 143 — #155 i
i

i
i

i
i

Part III

Clusters and Levels

143

i
i

“thesis” — 2015/4/29 — 21:44 — page 144 — #156 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 145 — #157 i
i

i
i

i
i

Chapter 6

Strip Planarity Testing

In this chapter1 we introduce and study the STRIP PLANARITY testing problem, which
takes as an input a planar graph G(V,E) and a function γ : V → {1, 2, . . . , k} and
asks whether a planar drawing of G exists such that each edge is represented by a
curve that is monotone in the y-direction and, for any u, v ∈ V with γ(u) < γ(v), it
holds that y(u) < y(v).

The problem has strong relationships with some of the most deeply studied vari-
ants of the planarity testing problem, such as C-PLANARITY, UPWARD PLANARITY,
and LEVEL PLANARITY.

We show that the STRIP PLANARITY testing problem is polynomial-time solvable
if G has a fixed planar embedding.

6.1 Introduction

Testing the planarity of a given graph is one of the oldest and most deeply inves-
tigated problems in algorithmic graph theory. A celebrated result of Hopcroft and
Tarjan [HT74] states that the planarity testing problem is solvable in linear time.

A number of interesting variants of the planarity testing problem have been consid-
ered in the literature [Sch13]. Such variants mainly focus on testing, for a given planar
graph G, the existence of a planar drawing of G satisfying certain constraints. For ex-
ample the partial embedding planarity problem [ADF+10, JKR13] asks whether a
planar drawing G of a given planar graph G exists in which the drawing of a sub-
graph H of G in G coincides with a given drawing H of H . C-PLANARITY test-

1The contents of this chapter are a joint work with Patrizio Angelini, Giuseppe Di Battista, and Fabrizio
Frati, appeared in [ADDF13a] and submitted to journal.

145

i
i

“thesis” — 2015/4/29 — 21:44 — page 146 — #158 i
i

i
i

i
i

146 CHAPTER 6. STRIP PLANARITY TESTING

a

b c d

e
g

f

h

j

i

k

(a)

a

b c d

e

f j

k

g
h

i

(b)

Figure 6.1: (a) A negative instance (G, γ) of the STRIP PLANARITY testing problem
whose associated clustered graph C(G,T) (b) is c-planar.

ing [DF09, FCE95b, JKK+09], UPWARD PLANARITY testing [BDLM94, GT01a,
HL96], LEVEL PLANARITY testing [JLM98], embedding constraints planarity test-
ing [GKM08], RADIAL LEVEL PLANARITY TESTING [BBF05], T -LEVEL PLA-
NARITY testing [WSP12], and CL-PLANARITY testing [FB04] are further examples
of problems falling in this category.

In this chapter we introduce and study the STRIP PLANARITY testing problem,
which is defined as follows. The input of the problem consists of a planar graph
G(V,E) and of a function γ : V → {1, 2, . . . , k}. The problem asks whether a
strip planar drawing of (G, γ) exists, i.e. a planar drawing of G such that each edge
is represented by a curve that is monotone in the y-direction and, for any u, v ∈ V
with γ(u) < γ(v), it holds y(u) < y(v). The name “strip” planarity comes from the
fact that, if a strip planar drawing Γ of (G, γ) exists, then k disjoint horizontal strips
γ1, γ2, . . . , γk can be drawn in Γ so that γi lies below γi+1, for 1 ≤ i ≤ k − 1, and
so that γi contains a vertex x of G if and only if γ(x) = i, for 1 ≤ i ≤ k. It is not
difficult to argue that strips γ1, γ2, . . . , γk can be given as part of the input, and the
problem is to decide whetherG can be planarly drawn so that each edge is represented
by a curve that is monotone in the y-direction and each vertex x of G with γ(x) = i
lies in the strip γi. That is, arbitrarily predetermining the placement of the strips does
not alter the possibility of constructing a strip planar drawing of (G, γ).

i
i

“thesis” — 2015/4/29 — 21:44 — page 147 — #159 i
i

i
i

i
i

6.1. INTRODUCTION 147

a

b d

c

(a)

a c

b d

(b)

Figure 6.2: (a) A positive instance (G, γ) of the STRIP PLANARITY testing problem
that is not level planar. (b) A level drawing of (G, γ) that is not level planar.

Strip Planarity and Other Planarity Variants

Before describing our results, we discuss the strong relationships of the STRIP PLA-
NARITY testing problem with three famous graph drawing problems. Namely, we con-
sider the C-PLANARITY, the LEVEL PLANARITY, and UPWARD PLANARITY testing
problems.

STRIP PLANARITY and C-PLANARITY. An instance (G, γ) of the STRIP PLA-
NARITY testing problem naturally defines a clustered graph C(G,T), where T con-
sists of a root having k children µ1, . . . , µk and, for every 1 ≤ j ≤ k, cluster µj
contains every vertex x of G such that γ(x) = j. The C-PLANARITY of C(G,T) is
a necessary condition for the STRIP PLANARITY of (G, γ), since suitably bounding
the strips in a strip planar drawing of (G, γ) provides a c-planar drawing of C(G,T).
However, the C-PLANARITY of C(G,T) is not sufficient for the STRIP PLANARITY
of (G, γ) (see Fig. 6.1). We will prove that the STRIP PLANARITY testing problem
reduces in polynomial time to the C-PLANARITY testing problem. Furthermore, it
turns out that STRIP PLANARITY testing coincides with a special case of a problem
opened by Cortese et al. [CDPP05, CDPP09] and related to C-PLANARITY testing.
The problem asks whether a graphG can be planarly embedded “inside” an host graph
H , which can be thought as having “fat” vertices and edges, with each vertex and edge
of G drawn inside a prescribed vertex and a prescribed edge of H , respectively. The
STRIP PLANARITY testing problem coincides with this problem in the case in which
H is a path.

STRIP PLANARITY and LEVEL PLANARITY. The LEVEL PLANARITY test-
ing problem takes as an input a planar graph G(V,E) and a function γ : V →
{1, 2, . . . , k} and asks whether a planar drawing of G exists such that each edge is
represented by a curve that is monotone in the y-direction and each vertex u ∈ V
is drawn on the horizontal line y = γ(u). The LEVEL PLANARITY testing (and
embedding) problem is known to be solvable in linear time [JLM98], although a se-

i
i

“thesis” — 2015/4/29 — 21:44 — page 148 — #160 i
i

i
i

i
i

148 CHAPTER 6. STRIP PLANARITY TESTING

quence of incomplete characterizations by forbidden subgraphs [FK07, HKL04] (see
also [EFK09]) has revealed that the problem is not yet fully understood. The simi-
larity of the LEVEL PLANARITY testing problem with the STRIP PLANARITY testing
problem is evident: They have the same input, they both require planar drawings with
y-monotone edges, and they both constrain the vertices to lie in specific regions of the
plane; they only differ for the fact that such regions are horizontal lines in one case,
and horizontal strips in the other one. Clearly the LEVEL PLANARITY of an instance
(G, γ) is a sufficient condition for the STRIP PLANARITY of (G, γ), as a level pla-
nar drawing is also a strip planar drawing. However, it is easy to construct instances
(G, γ) that are strip planar and yet not level planar, even if we require that the in-
stances are strict, i.e., no edge (u, v) is such that γ(u) = γ(v). See Fig. 6.2. Also,
the approach of [JLM98] seems to be not applicable to test the STRIP PLANARITY of
a graph. Namely, Jünger et al. [JLM98] visit the instance (G, γ) one level at a time,
representing with a PQ-tree [BL76] the possible orderings of the vertices in level i that
are consistent with a level planar embedding of the subgraph of G induced by levels
{1, 2, . . . , i}. However, when visiting an instance (G, γ) of the STRIP PLANARITY
testing problem one strip at a time, PQ-trees seem to be not powerful enough to rep-
resent the possible orderings of the vertices in strip i that are consistent with a strip
planar embedding of the subgraph of G induced by strips {1, 2, . . . , i}.

STRIP PLANARITY and UPWARD PLANARITY. The UPWARD PLANARITY
testing problem asks whether a given directed graph

−→
G admits an upward planar

drawing, i.e., a drawing which is planar and such that each edge is represented by a
curve monotonically increasing in the y-direction, according to its orientation. Testing
the UPWARD PLANARITY of a directed graph

−→
G is an NP-hard problem [GT01a],

however it is polynomial-time solvable, e.g., if
−→
G has a fixed embedding [AHR10,

BDLM94], or if it has a single-source [HL96]. A strict instance (G, γ) of the STRIP

PLANARITY testing problem naturally defines a directed graph
−→
G , by directing an

edge (u, v) of G from u to v if γ(u) < γ(v). It is easy to argue that the UPWARD

PLANARITY of
−→
G is a necessary and not always sufficient condition for the STRIP

PLANARITY of (G, γ) (see Fig.s 6.3(a) and 6.3(b)). Roughly speaking, in an upward
planar drawing different parts of the graph are free to “nest” one into the other, while
in a strip planar drawing, such a nesting is only allowed if coherent with the strip
assignment.

Our Results

In this chapter, we show that the STRIP PLANARITY testing problem is quadratic-
time solvable for planar graphs with a fixed plane embedding. Our approach consists

i
i

“thesis” — 2015/4/29 — 21:44 — page 149 — #161 i
i

i
i

i
i

6.2. PRELIMINARIES 149

a

b1 b2 b3

c1 c2 c3

d3d2d1

e1 e2 e3

a

b1

b2

b3

c1

c2

c3

d3d2d1
e1 e2

e3

(a)

b1 b2

a1

c3c2

d1

a2

b3 b4 b5

c1

b1

b2

a1

c3c2

d1

a2

b3 b5

c1

b6 b6

b4c4 c4

(b)

Figure 6.3: Two negative instances (G1, γ1) (a) and (G2, γ2) (b) of the STRIP PLA-
NARITY testing problem whose associated directed graphs are upward planar, where
G1 is a tree and G2 is a subdivision of a triconnected plane graph.

of performing a sequence of modifications to the input instance (G, γ) (such modifi-
cations consist mainly of insertions of graphs inside the faces of G) that ensure that
the instance satisfies progressively stronger constraints while not altering its STRIP
PLANARITY. Eventually, the STRIP PLANARITY of (G, γ) becomes equivalent to
the UPWARD PLANARITY of its associated directed graph, which can be tested in
quadratic time.

We also show a polynomial-time reduction from the STRIP PLANARITY testing
problem (for graphs without a fixed plane embedding) to the C-PLANARITY testing
problem.

The rest of the chapter is organized as follows. In Section 6.2 we present some pre-
liminaries; in Section 6.3 we show a quadratic-time algorithm to test the STRIP PLA-
NARITY of graphs with fixed plane embedding; in Section 6.4 we show a polynomial-
time reduction from the STRIP PLANARITY testing problem to the C-PLANARITY
testing problem; finally, in Section 6.5 we conclude and present open problems.

6.2 Preliminaries

In this section we present some definitions and terminology.
In this chapter we will show how to test in quadratic time whether a graph with a

prescribed plane embedding is strip planar, where a plane embedding of a graph G is
a planar embedding (or combinatorial embedding) of G together with a choice for its
outer face. Since an n-vertex graph with a fixed combinatorial embedding has O(n)
choices for its outer face, this implies that the STRIP PLANARITY of a graph with a
prescribed combinatorial embedding can be tested in cubic time. In the remainder of

i
i

“thesis” — 2015/4/29 — 21:44 — page 150 — #162 i
i

i
i

i
i

150 CHAPTER 6. STRIP PLANARITY TESTING

this section and in Section 6.3, we will assume all the considered graphs to have a
prescribed plane embedding, even when not explicitly mentioned.

We now define some concepts related to STRIP PLANARITY.

Definition 6.1 An instance (G, γ) of STRIP PLANARITY is strict if it contains no
intra-strip edge, where an edge (u, v) is intra-strip if γ(u) = γ(v).

Definition 6.2 An instance (G, γ) of STRIP PLANARITY is proper if, for every edge
(u, v) of G, it holds γ(v)− 1 ≤ γ(u) ≤ γ(v) + 1.

For any face f of G, we denote by Cf = (u0, u1, . . . , ul) the walk delimiting the
boundary of f . Recall that G is not necessarily 2-connected, hence f might not be
delimited by a simple cycle; also, if a vertex incident to f is a cut-vertex, it might
appear several times in Cf . Consider any vertex occurrence uj with 0 ≤ j ≤ l.
See Fig. 6.4(a). We say that uj is a local minimum for f if γ(uj) ≤ γ(uj−1) and
γ(uj) ≤ γ(uj+1), where indices are modulo l + 1. Analogously, we say that uj is a
local maximum for f if γ(uj) ≥ γ(uj−1) and γ(uj) ≥ γ(uj+1), where indices are
modulo l + 1. Observe that several occurrences of the same vertex might be local
minima or maxima for f . In the reminder of the chapter, we often say “the number of
minima and maxima” of an instance (G, γ) of STRIP PLANARITY, as a short form for
“the number of distinct pairs (vj , g) such that vertex occurrence vj is a local minimum
or maximum for face g of G”. Further, we say that uj is a global minimum for f (a
global maximum for f) if γ(uj) ≤ γ(ui) (resp. γ(uj) ≥ γ(ui)), for every i 6= j with
0 ≤ i ≤ l.

Let (G, γ) be a 2-connected strict proper instance of the STRIP PLANARITY test-
ing problem. A path (u1, . . . , uj) in G is monotone if γ(ui) = γ(ui−1) + 1, for every
2 ≤ i ≤ j. Consider any face f ; since G is 2-connected, Cf is a simple cycle. A
global minimum um and a global maximum uM for f are consecutive in f if no global
minimum and no global maximum exists in one of the two paths connecting um and
uM in Cf . A local minimum um and a local maximum uM for a face f are visible if
one of the paths P connecting um and uM in Cf is such that, for every vertex u of P ,
it holds γ(um) < γ(u) < γ(uM).

We conclude the section with the following definitions.

Definition 6.3 An instance (G, γ) of STRIP PLANARITY is quasi-jagged if it is 2-
connected, strict, proper and if, for every face f of G and for any two visible local
minimum um and local maximum uM for f , one of the two paths connecting um and
uM in Cf is monotone (see Fig. 6.4(b)).

i
i

“thesis” — 2015/4/29 — 21:44 — page 151 — #163 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 151

f

1 2

34

5
6

7

8 9

10

(a)

f

(b)

f

(c)

Figure 6.4: (a) The boundary of a face f in an instance of STRIP PLANARITY. The
walk delimiting f is Cf = (1, 2, 7, 6, 9, 6, 5, 4, 8, 10, 4, 1, 3, 1). Both occurrences of
vertex 6 are local and global minima for f ; vertex 8 is a local minimum and not a
global minimum for f ; vertex 7 is neither a local minimum nor a local maximum for
f . (b) The boundary of a face f in a quasi-jagged instance of STRIP PLANARITY. (c)
The boundary of a face f in a jagged instance of STRIP PLANARITY.

Definition 6.4 An instance (G, γ) of STRIP PLANARITY is jagged if it is 2-connected,
strict, proper and if, for every face f of G, any local minimum for f is a global mini-
mum for f , and every local maximum for f is a global maximum for f (see Fig. 6.4(c)).

Observe that a jagged instance (G, γ) is also quasi-jagged.

6.3 How To Test Strip Planarity

In this section we show an algorithm to test STRIP PLANARITY. In Sections 6.3–
6.3, we will assume every considered STRIP PLANARITY instance to be connected.
We will show in Section 6.3 how to extend our polynomial-time algorithm to non-
connected instances.

In Section 6.3 we show how to reduce a general instance to an equivalent set of
strict instances. In Section 6.3 we show how to reduce a strict instance to an equiv-
alent strict proper instance. In Section 6.3 we show how to reduce a strict proper
instance to an equivalent 2-connected strict proper instance. In Section 6.3 we show
how to reduce a 2-connected strict proper instance to an equivalent quasi-jagged in-
stance. In Section 6.3 we show how to reduce a quasi-jagged instance to an equivalent
jagged instance. Finally, in Section 6.3 we show that testing the STRIP PLANARITY

i
i

“thesis” — 2015/4/29 — 21:44 — page 152 — #164 i
i

i
i

i
i

152 CHAPTER 6. STRIP PLANARITY TESTING

of a jagged instance is equivalent to test the UPWARD PLANARITY of the associated
directed graph.

From a General Instance to a Strict Instance

In this section we show how to reduce a general instance of the STRIP PLANARITY
testing problem to an equivalent set of strict instances.

Lemma 6.1 Let (G, γ) be an instance of the STRIP PLANARITY testing problem with
n vertices, k strips, and r minima and maxima.

There exists an O(n2)-time algorithm that either decides that (G, γ) is not strip
planar, or constructs a set S = {(G∗1, γ∗1), . . . , (G∗m, γ

∗
m)} of strict instances such

that:

• (G, γ) is strip planar if and only if all of (G∗1, γ
∗
1), . . . , (G∗m, γ

∗
m) are strip

planar;

• the total number of vertices of instances (G∗1, γ
∗
1), . . . , (G∗m, γ

∗
m) is linear in n,

i.e.,
∑m
i=1 |G∗i | ∈ O(n);

• (G∗i , γ
∗
i) has at most k + 1 strips, for each 1 ≤ i ≤ m; and

• the total number of minima and maxima over all instances (G∗i , γ
∗
i) is linear in

r.

In order to prove Lemma 6.1, we show an algorithm that receives a non-strict
instance (G, γ) of STRIP PLANARITY with n vertices, k strips, and r minima and
maxima, and either decides that (G, γ) is not strip planar or applies one of Operations
1–3, to be described below, to construct one or two “simpler” STRIP PLANARITY
instances out of (G, γ).

First, since (G, γ) has k strips, we can assume that there exist vertices x and y
with γ(x) = 1 and γ(y) = k, as if strips γ1 and γk were empty, then they could be
removed from (G, γ) without changing its STRIP PLANARITY. Second, the algorithm
checks in O(n) time whether there exist vertices x′ and y′ incident to the outer face
of G such that γ(x′) = 1 and γ(y′) = k. If the test fails, then the algorithm concludes
that (G, γ) is not strip planar. We prove the correctness of this step of the algorithm.
Assume that no vertex x′ exists with γ(x′) = 1, the case in which no vertex y′ exists
with γ(y′) = k being analogous. By assumption, a vertex x such that γ(x) = 1 exists;
however, since all the edges of G are represented by y-monotone curves in any strip
planar drawing of (G, γ), it follows that the interior of the possibly non-simple cycle
C delimiting the outer face of G has no intersection with γ1, hence either x is outside

i
i

“thesis” — 2015/4/29 — 21:44 — page 153 — #165 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 153

C (not preserving the given plane embedding of G) or x is not in γ1 (not satisfying the
requirements of a strip planar drawing).

If vertices x′ and y′ incident to the outer face of G exist with γ(x′) = 1 and
γ(y′) = k, then the algorithm proceeds as follows.

If there exists an intra-strip edge (u, v) that is part of a separating triangle (u, v, z)
in G, i.e., a 3-cycle that contains vertices both in its interior and in its exterior in G,
then the algorithm applies Operation 1, that is, it constructs two STRIP PLANARITY
instances (G′, γ′) and (G′′, γ′′) defined as follows. Denote by G′ the plane subgraph
of G induced by the vertices lying outside cycle (u, v, z) together with u, v, and z;
also, denote by G′′ the plane subgraph of G induced by the vertices lying inside cycle
(u, v, z) together with u, v, and z. Also, let γ′(x) = γ(x), for every vertex x in G′,
and let γ′′(x) = γ(x), for every vertex x in G′′. We have the following:

Claim 6.1 The following statements hold:

• (G, γ) is strip planar if and only if (G′, γ′) and (G′′, γ′′) are both strip planar;

• |G′|+ |G′′| = n+ 3;

• the number of strips of each of (G′, γ′) and (G′′, γ′′) is not larger than k; and

• the total number of minima and maxima of (G′, γ′) and (G′′, γ′′) is at most
r + 6.

Proof: The second and third statement are trivial. The fourth statement is proved by
observing that G′ and G′′ have the same faces of G, except for the two faces, one in
G′ and one in G′′, delimited by cycle (u, v, z).

We prove the first statement. The necessity is trivial, given that G′ and G′′ are
subgraphs of G, that γ(x) = γ′(x), for every vertex x of G′, and that γ(x) = γ′′(x),
for every vertex x of G′′. The sufficiency is proved as follows. Suppose that (G′, γ′)
and (G′′, γ′′) admit strip planar drawings Γ′ and Γ′′, respectively. Scale Γ′′ so that it
fits inside the drawing of cycle (u, v, z) in Γ′. Suitably stretch the edges of G′′ in Γ′′

so that: (i) the drawing of cycle (u, v, z) in Γ′′ coincides with the drawing of cycle
(u, v, z) in Γ′, (ii) no two edges in Γ′′ cross, and (iii) each vertex x of G′′ lies in the
strip associated with γ′′(x). Then, the drawing Γ obtained by gluing Γ′ and Γ′′ along
cycle (u, v, z) is a strip planar drawing of (G, γ). 2

If there exists an intra-strip edge (u, v) in (G, γ) that is not part of a separating
triangle in G, and if the outer face of G is not delimited by 3-cycle (u, v, z), for
some vertex z, then the algorithm applies Operation 2, that is, it constructs a STRIP
PLANARITY instance (G′, γ′) defined as follows. Graph G′ is constructed from G

i
i

“thesis” — 2015/4/29 — 21:44 — page 154 — #166 i
i

i
i

i
i

154 CHAPTER 6. STRIP PLANARITY TESTING

by contracting edge (u, v). That is, identify u and v to be the same vertex w, whose
incident edges are all the edges incident to u and v, except for (u, v); the clockwise
order of the edges incident to w is: All the edges incident to u in G in the same
clockwise order starting at (u, v), and then all the edges incident to v in G in the same
clockwise order starting at (v, u). If u and v share any common neighbor z in G (in
this case cycle (u, v, z) delimits an internal face of G, given that (u, v, z) is not a
separating triangle and that the outer face of G is not delimited by (u, v, z)), then just
one edge (w, z) is introduced in G′. Since G is plane, G′ is plane; by construction, G′

is simple. Let γ′(x) = γ(x), for every vertex x 6= u, v in G, and let γ′(w) = γ(u).
We have the following.

Claim 6.2 The following statements hold:

• (G, γ) is strip planar if and only if (G′, γ′) is strip planar;

• |G′| = n− 1;

• the number of strips of (G′, γ′) is k; and

• the number of minima and maxima of (G′, γ′) is at most r.

Proof: The second and third statement are trivial. The fourth statement is proved by
observing that if w is a local minimum or maximum for a face g, then at least one of
u and v is a local minimum or maximum for g. We next prove the first statement.

We first prove the necessity. Consider any strip planar drawing Γ of (G, γ) (see
Fig. 6.5(a)). Assume that 2 ≤ γ(u) ≤ k − 1. Denote by p1, p2, . . . , ph and by
q1, q2, . . . , ql the left-to-right order of the intersection points of the edges of G with
the lines delimiting strip γ(u) from the top and from the bottom, respectively. Insert
dummy vertices at points p1, p2, . . . , ph and q1, q2, . . . , ql. Each of such vertices splits
an edge ofG into two dummy edges, one inside γ(u) and one outside it. Insert dummy
edges (p1, q1), (ph, ql), (pi, pi+1), for 1 ≤ i ≤ h−1, and (qi, qi+1), for 1 ≤ i ≤ l−1,
in γ(u). Contract edge (u, v) into a single vertex w. Triangulate the internal faces
of the resulting plane graph H by inserting dummy vertices and edges, so that no
edge connects two vertices pi and pj or qi and qj with j ≥ i + 2 (see Fig. 6.5(b)).
Construct a convex straight-line drawing of H in which vertices p1, p2, . . . , ph and
q1, q2, . . . , ql have the same positions they have in Γ (see Fig. 6.5(c)). Such a drawing
always exists [CYN84]. Slightly perturb the positions of the vertices different from
p1, p2, . . . , ph and q1, q2, . . . , ql, so that no two vertices have the same y-coordinate.
As a consequence, the edges of H different from (pi, pi+1), for 1 ≤ i ≤ h − 1, and
(qi, qi+1), for 1 ≤ i ≤ l − 1, are y-monotone curves. Removing the inserted dummy
vertices and edges results in a strip planar drawing of (G′, γ′) (see Fig. 6.5(d)).

i
i

“thesis” — 2015/4/29 — 21:44 — page 155 — #167 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 155

u

v

γ(u)

(a)

w γ(u)

p1 p2 ph

q1 q2 ql

(b)

w γ(u)

p1 p2 ph

q1 q2 ql

(c)

w γ(u)

(d)

Figure 6.5: (a) A strip planar drawing Γ of (G, γ). (b) Modifications performed on
the part of G inside γ(u), resulting in an internally-triangulated simple plane graph
H . (c) A convex straight-line drawing of H . (d) A strip planar drawing of (G′, γ′).

The cases in which γ(u) = 1 or γ(u) = k can be handled analogously to the
case in which 2 ≤ γ(u) ≤ k − 1. Namely, assume that γ(u) = 1. Insert dummy
vertices at points p1, p2, . . . , ph as before (points q1, q2, . . . , ql are now not defined).
Also insert points p0 and ph+1 to the left of p1 and to the right of ph, respectively.
Moreover, insert a dummy vertex d in γ1 and insert dummy edges (p0, d), (ph+1, d),
and (pi, pi+1), for 0 ≤ i ≤ h. Contract edge (u, v) into a single vertex w. Trian-
gulate the internal faces of the plane graph H whose outer face is delimited by cycle
(d, p0, p1, . . . , ph+1) by inserting dummy vertices and edges, so that no edge connects
two vertices pi and pj with j ≥ i + 2. Construct a convex straight-line drawing of
H in which vertices p0, p1, . . . , ph+1 have the same positions they have in Γ and in
which d is at any point inside γ1. Such a drawing always exists [CYN84]. Slightly
perturb the positions of the vertices different from p0, p1, . . . , ph+1 so that no two of
them have the same y-coordinate. As a consequence, the edges of H different from
(pi, pi+1), for 0 ≤ i ≤ h, are y-monotone curves. Removing the inserted dummy
vertices and edges results in a strip planar drawing of (G′, γ′). Finally, the case in
which γ(u) = k is symmetric to the case in which γ(u) = 1.

i
i

“thesis” — 2015/4/29 — 21:44 — page 156 — #168 i
i

i
i

i
i

156 CHAPTER 6. STRIP PLANARITY TESTING

w

(a)

w Dj

(b)

u v

(c)

Figure 6.6: (a) A disk D containing w. (b) Region Dj . (c) Drawing edge (u, v) and
the edges incident to v inside D.

We now prove the sufficiency. Consider any strip planar drawing Γ′ of (G′, γ′).
Slightly perturb the positions of the vertices in Γ′, so that no two vertices have the
same y-coordinate. Consider a disk D containing w, small enough so that it contains
no vertex different from w, and it contains no part of an edge that is not incident to w
(see Fig. 6.6(a)). Remove from the interior of D the parts of the edges incident to w
that correspond to edges incident to v. The edges still incident to w partition D into
regions D1, D2, . . . , Dl. At most one of such regions, say Dj , has to contain edges
incident to w corresponding to edges incident to v (see Fig. 6.6(b)). In fact, all the
edges incident to w corresponding to edges incident to v appear consecutively around
w in G′. Insert a y-monotone curve incident to w in Dj . Let v be the end-vertex of
such a curve different from w. Rename w to u. Draw y-monotone curves connecting
v with the intersection points of the boundary of Dj with the edges incident to w that
used to lie inside Dj . Also, if u and v share one or two neighbors in G, say that u
and v share two neighbors z and z′ in G, the other case being analogous, then cycles
(u, v, z) and (u, v, z′) delimit internal faces of G. The two edges (v, z) and (v, z′)
can be drawn arbitrarily close to the edges (w, z) and (w, z′), which are the edges
that delimit Dj (see Fig. 6.6(c)). The resulting drawing Γ is a strip planar drawing of
(G, γ). 2

If Operations 1 and 2 do not apply, thenG contains no separating triangle, the outer
face of G is delimited by a 3-cycle (u, v, z), and only edges (u, v), (u, z), and (v, z)
can possibly be intra-strip edges. By assumption, (G, γ) contains at least one intra-
strip edge, hence at least one of (u, v), (u, z), and (v, z), say (u, v), is an intra-strip
edge. If γ(u) = γ(v) = γ(z), then since the algorithm positively checked whether
there exist vertices x′ and y′ incident to the outer face of G such that γ(x′) = 1 and
γ(y′) = k, we have that k = 1, hence every vertex of (G, γ) belongs to γ1, and
(G, γ) is strip planar. Otherwise, we have that (u, v) is the only intra-strip edge of

i
i

“thesis” — 2015/4/29 — 21:44 — page 157 — #169 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 157

(G, γ). Then, we have that either γ(u) = γ(v) = 1 and γ(z) = k > 1, or that
γ(u) = γ(v) = k > 1 and γ(z) = 1; assume the former, as the other case can be
discussed analogously.

In this case the algorithm applies Operation 3, that is, it constructs a STRIP PLA-
NARITY instance (G′, γ′) defined as follows. Graph G′ coincides with graph G. Fur-
ther, γ′(t) = γ(t) + 1, for every vertex t 6= u in G′, and γ′(u) = γ(u). That is,
(G′, γ′) coincides with (G, γ), except that vertex u is moved to a strip “preceding”
γ1. We have the following.

Claim 6.3 The following statements hold:

• (G, γ) is strip planar if and only if (G′, γ′) is strip planar;

• (G′, γ′) is a strict instance of STRIP PLANARITY;

• |G′| = n;

• the number of strips of (G′, γ′) is k + 1; and

• the number of minima and maxima of (G′, γ′) is less than r.

Proof: The third and fourth statement are trivial. The fifth statement follows from
the fact that v is a local minimum for the two faces f1

uv and f2
uv incident to edge (u, v)

in (G, γ), while it is not a local minimum for f1
uv and f2

uv in (G′, γ′). The second
statement is true because (u, v) is the only intra-strip edge of (G, γ). We prove the
first statement.

u

v

to z to z

l
γ′2

γ′1

p1 ph

(a)

u

v

to z to z

l
γ1

p1 ph

(b)

Figure 6.7: (a) Strip planar drawing Γ′ of (G′, γ′). (b) Strip planar drawing Γ of
(G, γ).

i
i

“thesis” — 2015/4/29 — 21:44 — page 158 — #170 i
i

i
i

i
i

158 CHAPTER 6. STRIP PLANARITY TESTING

We first prove the sufficiency. Consider any strip planar drawing Γ′ of (G′, γ′)
(see Fig. 6.7(a)). Let l be any horizontal line in γ′2 below every vertex in γ′2. Since
u is the only vertex in γ′1, it follows that u is the only vertex below l. Denote by
p1, . . . , ph the intersection points of the edges incident to u with l. Move u from its
position in Γ′ to any point in γ′2 below l; further, redraw the line segments connecting
u with p1, . . . , ph as straight-line segments. The resulting drawing Γ is a strip planar
drawing of (G, γ) (see Fig. 6.7(b)).

u v

to z to z

l
γ1D

(a)

v

to z to z

l

u
γ′1

γ′2

p1

ph

(b)

Figure 6.8: (a) Strip planar drawing Γ of (G, γ). (b) Strip planar drawing Γ′ of
(G′, γ′).

We now prove the necessity. Consider any strip planar drawing Γ of (G, γ). Since
cycle (u, v, z) delimits the outer face of G, and since every edge of G is represented
by a y-monotone curve in Γ, we have that either u or v is the vertex ofG with smallest
y-coordinate in Γ. In the former case, consider any horizontal line l above u and be-
low every other vertex of G. Denote by p1, . . . , ph the intersection points of the edges
incident to u with l. Move u from its position in Γ to any point in γ′1; further, redraw
the line segments connecting u with p1, . . . , ph as straight-line segments. The result-
ing drawing Γ′ is a strip planar drawing of (G′, γ′). In the latter case (see Fig. 6.8(a)),
consider the horizontal line l through v and consider a small disk D centered at u,
small enough so that it contains no vertex different from u, and it contains no part of
an edge that is not incident to u. Delete from Γ edge (u, v) and the parts of the other
edges incident to u lying inside D. Redraw the latter curves as y-monotone curves
between their intersection point with the boundary of D and a point on l; such curves
are arbitrarily close to the drawing of edge (u, v) in Γ. Denote by p1, . . . , ph, v the
intersection points of the edges incident to u with l. Move u from its position in Γ to
any point in γ′1; further, redraw the line segments connecting u with p1, . . . , ph, v as
straight-line segments. The resulting drawing Γ′ is a strip planar drawing of (G′, γ′)

i
i

“thesis” — 2015/4/29 — 21:44 — page 159 — #171 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 159

(see Fig. 6.8(b)). 2

Claims 6.1–6.3 allow us to prove Lemma 6.1, as shown in the following.

First, with an O(n)-time preprocessing, we determine whether each edge of G is
intra-strip or not. We construct and maintain a set S of STRIP PLANARITY instances,
initialized as S = {(G, γ)}. When every graph in S is strict, we return S.

As long as there exists a non-strict instance (Gi, γi) in S, we check in O(n) time
whether there exist vertices x′ and y′ incident to the outer face ofGi such that γi(x′) ≤
γi(x), for every x in Gi, and such that γi(y′) ≥ γi(y), for every y in Gi. If the test
fails we conclude that (Gi, γi) and hence (G, γ) is not strip planar; otherwise, we
apply one of Operations 1–3.

Consider (if it exists) any internal intra-strip edge (u, v) or any external intra-strip
edge (u, v), provided that the outer face ofGi is not delimited by a cycle (u, v, z). We
check whether (u, v) belongs to a separating triangle; this check can be accomplished
in O(n) time as follows: For each vertex z in Gi different from u and v, we check in
O(1) time whether edges (u, z) and (v, z) exist or not, and in case they do whether
cycle (u, v, z) delimits a face of Gi or not.

If (u, v) does not belong to any separating triangle, then Operation 2 applies to
(Gi, γi). Hence, an equivalent instance (G′i, γ

′
i) is obtained in O(n) time containing

one less vertex than (Gi, γi), the same number of strips as (Gi, γi), and at least one
less intra-strip edge than (Gi, γi). Replace (Gi, γi) with (G′i, γ

′
i) in S.

If (u, v) is an edge of a separating triangle (u, v, z), then Operation 1 applies to
(Gi, γi). Graphs (G′i, γ

′
i) and (G′′i , γ

′′
i) can be constructed in O(n) time by perform-

ing two traversals of Gi. Replace (Gi, γi) with (G′i, γ
′
i) and (G′′i , γ

′′
i) in S.

If Operations 1–2 do not apply, then the outer face of Gi is delimited by a 3-
cycle (u, v, z), such that (u, v) is an intra-strip edge. If γ(u) = γ(v) = γ(z), then
(Gi, γi) is strip planar if and only if Gi is planar, which is always the case by the
assumptions on the input; then, we remove (Gi, γi) from S. If γ(u) = γ(v) 6= γ(z),
then Operation 3 applies to (Gi, γi). Hence, a strict instance (G′i, γ

′
i) is obtained in

O(n) time containing the same number of vertices as (Gi, γi). Replace (Gi, γi) with
(G′i, γ

′
i) in S.

Note that O(n) applications of Operations 1–3 are required in order to obtain a
set S that contains only strict instances. This, together with Claims 6.1–6.3, implies
that set S eventually satisfies the properties required by the statement of Lemma 6.1.
Since Operations 1–3 can be performed in O(n) time, the total running time of the
algorithm is O(n2). This concludes the proof of Lemma 6.1.

i
i

“thesis” — 2015/4/29 — 21:44 — page 160 — #172 i
i

i
i

i
i

160 CHAPTER 6. STRIP PLANARITY TESTING

From a Strict Instance to a Strict Proper Instance

In this section we show how to reduce a strict instance of the STRIP PLANARITY
testing problem to an equivalent strict proper instance.

Lemma 6.2 Let (G, γ) be a strict instance of the STRIP PLANARITY testing problem
with n vertices, k strips, and r minima and maxima.

There exists an O(kn)-time algorithm that constructs an equivalent strict proper
instance (G∗, γ∗) with O(kn) vertices, k strips, and r minima and maxima.

Proof: We define graph G∗ as follows. Initialize G∗ as the empty graph whose
vertex set is the same as the one of G; also, let γ∗(v) = γ(v) for every vertex v of G∗

andG. Then, consider any edge (u, v) ofG such that γ(u) = γ(v)+j, for some j ≥ 1.
Insert a path (v = u1, u2, . . . , uj+1 = u) in G∗ such that γ∗(ui+1) = γ∗(ui) + 1, for
every 1 ≤ i ≤ j. The repetition of this operation for every edge (u, v) of G results
in a proper strict instance (G∗, γ∗) of the STRIP PLANARITY testing problem. Since
each edge of G corresponds to a path with at most k vertices, G∗ has O(kn) vertices.
Also, the strips of (G∗, γ∗) coincide with the strips of (G, γ); hence, (G∗, γ∗) has k
strips. Further, a distinct pair (v, g) such that v is a local minimum or maximum for
face g of G∗ exists if and only if the same pair exists in G; hence, (G∗, γ∗) has r such
pairs. Moreover, the construction can clearly be performed in O(kn) time.

Finally, (G∗, γ∗) is strip planar if and only if (G, γ) is. Namely from a strip
planar drawing Γ∗ of (G∗, γ∗) a strip planar drawing Γ of (G, γ) can be obtained by
representing each edge (u, v) of G with the same curve representing the path (v =
u1, u2, . . . , uj+1 = u) in Γ∗. Conversely, from a strip planar drawing Γ of (G, γ)
a strip planar drawing Γ∗ of (G∗, γ∗) can be obtained by representing path (v =
u1, u2, . . . , uj+1 = u) with the same curve representing edge (u, v) in Γ where, for
each 2 ≤ i ≤ j, vertex ui is placed at any point in the intersection of strip γ∗(ui) and
the curve representing edge (u, v) in Γ. ar 2

From a Strict Proper Instance to a 2-Connected Strict Proper Instance

In this section we show how to reduce a strict proper instance of the STRIP PLA-
NARITY testing problem to an equivalent 2-connected strict proper instance.

Lemma 6.3 Let (G, γ) be a strict proper instance of the STRIP PLANARITY testing
problem with n vertices, k strips, and r minima and maxima.

There exists an O(n)-time algorithm that constructs an equivalent 2-connected
strict proper instance (G∗, γ∗) with O(n) vertices, k strips, and O(r) minima and
maxima.

i
i

“thesis” — 2015/4/29 — 21:44 — page 161 — #173 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 161

Proof: Let (G(V,E), γ) be a strict proper instance of the STRIP PLANARITY
testing problem. First, we associate each edge e ∈ E with the unique block of G it
belongs to and with its two incident faces. This computation can be performed in total
O(n) time [Tar72]. Denote by b the number of blocks of G. Note that, if b = 1, then
(G, γ) is a 2-connected strict proper instance. Otherwise, consider any cutvertex c of
G.

Let e1, e2, . . . , em, em+1 = e1 be the clockwise order of the edges incident to c;
let ei = (c, vi) and ei+1 = (c, vi+1) be two edges belonging to distinct blocks Bp
and Bq of G, respectively, for some 1 ≤ i ≤ m. Let f be the face of G that is to the
left of ei when traversing this edge from vi to c. Insert a vertex w and edges (w, vi)
and (w, vi+1) inside f . Let V ′ = V ∪ {w} and let E′ = E ∪ {(w, vi), (w, vi+1)};
also, let G′ be the graph (V ′, E′). Let γ′ : V ′ → {1, 2, . . . , k} be defined as follows:
γ′(u) = γ(u) for every vertex u ∈ V , and γ′(w) = γ(c).

c

vi
f

vi+1

c

vi

w

vi+1

(a)

c

vi

f

vi+1

c w

vi

vi+1

(b)

Figure 6.9: Inserting vertex w and edges (w, vi) and (w, vi+1) inside f if (a) γ(vi) =
γ(vi+1) = γ(c) + 1 and if (b) γ(vi) = γ(c) + 1 = γ(vi+1) + 2.

We claim that (G′, γ′) is an instance of the STRIP PLANARITY testing problem
that is equivalent to (G, γ). We first prove that the claim implies the lemma, and we
then prove the claim. Refer to Fig. 6.9.

First, (G′, γ′) is proper and strict, given that (G, γ) is proper and strict, that
γ′(w) = γ′(c) = γ′(vi) ± 1, and that γ′(w) = γ′(c) = γ′(vi+1) ± 1; further, the
number of blocks of G′ is equal to b − 1, since blocks Bp and Bq of G belong to the
same block of G′. Hence, the repetition of the above augmentation eventually leads
to a 2-connected strict proper instance (G∗, γ∗) that is equivalent to (G, γ) and that
has |G∗| = b− 1 + n ∈ O(n) vertices. The fact that (G∗, γ∗) contains O(r) minima
and maxima descends from the fact that G∗ has the same faces of G, except for the
two faces obtained by splitting face f with path (vi, w, vi+1), and that w is incident to
exactly two faces of G∗. Finally, the augmentation of (G, γ) to (G′, γ′) can be easily
performed in O(1) time (observe that, after the augmentation is performed, blocks Bp

i
i

“thesis” — 2015/4/29 — 21:44 — page 162 — #174 i
i

i
i

i
i

162 CHAPTER 6. STRIP PLANARITY TESTING

and Bq are given the same name, that is now associated to every edge in each of these
blocks, in O(1) time). Hence, the total running time is O(n) given that b ∈ O(n).

We now prove the claim. One direction is trivial. Namely, if (G′, γ′) is strip
planar, then (G, γ) is strip planar, given that G is a subgraph of G′ and given that
γ(u) = γ′(u) for every u ∈ V . We prove the other direction. Assume that (G, γ)
is strip planar and let Γ be any strip planar drawing of (G, γ). Draw edges (vi, w)
and (vi+1, w) in Γ as y-monotone curves lying inside f and arbitrarily close to edges
(vi, c) and (vi+1, c), respectively, in such a way that w lies in a point arbitrarily close
to c in γ′(c). The resulting drawing Γ′ of G′ is strip planar. Namely, each vertex u of
G′ lies inside γ′(u) (by assumption if u ∈ V and by construction if u = w); further,
each edge e of G′ is represented by a y-monotone curve (by assumption if e ∈ E
and by construction if e is incident to w); finally, Γ′ is planar because Γ is planar
(by assumption) and because edges (vi, w) and (vi+1, w) do not cross any edge of G,
given that they lie inside f and that they are arbitrarily close to the drawing of edges
(vi, c) and (vi+1, c), respectively, which do not cross any edge of G (by assumption).

This concludes the proof of the claim and hence of the lemma. 2

From a 2-Connected Strict Proper Instance to a Quasi-Jagged Instance

In this section we show how to reduce a 2-connected strict proper instance of the
STRIP PLANARITY testing problem to an equivalent quasi-jagged instance.

Lemma 6.4 Let (G, γ) be a 2-connected strict proper instance of the STRIP PLA-
NARITY testing problem with n vertices, k strips, and r minima and maxima.

There exists an O(kr + n)-time algorithm that constructs an equivalent quasi-
jagged instance (G∗, γ∗) with O(kr + n) vertices, k strips, and O(r) minima and
maxima.

Consider any face f ofG containing two visible local minimum and maximum um
and uM , respectively, such that no path connecting um and uM in Cf is monotone.
Insert a monotone path connecting um and uM inside f . Denote by (G+, γ+) the
resulting instance of the STRIP PLANARITY testing problem. We have the following
claim:

Claim 6.4 (G+, γ+) is strip planar if and only if (G, γ) is strip planar.

Proof: One direction of the equivalence is trivial, namely if (G+, γ+) is strip
planar, then (G, γ) is strip planar, since G is a subgraph of G+ and γ(v) = γ+(v) for
every vertex v in G.

i
i

“thesis” — 2015/4/29 — 21:44 — page 163 — #175 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 163

We prove the other direction. Consider a strip planar drawing Γ of (G, γ). Slightly
perturb the positions of the vertices in Γ so that no two of them have the same y-
coordinate. Denote by P andQ the two paths connecting um and uM alongCf . Since
um and uM are visible, it holds γ(um) < γ(v) < γ(uM) for every internal vertex v of
P or for every internal vertex v of Q. Assume that γ(um) < γ(v) < γ(uM) holds for
every internal vertex v of P , the other case being analogous. We also assume w.l.o.g.
that face f is to the right of P when traversing such a path from um to uM . We modify
Γ, if necessary, while maintaining its STRIP PLANARITY so that a y-monotone curve
C connecting um and uM can be drawn inside f .

uM

um

l(uM)

l(um)

l′′

l′M

l′m

P

l′

(a)

uM

um

l(uM)

l(um)

l′ l′′

l′M

l′m

P

(b)

uM

um

l(uM)

l(um)

l′ l′′

l′M

l′m

P

(c)

uM

um

l(uM)

l(um)

l′ l′′

l′M

l′m

P

(d)

Figure 6.10: (a) Drawing Γ inside region R. The part of face f inside R is colored
gray. Path P is represented by a thick line. Intersection points of edges with lines
l′′, l(um), l(uM), l′m, and l′M are represented by white circles. (b) Drawing Γ inside
region R after the shrinkage. (c) Reconnecting parts of edges that have been discon-
nected by the shrinkage. (d) Drawing of a monotone path connecting um and uM
inside f .

i
i

“thesis” — 2015/4/29 — 21:44 — page 164 — #176 i
i

i
i

i
i

164 CHAPTER 6. STRIP PLANARITY TESTING

We introduce some notation. Refer to Fig. 6.10(a). Let l(um) and l(uM) be
the horizontal lines through um and uM , respectively. Let l′ and l′′ be vertical lines
entirely lying to the right of P , with l′′ to the right of l′. Denote by D the distance
between l′ and l′′. Denote by R the bounded region of the plane delimited by P , by
l(um), by l(uM), and by l′′. Denote by l′m (by l′M) an horizontal line above l(um)
(resp. below l(uM)) and sufficiently close to l(um) (resp. to l(uM)) so that the strip
delimited by l′m and l(um) (resp. by l′M and l(uM)) does not contain any vertex of G
other than um (resp. other than uM). Finally, we define some regions inside R. Let
R′ be the bounded region of the plane delimited by P , by l′m, by l′M , and by l′; let R′′

be the bounded region of the plane delimited by P , by l′m, by l′M , and by l′′; let R′′′

be the bounded region of the plane delimited by l′, by l′m, by l′M , and by l′′; let RB be
the bounded region of the plane delimited by P , by l′m, by l(um), and by l′′; and let
RA be the bounded region of the plane delimited by P , by l′M , by l(uM), and by l′′.
We are going to modify Γ in such a way that no vertex and no part of an edge lies in
the interior of R′. The part of Γ outside R is not modified in the process.

We perform a horizontal shrinkage of the part of Γ that lies in the interior of R′′

(the vertices of P stay still). This is done in such a way that every intersection point
of an edge with l′′ keeps the same position, and the distance between l′′ and every
point in the part of Γ that used to lie inside R′′ becomes strictly smaller than D. See
Fig. 6.10(b). Hence, the part of Γ that used to lie inside R′′ is now entirely contained
in R′′′. However, some edges of G (namely those that used to intersect l′m and l′M)
are now disconnected; e.g., if an edge of G used to intersect l′m, now such an edge
contains a line segment inside R′′′, which has been shrunk, and a line segment inside
RB , whose drawing has not been modified by the shrinkage. By construction RB
does not contain any vertex in its interior. Hence, the line segments that lie in RB
form in Γ a planar y-monotone matching between a set A of points on l′m and a set
B of points on l(um). As a consequence of the shrinkage, the position of the points
in A has been modified, however their relative order on l′m has not been modified.
Thus, we can delete the line segments in RB and reconnect the points in B with the
new positions of the points in A on l′m so that each edge is y-monotone and no two
edges intersect. See Fig. 6.10(c). After performing an analogous modification in RA,
we obtain a planar y-monotone drawing Γ′ of G in which no vertex and no part of
an edge lies in the interior of R′. Since no vertex changed its y-coordinate and every
edge is y-monotone, Γ′ is a strip planar drawing of (G, γ).

Finally, we draw a y-monotone curve C connecting um and uM . This is done as
follows. See Fig. 6.10(d). Starting from um, follow path P , slightly to the right of
it, until reaching line l′m; then, continue drawing C with a line segment increasing
in the x-direction and slightly increasing in the y-direction, until reaching a point
arbitrarily close to l′; then, continue drawing C with a vertical line segment that stops

i
i

“thesis” — 2015/4/29 — 21:44 — page 165 — #177 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 165

at l′M ; then, continue drawing C with a line segment decreasing in the x-direction and
slightly increasing in the y-direction, until reaching a point arbitrarily close to path P ;
finally, follow path P until reaching uM . Place each vertex x of the monotone path
connecting um and uM on C at a suitable y-coordinate, so that x lies in the strip γ(x).
We thus obtained a strip planar drawing of (G+, γ+), which concludes the proof. 2

Claim 6.4 implies Lemma 6.4, as proved in the following.
First, the repetition of the above described augmentation leads to a quasi-jagged

instance (G∗, γ∗). In fact, whenever the augmentation is performed, the resulting in-
stance is clearly strict, proper, and 2-connected; further, the number of triples
(vm, vM , g) such that vertices vm and vM are visible local minimum and maximum
for face g, respectively, and such that both paths connecting vm and vM along Cf are
not monotone decreases at least by 1, thus eventually the number of such triples is
zero, and the instance is quasi-jagged.

Second, we prove that (G∗, γ∗) can be constructed from (G, γ) inO(kr+n) time,
that |G∗| ∈ O(kr+n), and that there areO(r) minima and maxima in (G∗, γ∗). These
statements easily descend from the following two arguments.

• The insertion of a monotone path connecting a local minimum vm with a local
maximum vM for a face g can be easily performed in O(γ(vM) − γ(vm)) =
O(k) time, as it consists of introducing γ(vM) − γ(vm) − 1 new vertices and
γ(vM) − γ(vm) new edges in the graph. Further, whenever the insertion is
performed, the number of vertices of the graph increases by γ(vM)− γ(vm)−
1 ∈ O(k), and the number of distinct pairs (v, g) such that v is a local minimum
or maximum for a face g of the graph increases byO(1), given that only vertices
vm and vM and only the two faces incident to the inserted path can generate new
such pairs.

• The number of times the described augmentation is performed is O(r). To
prove this claim, it suffices to prove that the number of paths that are inserted
in a face g of G is linear in the number of local minima and maxima for g. No
two paths P1 and P2 are inserted in g connecting a vertex am with a vertex aM
and connecting a vertex bm with a vertex bM , respectively, such that am, bm,
aM , and bM appear in this circular order along the boundary of g, as when the
second path insertion is performed, the two end-vertices of the path would not
be incident to the same face in g. It follows that the graph that has one vertex for
each local minimum or maximum for g and one edge between two vertices if a
path between them has been inserted in g is planar (in fact outerplanar), hence
it has a number of edges that is linear in the number of maxima and minima for
g. Thus, the claim follows.

i
i

“thesis” — 2015/4/29 — 21:44 — page 166 — #178 i
i

i
i

i
i

166 CHAPTER 6. STRIP PLANARITY TESTING

Third, (G∗, γ∗) is an instance of the STRIP PLANARITY testing problem that is
equivalent to (G, γ). This directly comes from repeated applications of Claim 6.4.

This concludes the proof of Lemma 6.4.

From a Quasi-Jagged Instance to a Jagged Instance

In this section we show how to reduce a quasi-jagged instance of the STRIP PLA-
NARITY testing problem to an equivalent jagged instance.

Lemma 6.5 Let (G, γ) be a quasi-jagged instance of the STRIP PLANARITY testing
problem with n vertices, k strips, and r minima and maxima.

There exists an O(kr + n)-time algorithm that constructs an equivalent jagged
instance (G∗, γ∗) with O(kr + n) vertices, k strips, and O(r) minima and maxima.

Consider any face f ofG that contains some local minimum or maximum which is
not a global minimum or maximum for f , respectively. Assume that f contains a local
minimum v which is not a global minimum for f . The case in which f contains a local
maximum which is not a global maximum for f can be discussed analogously. Denote
by u (denote by z) the first global minimum or maximum for f that is encountered
when walking along Cf starting at v while keeping f to the left (resp. to the right).

We distinguish two cases, namely the case in which u is a global minimum for f
and z is a global maximum for f (Case 1), and the case in which u and z are both
global maxima for f (Case 2). The case in which u is a global maximum for f and z
is a global minimum for f , and the case in which u and z are both global minima for
f can be discussed symmetrically.

In Case 1, denote by Q the path connecting u and z in Cf and containing v.
Refer to Fig. 6.11(a). Consider the internal vertex v′ of Q that is a local minimum
for f and such that γ(v′) = minu′ γ(u′) among all the internal vertices u′ of Q
that are local minima for f . Traverse Q starting from u, until a vertex v′′ is found
with γ(v′′) = γ(v′). Notice that, the subpath of Q between u and v′′ is monotone.
Insert a monotone path connecting v′′ and z inside f . See Fig. 6.11(b). Denote by
(G+, γ+) the resulting instance of the STRIP PLANARITY testing problem. We have
the following claim:

Claim 6.5 Suppose that Case 1 is applied to a quasi-jagged instance (G, γ) to con-
struct an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is
strip planar. Also, (G+, γ+) is quasi-jagged.

Proof: We prove that (G+, γ+) is strip planar if and only if (G, γ) is strip planar.

i
i

“thesis” — 2015/4/29 — 21:44 — page 167 — #179 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 167

z

u

Q

v′′
v′

v

f

(a)

f2

z

u

Q
f1

v′′
v′

v

(b)

Figure 6.11: Augmentation of (G, γ) inside a face f in Case 1. (a) Before the aug-
mentation. (b) After the augmentation.

One direction of the equivalence is trivial, namely if (G+, γ+) is strip planar, then
(G, γ) is strip planar, sinceG is a subgraph ofG+ and γ(x) = γ+(x), for every vertex
x in G.

We prove the other direction. Consider a strip planar drawing Γ of (G, γ). Observe
that, since u and z are consecutive global minimum and maximum for f , they are
visible. Since Q is not monotone, by assumption, and since (G, γ) is quasi-jagged, it
follows that the path P connecting u and z in Cf and not containing v is monotone.
Hence, u and z are the only global minimum and maximum for f , respectively.

For every local minimum u′ in Q such that γ(u′) = γ(v′) (including v′), define
R(u′) to be the bounded region delimited by the two edges incident to u′ in Q, and by
the horizontal line delimiting γ(u′) from the top; vertically shrink R(u′) and the part
of Γ inside it so that the y-coordinate of u′ is larger than the one of v′′. Observe that
such a modification does not alter the STRIP PLANARITY of Γ.

Next, we distinguish two cases.
In the first case, f is an internal face ofG. See Fig. 6.12(a). We draw a y-monotone

curve C connecting v′′ and z as follows. Draw a line segment of C inside f starting at
v′′ and slightly increasing in the y-direction, until reaching path P . Then, follow such
a path to reach z. Place each vertex x of the monotone path connecting v′′ and z on C
at a suitable y-coordinate, so that x lies in the strip γ(x).

In the second case, f is the outer face of G. See Fig. 6.12(b). Then, we draw a y-
monotone curve C connecting v′′ and z as follows. Draw a line segment of C inside f
starting at v′′ and slightly increasing in the y-direction, until reaching an x-coordinate
which is larger than the maximum x-coordinate of any point of Γ. Then, continue
drawing C as a vertical line segment, until a point is reached whose y-coordinate is

i
i

“thesis” — 2015/4/29 — 21:44 — page 168 — #180 i
i

i
i

i
i

168 CHAPTER 6. STRIP PLANARITY TESTING

f2

z

u

Q f1

v′′
v′

v

P

(a)

f2

z

u

Q f1

v′′
v′

v
P

(b)

Figure 6.12: Inserting a monotone path connecting v′′ and z inside f if: (a) f is an
internal face, and (b) f is the outer face.

smaller than the y-coordinate of z and larger than the one of every vertex ofQ different
from z (recall that z is the only global maximum for f). Then, continue drawing C
slightly increasing in the y-direction and decreasing in the x-direction, until the edge
of Q incident to z is reached. Then, follow such an edge to reach z. Place each vertex
x of the monotone path connecting v′′ and z on C at a suitable y-coordinate, so that x
lies in the strip γ(x).

It remains to prove that (G+, γ+) is quasi-jagged. Clearly, (G+, γ+) is strict,
proper, and 2-connected. Every face g 6= f of G has not been altered by the augmen-
tation inside f , hence, for any two visible local minimum um and local maximum uM
for g, one of the two paths connecting um and uM in g is monotone. Denote by f1 and
f2 the two faces into which f is split by the insertion of the monotone path connecting
v′′ and z, where f1 is the face delimited by such a monotone path and by the subpath
of Q between v′′ and z. Face f2 is delimited by two monotone paths, hence the only
pair of visible local minimum and local maximum for f2 is connected by a monotone
path in Cf2 . Face f1, on the other hand, contains a local minimum that is not a local
minimum for f , namely v′′. However, the existence of a local maximum u′′ for f such
that v′′ and u′′ are visible and are not connected by a monotone path in Cf1 would
imply that u and u′′ are a pair of visible local minimum and local maximum for f that
is not connected by a monotone path in Cf , which contradicts the fact that (G, γ) is
quasi-jagged. 2

In Case 2, denote by M a maximal path that is part of Cf , whose end-vertices are
two global maxima uM and vM for f , that contains v in its interior, and that does not
contain any global minimum in its interior (see Fig. 6.13(a)). By the assumptions of

i
i

“thesis” — 2015/4/29 — 21:44 — page 169 — #181 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 169

Case 2, such a path exists. Assume, w.l.o.g., that face f is to the right of M when
walking along M starting at uM towards vM . Possibly uM = u and/or vM = z. Let
um (vm) be the global minimum for f such that um and uM (resp. vm and vM) are
consecutive global minimum and maximum for f . Possibly, um = vm. Denote by P
the path connecting um and uM along Cf and not containing v. Also, denote byQ the
path connecting vm and vM along Cf and not containing v. Since M contains a local
minimum among its internal vertices, and since (G, γ) is quasi-jagged, it follows that
P and Q are monotone.

f

M

uM vM

um vm

u′m

v

u z

P Q

(a)

f2

M

uM vM

um vm
am

a′m b′m

bm

zM

u′m

f3 f4

f1

f5 f6

v

u z

P Q

(b)

Figure 6.13: Augmentation of (G, γ) inside a face f in Case 2. (a) Before the aug-
mentation. (b) After the augmentation.

Insert the plane graph A(uM , vM , f) depicted by white circles and dashed lines in
Fig. 6.13(b) inside f . Consider a local minimum u′m ∈ M for f such that γ(u′m) =
minv′m γ(v′m) among the local minima v′m for f in M . Set γ(zM) = γ(uM), set
γ(am) = γ(bm) = γ(um), and set γ(a′m) = γ(b′m) = γ(u′m). The dashed lines
connecting am and uM , connecting a′m and uM , connecting am and zM , connecting
a′m and zM , connecting bm and zM , connecting b′m and zM , connecting bm and vM ,
connecting b′m and vM , connecting am and a′m, and connecting bm and b′m represent
monotone paths. Denote by (G+, γ+) the resulting instance of the STRIP PLANARITY
testing problem. We have the following claim:

Claim 6.6 Suppose that Case 2 is applied to a quasi-jagged instance (G, γ) to con-
struct an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is
strip planar. Also, (G+, γ+) is quasi-jagged.

Proof: One direction of the equivalence is trivial, namely if (G+, γ+) is strip
planar, then (G, γ) is strip planar, since G is a subgraph of G+ and γ(v) = γ+(v) for
every vertex v in G.

i
i

“thesis” — 2015/4/29 — 21:44 — page 170 — #182 i
i

i
i

i
i

170 CHAPTER 6. STRIP PLANARITY TESTING

We prove the other direction. Consider a strip planar drawing Γ of (G, γ). Slightly
perturb the position of the vertices in Γ so that no two of them have the same y-
coordinate. We assume w.l.o.g. that face f is to the right of P when traversing such a
path from um to uM . Denote by lM the line delimiting strip γ(uM) from below; also,
denote by lm the line delimiting strip γ(um) from above. Further, denote by l′m a line
above lm and sufficiently close to lm so that the horizontal strip delimited by these
two lines does not contain any vertex of G.

The proof distinguishes two cases. In the first case (Case 2A), the intersection
of P with lM lies to the left of the intersection of Q with lM . In the second case
(Case 2B), the intersection of P with lM lies to the right of the intersection of Q with
lM . Since P and Q are represented in Γ by y-monotone curves that do not intersect
each other, in Case 2A the intersection of P with lm lies to the left of the intersection
of Q with lm, while in Case 2B the intersection of P with lm lies to the right of the
intersection ofQ with lm. In both cases, we modify Γ, if necessary, while maintaining
its STRIP PLANARITY so that plane graph A(uM , vM , f) can be planarly drawn in f
with y-monotone edges.

We first discuss Case 2A.

M

uM

vM

um vm

P

Q

lm

l′m

lM

RQ

p′

l′′

l′

p′′
x1

x4 x3x2l(x1)

p1(x1)p2(x1) p3(x1) p4(x1)
s(x1)
s(x2)
s(x3)
s(x4)

Figure 6.14: Illustration for the proof of Claim 6.6. Paths P ,M , andQ are represented
by thick lines. The part of the graph that is outside region R is not shown.

We introduce some notation. Refer to Fig. 6.14. Denote by R the bounded region
of the plane delimited by P , byM , byQ, and by lm. Drawing Γ will be only modified
in the interior of R. Denote by R′ the bounded region of the plane delimited by P ,

i
i

“thesis” — 2015/4/29 — 21:44 — page 171 — #183 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 171

by M , by Q, and by l′m. We define a closed bounded region RQ of the plane inside
R as follows. Region RQ is delimited by two y-monotone curves l′ and l′′ from the
left and from the right, respectively, where l′′ is the part of Q delimited by vM and
by the intersection point p′′ of Q with l′m, and where l′ connects vM with a point p′

on l′m, slightly to the left of l′′; curves l′ and l′′ share no point other than vM ; region
RQ contains no vertex and no part of an edge of G in its interior, that is, the interior
of RQ entirely belongs to f . Observe that a region RQ with such properties always
exists. The part of Γ that lies in the interior of R′ will be redrawn so that it entirely
lies in RQ.

For each vertex x of G that lies in the interior of R, consider the horizontal line
l(x) through x. Let p1(x), p2(x), . . . , pf(x)(x) be the left-to-right order of the in-
tersection points of edges of G with l(x), where x is also a point pi(x) for some
1 ≤ i ≤ f(x). We draw a horizontal segment s(x) inside RQ, in such a way that:
(i) s(x) is contained in the strip γ(x), (ii) s(x) connects a point in l′ with a point in
l′′, and (iii) if vertices x1 and x2 inside R are such that y(x1) < y(x2), then s(x1)
lies below s(x2). For each vertex x of G that lies in the interior of R, insert points
p′1(x), p′2(x), . . . , p′f(x)(x) in this left-to right order on s(x).

Also, let p1(l′m), p2(l′m), . . . , pf(l′m)(l
′
m) be the left-to-right order of the intersec-

tion points of edges ofG with l′m. Insert points p′1(l′m), p′2(l′m), . . . , p′f(l′m)(l
′
m) in this

left-to right order on segment p′p′′.
We now redraw in RQ the vertices and edges that are inside R in Γ. Refer to

Fig. 6.15.
For any line segment that is part of an edge of G and that connects two points

pi(x1) and pj(x2), with x1 6= x2, (or a point pi(l′m) with a point pj(x)) draw a line
segment connecting p′i(x1) and p′j(x2) (resp. connecting p′i(l

′
m) with p′j(x)) inside

RQ. Observe that, if such a line segment exists, then s(x1) and s(x2) (resp. pp′

and s(x)) are consecutive horizontal segments in RQ. Further, the line segments
connecting points on two consecutive line segments s(x1) and s(x2) (resp. pp′ and
s(x)) can be drawn as y-monotone curves inside RQ so that they do not cross each
other, give that the relative order of the points p′i(x) on s(x) preserves the order of the
points pi(x) on l(x), for every vertex x ofG in the interior ofR, and the relative order
of the points p′i(l

′
m) on pp′ preserves the order of the points pi(l′m) on l′m.

For each edge e that has non-empty intersection with R, delete from Γ the part
eR of e inside R. If e used to intersect l′m, denote by pi(lm) and pi(l′m) the intersec-
tion points of e with lm and l′m before eR was removed. Draw a y-monotone curve
connecting point p′i(l

′
m) on pp′ with point pi(lm). Such curves can be drawn with-

out introducing crossings, given that the relative order of the points p′i(l
′
m) on pp′

preserves the order of the points pi(l′m) on l′m.

i
i

“thesis” — 2015/4/29 — 21:44 — page 172 — #184 i
i

i
i

i
i

172 CHAPTER 6. STRIP PLANARITY TESTING

M

uM

vM

um vm

P

Q

Figure 6.15: Redrawing in RQ the vertices and edges that are inside R in Γ.

We are now ready to draw A(uM , vM , f). Refer to Fig. 6.16. Draw the monotone
path connecting vM with bm as a y-monotone curve C as follows. Place bm in γ(bm)
arbitrarily close to P and to lm; follow P arbitrarily close to it until reaching l′m; then,
continue C with a line segment increasing in the x-direction and slightly increasing in
the y-direction, until reaching l′; then complete C by following l′ slightly to the left of
it, until reaching vM . The monotone paths connecting vM with b′m and connecting bm
with b′m are arbitrarily close to the monotone path connecting vM with bm, slightly to
the left of it; the y-coordinate of b′m is smaller than the y-coordinate of every vertex of
M . Draw the monotone path connecting bm with zM as a y-monotone curve arbitrarily
close to P . Draw the monotone path connecting b′m with zM as a y-monotone curve C′
as follows. Start drawing C′ from b′m with a line segment decreasing in the x-direction
and slightly increasing in the y-direction, until reaching the monotone path connecting
bm and zM ; then follow such a path, slightly to the right of it, until reaching zM . The
remaining monotone paths lie arbitrarily close to P , slightly to the right of it, and
arbitrarily close to the monotone path connecting bm and zM , slightly to the left of it.

We now discuss Case 2B.
We introduce some notation. See Fig. 6.17. Denote by l′t the horizontal line pass-

ing through the vertex wM of M with largest y-coordinate, and denote by lt an hori-
zontal line in γ(uM) slightly above l′t, and close enough to l′t so that no vertex lies in
the interior of the strip delimited by lt and l′t. Observe that all the vertices and edges
of M , of P , and of Q are entirely below l′t, except for vertex wM . Let s(wM) be the

i
i

“thesis” — 2015/4/29 — 21:44 — page 173 — #185 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 173

M

uM

vM

um vm

P

Q

b′m

zM

bmam

Figure 6.16: Drawing A(uM , vM , f) (vertices are white circles and edges are solid
thin lines).

vertical segment connecting wM with lt. Denote by l′p and by l′′p vertical lines entirely
to the right of M , P , and Q, with l′′p to the right of l′p. Also, denote by l′q and by l′′q
vertical lines entirely to the left of M , P , and Q, with l′′q to the left of l′q . Let RA be
the region delimited by lt, by l′t, by l′′p , and by l′′q . Denote by Dp and Dq the distance
between l′p and l′′p and the distance between l′q and l′′q , respectively. Denote by Rp the
bounded region of the plane delimited by lm, by l′′p , by lt, by P , by the part of M
connecting uM with wM , and by s(wM). Also, denote by Rq the bounded region of
the plane delimited by lm, by l′′q , by lt, by Q, by the part of M connecting vM with
wM , and by s(wM). Drawing Γ will be only modified in the interior of Rp ∪ Rq . In
particular, the vertices ofG and the intersection points of the edges ofG with the lines
delimiting Rp ∪Rq will maintain the same position after the modification.

We define some regions inside Rp. Let R′p be the bounded region of the plane
delimited by l′m, by l′p, by l′t, by P , and by the part of M connecting uM with wM ;
let R′′p be the bounded region of the plane delimited by l′m, by l′′p , by l′t, by P , and by
the part of M connecting uM with wM ; let R′′′p be the bounded region of the plane
delimited by l′m, by l′′p , by l′p, and by l′t; finally, let RB,p be the bounded region of the
plane delimited by l′m, by l′′p , by P , and by lm.

We analogously define some regions inside Rq . Let R′q be the bounded region of
the plane delimited by l′m, by l′q , by l′t, by Q, and by the part of M connecting vM

i
i

“thesis” — 2015/4/29 — 21:44 — page 174 — #186 i
i

i
i

i
i

174 CHAPTER 6. STRIP PLANARITY TESTING

uM

um

lt

lm

l′′p

l′t

l′m

l′p

vM

vm

l′′q l′q

Q P

M

wM

Figure 6.17: Drawing Γ inside region Rp ∪ Rq . Region Rp is colored light and dark
gray. In particular, part of face f inside Rp is colored dark gray. Paths P , Q, and M
are represented by thick lines. Intersection points of edges with lines l′′p , l′′q , lm, l′m,
lt, and l′t are represented by white circles.

with wM ; let R′′q be the bounded region of the plane delimited by l′m, by l′′q , by l′t,
by Q, and by the part of M connecting vM with wM ; let R′′′q be the bounded region
of the plane delimited by l′m, by l′′q , by l′q , and by l′t; finally, let RB,q be the bounded
region of the plane delimited by l′m, by l′′q , by Q, and by lm.

We are going to modify Γ in such a way that no vertex and no part of an edge
lies in the interior of R′p ∪ R′q . The part of Γ outside Rp ∪ Rq is not modified in the
process. This modification is similar to the one performed for the proof of Claim 6.4.
Refer to Fig. 6.18.

We perform a horizontal shrinkage of the part of Γ that lies inside R′′p (the vertices
and edges of P and M stay still). This is done in such a way that every intersection
point of an edge with l′′p keeps the same position, and the distance between l′′p and
every point in the part of Γ that used to lie inside R′′p becomes strictly smaller than
Dp. Hence, the part of Γ that used to lie inside R′′p is now entirely contained in R′′′p ,
that is the interior of R′p contains no vertex and no part of an edge. However, some
edges of G (namely those that used to intersect l′m and l′t) are now disconnected;
e.g., if an edge of G used to intersect l′m, now such an edge contains a line segment
inside R′′′p , which has been shrunk, and a line segment inside RB,p, whose drawing
has not been modified by the shrinkage. By construction RB,p does not contain any
vertex in its interior. Hence, the line segments that lie in RB,p form in Γ a planar
y-monotone matching between a set Ap of points on l′m and a set Bp of points on lm.

i
i

“thesis” — 2015/4/29 — 21:44 — page 175 — #187 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 175

As a consequence of the shrinkage, the position of the points inAp has been modified,
however their relative order on l′m has not been modified. Thus, we can delete the line
segments in RB,p and reconnect the points in Bp with the new positions of the points
in Ap on l′m so that each edge is y-monotone and no two edges intersect.

uM

um

lt

lm

l′′p

l′t

l′m

l′p

vM

vm

l′′q l′q

Q P

M

wM

Figure 6.18: Drawing Γ′ of (G, γ), obtained by shrinking the part of Γ that lies inside
R′′p and inside R′′q , and by reconnecting points on lm with points on l′m and points on
lt with points on l′t.

We also perform a horizontal shrinkage of the part of Γ that lies inside R′′q (the
vertices and edges ofQ andM stay still). This is done symmetrically to the shrinkage
of the part of Γ that lies insideR′′p . As a consequence of such a shrinkage,R′q contains
no vertex and no part of an edge.

Finally, the line segments that lie in RA form in Γ a planar y-monotone matching
between a set A′ of points on l′t and a set B′ of points on lt. As a consequence of the
shrinkage, the position of the points in A′ has been modified, however their relative
order on l′t has not been modified. Thus, we can delete the line segments in RA and
reconnect the points in B′ with the new positions of the points in A′ on l′t so that each
edge is y-monotone and no two edges intersect.

We thus obtain a planar y-monotone drawing Γ′ of G in which no vertex and no
part of an edge lies in the interior ofR′p∪R′q . Since no vertex changed its y-coordinate
and every edge is y-monotone, Γ′ is a strip planar drawing of (G, γ).

We are now ready to draw A(uM , vM , f). Refer to Fig. 6.19. Place am in point
arbitrarily close to P , slightly to the right of it, and slightly below lm. Draw the
monotone path connecting uM with am as a y-monotone curve arbitrarily close to P ,
and slightly to the right of it. Draw the monotone path connecting uM with a′m and

i
i

“thesis” — 2015/4/29 — 21:44 — page 176 — #188 i
i

i
i

i
i

176 CHAPTER 6. STRIP PLANARITY TESTING

uM

um

vM

vm

Q P

M

wM

am

a′m

zM

b′m

Figure 6.19: Augmentation of drawing Γ′ of G with a drawing of plane graph
A(uM , vM , f).

the monotone path connecting a′m with am as y-monotone curves arbitrarily close
to the monotone path connecting uM with am, slightly to the right of it, in such a
way that a′m has a y-coordinate smaller than the one of every vertex of P and M
in γ(a′m). Draw the monotone path connecting am with zM as a y-monotone curve
C as follows. Starting from am, follow the monotone path connecting am with a′m,
slightly to the right of it, until reaching l′m. Continue drawing C with a line segment
increasing in the x-direction and slightly increasing in the y-direction. Just before
reaching l′p, stop increasing the x-coordinates along C, and continue drawing C as a
vertical line segment, arbitrarily close to l′p, slightly to the left of it, until reaching
l′t. Then, finish the drawing of C with a line segment decreasing in the x-direction
and slightly increasing in the y-direction, until reaching a point on s(wM) arbitrarily
close to wM , on which we place zM . Draw the monotone path connecting a′m with
zM as a y-monotone curve C′ as follows. Starting from a′m, draw a line segment
increasing in the x-direction and slightly increasing in the y-direction, until reaching
the monotone path connecting am with zM . Then, follow such a path, slightly to the
left of it, until reaching zM . Finally, the drawing of the monotone paths connecting
vM with bm, connecting vM with b′m, connecting bm with b′m, connecting bm with
zM , and connecting b′m with zM are constructed symmetrically.

This concludes the construction of a strip planar drawing of (G+, γ+).
It remains to prove that (G+, γ+) is quasi-jagged. Clearly, (G+, γ+) is strict,

proper, and 2-connected.
Every face g 6= f of G has not been altered by the augmentation inside f , hence,

for any two visible local minimum um and local maximum uM for g, one of the two

i
i

“thesis” — 2015/4/29 — 21:44 — page 177 — #189 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 177

paths connecting um and uM in G is monotone. Denote by f1, f2, . . . , f6 the faces
into which f is split by the insertion of A(uM , vM , f) (see Fig. 6.13(b)).

Each of faces f3, f4, f5, and f6 is delimited by two monotone paths, hence, for
each i = 3, . . . , 6, the only pair of visible local minimum and local maximum for fi
is connected by a monotone path in Cfi .

Face f2 contains two local minima, namely am and bm, and one local maximum,
namely zM , that are not incident to f in G. However, uM and zM are the only local
maxima for f2 that are visible with am; also, am and bm are the only local minima
for f2 that are visible with zM ; further, zM and vM are the only local maxima for f2

that are visible with bm. For all such pairs of visible local minimum and maximum,
there exists a monotone path in Cf2 connecting them. Finally, every pair of visible
local minimum and maximum for f2 which does not include am, zM , or bm is also a
pair of visible local minimum and maximum for f , hence it is connected by the same
monotone path in Cf2 as in Cf .

Finally, consider face f1. Analogously as for face f2, each of vertices a′m, zM ,
and b′m only participates in two pairs of visible local minimum and maximum for f1,
where the second vertex of each pair is one between uM , a′m, zM , b′m, and vM . For all
such pairs, monotone paths in Cf1 exist by construction. Finally, every pair of visible
local minimum and maximum for f1 which does not include a′m, zM , or b′m is also a
pair of visible local minimum and maximum for f , hence it is connected by the same
monotone path in Cf1 as in Cf . 2

Claims 6.5–6.6 imply Lemma 6.5, as proved in the following.
First, we prove that the repetition of the above described augmentation leads to a

jagged instance (G∗, γ∗) of the STRIP PLANARITY testing problem. For an instance
(G, γ) and for a face g of G, denote by n(g) the number of vertices that are local
minima for g but not global minima for g plus the number of vertices that are local
maxima for g but not global maxima for g. Also, let n(G) =

∑
g n(g), where the

sum is over all faces g of G. Observe that n(G) ≤ r. We claim that, when one of the
augmentations of Cases 1 and 2 is performed and instance (G, γ) is transformed into
an instance (G+, γ+), we have n(G+) ≤ n(G)−1. The claim implies that eventually
n(G∗) = 0, hence (G∗, γ∗) is jagged.

We prove the claim. When a face f of G is augmented as in Case 1 or in Case 2,
for each face g 6= f and for each vertex u incident to g, vertex u is a local minimum,
a local maximum, a global minimum, or a global maximum for g in (G+, γ+) if
and only if it is a local minimum, a local maximum, a global minimum, or a global
maximum for g in (G, γ), respectively. Hence, it suffices to prove that

∑
n(fi) ≤

n(f)−1, where the sum is over all the faces fi that are created from the augmentation
inside f .

i
i

“thesis” — 2015/4/29 — 21:44 — page 178 — #190 i
i

i
i

i
i

178 CHAPTER 6. STRIP PLANARITY TESTING

Suppose that Case 1 is applied to insert a monotone path between vertices v′′ and
z inside f . Such an insertion splits f into two faces, which we denote by f1 and f2,
as in Fig. 6.11(b). Face f2 is delimited by two monotone paths, hence n(f2) = 0.
Every vertex inserted into f is neither a local maximum nor a local minimum for f1.
As a consequence, no vertex x exists such that x contributes to n(f1) and x does not
contribute to n(f). Further, vertex v′ is a global minimum for f1, by construction, and
it is a local minimum but not a global minimum for f . Hence, v′ contributes to n(f)
and does not contribute to n(f1). It follows that n(f1) + n(f2) ≤ n(f)− 1.

Suppose that Case 2 is applied to insert plane graph A(uM , vM , f) inside face
f . Such an insertion splits f into six faces, which are denoted by f1, . . . , f6, as in
Fig. 6.13(b). Every vertex of A(uM , vM , f) incident to a face fi, for some 1 ≤ i ≤ 6,
is either a global maximum for fi, or a global minimum for fi, or it is neither a
local maximum nor a local minimum for fi. As a consequence, no vertex x exists
such that x contributes to some n(fi) and x does not contribute to n(f). Further,
for each vertex x that contributes to n(f), there exists at most one face fi such that
x contributes to n(fi). Finally, vertex u′m of M is a global minimum for f1, by
construction, and it is a local minimum but not a global minimum for f . Hence, u′m
contributes to n(f) and does not contribute to n(fi), for any 1 ≤ i ≤ 6. It follows
that

∑6
i=1 n(fi) ≤ n(f)− 1.

Second, the number of vertices of G∗ is O(kr + n). Namely, when a face f of G
is augmented as in Case 1 or in Case 2, O(k) vertices are inserted in G. Further, since
n(G) ≤ r, at most r augmentations are performed.

Third, the number of minima and maxima of (G∗, γ∗) is O(r), since every aug-
mentation introduces a constant number of local minima or maxima.

Fourth, (G∗, γ∗) can be constructed from (G, γ) in O(kr + n) time. Namely, an
O(|g|)-time preprocessing determines, for each face g of G, all the pairs (v, g) such
that v is a local minimum for g but not a global minimum for g or v is a local maximum
for g but not a global maximum for g. Hence, the preprocessing takes O(n) time for
the entire graph G. The augmentations of Cases 1 and 2 can be easily performed in
O(k) time, as they consist of introducing O(k) new vertices and O(k) new edges in
G. Further, the number of times the described augmentation is performed is O(r).

Fifth, (G∗, γ∗) is an instance of the STRIP PLANARITY testing problem that is
equivalent to (G, γ). This directly comes from repeated applications of Claims 6.5
and 6.6.

This concludes the proof of Lemma 6.5.

i
i

“thesis” — 2015/4/29 — 21:44 — page 179 — #191 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 179

Strip Planarity of Jagged Instances

In this section we show that testing whether a jagged instance (G, γ) of the STRIP
PLANARITY testing problem is strip planar is equivalent to testing whether the associ-
ated directed graph of (G, γ) is upward planar. Based on this equivalence and on the
results of the previous sections, we show that the STRIP PLANARITY testing problem
for general instances can be solved in polynomial time.

Recall that the associated directed graph of (G, γ) is the directed plane graph
−→
G

obtained from (G, γ) by orienting each edge (u, v) in G from u to v if and only if
γ(v) = γ(u) + 1. We have the following:

Lemma 6.6 A jagged instance (G, γ) of the STRIP PLANARITY testing problem is
strip planar if and only if the associated directed graph

−→
G of (G, γ) is upward planar.

Proof: The necessity is trivial, given that a strip planar drawing of (G, γ) is also
an upward planar drawing of

−→
G , by definition.

We prove the sufficiency. A directed plane graph
−→
G is called plane st-digraph if

it has exactly one source s and one sink t such that s and t are both incident to the
outer face of

−→
G . Each face f of a plane st-digraph consists of two monotone paths

called left path and right path, where the left path has f to the right when traversing
it from its source to its sink. The right path and the left path of the outer face of

−→
Gst

are also called leftmost path and rightmost path of
−→
Gst, respectively.

Since
−→
G is upward planar,

−→
G can be augmented [DT88] to a plane st-digraph−→

Gst. Also, this can be done by adding only dummy edges (u, v) such that u and v are
incident to the same face f , and u and v are either both sources or both sinks in Cf
(when Cf is oriented according to

−→
G). Note that, since (G, γ) is jagged, each dummy

edge (u, v) is such that γ(u) = γ(v).
We now compute the directed dual

−→
Gs∗t∗ of

−→
Gst. The vertices of

−→
Gs∗t∗ are the

faces of
−→
Gst; two special vertices s∗ and t∗ represent the outer face. There is an edge

(f, g) in
−→
Gs∗t∗ if face f shares an edge (u, v) 6= (s, t) with face g, and face f is on

the left side of (u, v) when such an edge is traversed from u to v. Graph
−→
Gs∗t∗ is a

plane st-digraph [DT88].
We divide the plane into k horizontal strips of fixed height, each corresponding to

one of the strips of (G, γ).
We compute an upward planar drawing of

−→
Gst as follows. First, consider the left-

most path pl of
−→
Gst, where pl = (s = v1

1 , . . . , v
h(1)
1 , v1

2 , . . . , v
h(2)
2 , . . . , v1

k, . . . , v
h(k)
k =

i
i

“thesis” — 2015/4/29 — 21:44 — page 180 — #192 i
i

i
i

i
i

180 CHAPTER 6. STRIP PLANARITY TESTING

t), with γ(v1
i) = · · · = γ(v

h(i)
i) = i, for i = 1, . . . , k. Path pl is drawn as a y-

monotone curve in which each vertex u ∈ pl lies inside strip γ(u). Then, we add the
faces of

−→
Gst one at a time, in such a way that a face is considered after all its prede-

cessors in
−→
Gs∗t∗ . When a face f is considered, its left path has been already drawn

as a y-monotone curve. We draw the right path of f as a y-monotone curve in which
each vertex u lies inside strip γ(u). This implies that the rightmost path of the graph
in the current drawing is represented by a y-monotone curve.

A strip planar drawing of (G, γ) can be obtained from the upward planar drawing
of
−→
Gst by removing the dummy edges. 2

Note how the correctness of the proof of Lemma 6.6 heavily depends on the fact
that (G, γ) is jagged. We thus obtain the main result of this chapter:

Theorem 6.1 The STRIP PLANARITY testing problem can be solved in O(|G|2) time
for instances (G, γ) such that G is a plane graph.

Proof: In the following we denote by |H| the number of vertices of any instance
(H, γ) of STRIP PLANARITY; also, we denote by r(H) the number of minima and
maxima of (H, γ), and by k(H) the number of strips of (H, γ). Further, we assume
that k(H) ≤ |H|, since empty strips can be removed without loss of generality.

Let (G, γ) be any instance of STRIP PLANARITY such that G is a plane graph.
By Lemma 6.1, there exists an O(|G|2)-time algorithm that either decides that

(G, γ) is not strip planar, or constructs a set S = {(G∗1, γ∗1), . . . , (G∗m, γ
∗
m)} of strict

instances such that:

• (G, γ) is strip planar if and only if all of (G∗1, γ
∗
1), . . . , (G∗m, γ

∗
m) are strip pla-

nar;

•
∑m
i=1 |G∗i | ∈ O(|G|);

• k(G∗i) ≤ k(G) + 1, for each 1 ≤ i ≤ m; and

•
∑m
i=1 r(G

∗
i) ∈ O(r(G)).

Hence, it suffices to show that the STRIP PLANARITY of each (G∗i , γ
∗
i) can be

tested in O(|G∗i |2) time.
By Lemma 6.2, there exists an O(k(G∗i)|G∗i |) ∈ O(|G∗i |2)-time algorithm that

constructs a strict proper instance (G1
i , γ

1
i) that is equivalent to (G∗i , γ

∗
i), with |G1

i | ∈
O(k(G∗i)|G∗i |) vertices, with k(G1

i) = k(G∗i), and with r(G1
i) = r(G∗i).

By Lemma 6.3, there exists an O(|G1
i |) = O(k(G∗i)|G∗i |) ∈ O(|G∗i |2)-time algo-

rithm that constructs a 2-connected strict proper instance (G2
i , γ

2
i) that is equivalent

i
i

“thesis” — 2015/4/29 — 21:44 — page 181 — #193 i
i

i
i

i
i

6.3. HOW TO TEST STRIP PLANARITY 181

to (G1
i , γ

1
i), with |G2

i | ∈ O(|G1
i |) ∈ O(k(G∗i)|G∗i |) vertices, with k(G2

i) = k(G1
i) =

k(G∗i), and with r(G2
i) ∈ O(r(G1

i)) ∈ O(r(G∗i)).
By Lemma 6.4, there exists an O(k(G2

i)r(G
2
i) + |G2

i |) ∈ O(k(G∗i)r(G
∗
i) +

k(G∗i)|G∗i |) ∈ O(|G∗i |2)-time algorithm that constructs a quasi-jagged instance (G3
i , γ

3
i)

that is equivalent to (G2
i , γ

2
i), with |G3

i | ∈ O(k(G2
i)r(G

2
i) + |G2

i |) ∈ O(k(G∗i)|G∗i |)
vertices, with k(G3

i) = k(G2
i) = k(G∗i), and with r(G3

i) ∈ O(r(G2
i)) ∈ O(r(G∗i)).

By Lemma 6.5, there exists an O(k(G3
i)r(G

3
i) + |G3

i |) ∈ O(k(G∗i)r(G
∗
i) +

k(G∗i)|G∗i |) ∈ O(|G∗i |2)-time algorithm that constructs a jagged instance (G4
i , γ

4
i)

that is equivalent to (G3
i , γ

3
i), with |G4

i | ∈ O(k(G3
i)r(G

3
i) + |G3

i |) ∈ O(k(G∗i)|G∗i |)
vertices, with k(G4

i) = k(G3
i) = k(G∗i), and with r(G4

i) ∈ O(r(G3
i)) ∈ O(r(G∗i)).

By Lemma 6.6, (G4
i , γ

4
i) is strip planar if and only if the associated directed graph−→

G4
i of (G4

i , γ
4
i) is upward planar. Observe that

−→
G4
i can be constructed from (G4

i , γ
4
i)

in O(|G4
i |) = O(k(G∗i)|G∗i |) ∈ O(|G∗i |2) time.

Finally, by the results of Bertolazzi et al. [BDLM94], the UPWARD PLANARITY

of
−→
G4
i can be tested in O(|G4

i | + (s(G4
i))

2) time, where s(G4
i) is the total number of

sources and sinks of
−→
G4
i . Observe that s(G4

i) ≤ r(G4
i), hence the UPWARD PLA-

NARITY of
−→
G4
i can be tested in O(|G∗i |2 + (r(G∗i))

2) ∈ O(|G∗i |2) time.
This concludes the proof of the theorem. 2

Non-Connected Instances

In this section we show how the problem of testing the STRIP PLANARITY of non-
connected instances can be reduced to the one of testing the STRIP PLANARITY of
connected instances.

The input of the STRIP PLANARITY testing algorithm might or might not specify
the containment relationships between distinct connected components. In the case in
which such relationships are not prescribed, a non-connected instance (G, γ) is strip
planar if and only if all its connected components are strip planar. Namely, if (G, γ) is
strip planar, then all its components are strip planar. Conversely, if all the components
of (G, γ) are strip planar, then a strip planar drawing of (G, γ) can be obtained by
placing strip planar drawings of the components of (G, γ) “side by side”.

Assume now that the input (G, γ) of the STRIP PLANARITY testing algorithm
specifies the containment relationships between distinct connected components. That
is, the boundary of each face of G is prescribed by the input. Test individually the
STRIP PLANARITY of each connected component of (G, γ). If one of the tests fails,
then (G, γ) is not strip planar. Otherwise, construct a strip planar drawing of each
connected component of (G, γ). Place the drawings of the connected components

i
i

“thesis” — 2015/4/29 — 21:44 — page 182 — #194 i
i

i
i

i
i

182 CHAPTER 6. STRIP PLANARITY TESTING

containing edges incident to the outer face of G side by side. Repeatedly insert con-
nected components in the internal faces of the currently drawn graph (G′, γ) as fol-
lows. If a connected component (Gi, γ) of (G, γ) has to be placed inside an internal
face f of (G′, γ), check whether γ(uM) ≤ γ(ufM) and whether γ(um) ≥ γ(ufm),
where uM (um) is a vertex of (Gi, γ) such that γ(uM) is maximum (resp. γ(um)

is minimum) among the vertices of Gi, and where ufM (ufm) is a vertex of Cf such
that γ(ufM) is maximum (resp. γ(ufm) is minimum) among the vertices of Cf . If the
test fails, then (G, γ) is not strip planar. Otherwise, using a technique analogous to
the one of Claim 6.4, a strip planar drawing of (G′, γ) can be modified so that two
consecutive global minimum and maximum for f can be connected by a y-monotone
curve C inside f . Suitably squeezing a strip planar drawing of (Gi, γ) and placing it
arbitrarily close to C provides a strip planar drawing of (G′ ∪Gi, γ). Repeating such
an argument leads either to conclude that (G, γ) is not strip planar, or to construct a
strip planar drawing of (G, γ).

6.4 Reduction

In this section we show that the STRIP PLANARITY testing problem reduces in poly-
nomial time to the C-PLANARITY testing problem.

Theorem 6.2 Let (G, γ) be an instance of STRIP PLANARITY. Then, there exists an
instance C(G′, T) of C-PLANARITY such that (G, γ) is strip planar if and only if
C(G′, T) is clustered planar. Further, C(G′, T) can be constructed in polynomial
time.

Proof: Denote by k the number of strips of (G, γ). First, we show that, if k ≤ 2,
then the “natural” reduction from STRIP PLANARITY to C-PLANARITY, namely the
one that transforms each strip into a cluster, is a valid polynomial-time reduction. We
now formalize this claim.

If k = 1, clustered graph C(G′, T) is defined as follows. Graph G′ coincides with
G and tree T consists of a single internal node µ that is parent of all the vertices ofG′.
The equivalence between the STRIP PLANARITY of (G, γ) and the C-PLANARITY of
C(G′, T) follows from their equivalence to the planarity of G = G′.

If k = 2, clustered graph C(G′, T) is defined as follows. Graph G′ coincides with
G and tree T consists of three internal nodes µ, µ1, and µ2, where µ is parent of µ1

and µ2, and where µi is parent of every vertex x of G′ such γ(x) = i, for i = 1, 2.
From a strip planar drawing Γ of (G, γ), a c-planar drawing Γ′ of C(G′, T) can be
constructed so that the drawings of G and G′ coincide, and so that, for i = 1, 2, the

i
i

“thesis” — 2015/4/29 — 21:44 — page 183 — #195 i
i

i
i

i
i

6.4. REDUCTION 183

region R(µi) representing µi is a rectangle whose top and bottom sides lie on the
top and bottom lines delimiting γi, respectively, and whose left (right) side is to the
left (right) of all the vertices and edges of G′. Conversely, suppose that C(G′, T)
is c-planar. Then, it admits a c-planar straight-line drawing Γ′ in which µ1 and µ2

are represented by convex regions R(µ1) and R(µ2) (see [AFK11, EFLN06]). Thus,
R(µ1) and R(µ2) can be separated by a straight line l; by suitably rotating l and the
Cartesian axes, we can assume that l is horizontal and every edge ofG′ is y-monotone
in Γ′, with R(µ1) below R(µ2). Then, define γ1 (γ2) as a horizontal strip containing
R(µ1) (resp. R(µ2)) and entirely below l (resp. above l). The resulting drawing Γ is
a strip planar drawing of (G, γ).

If k ≥ 3, then the above reduction does not always work (Fig.6.1 shows an ex-
ample with k = 4). In the following we show how to construct a clustered graph
C(G′, T) whose C-PLANARITY is equivalent to the STRIP PLANARITY of (G, γ) if
k ≥ 3. We also assume that G is connected. This is not a loss of generality. Namely,
if G is not connected, then (G, γ) is strip planar if and only if each of its connected
components (G1, γ1), . . . , (Gm, γm) is strip planar (where γi(v) = γ(v) for every
v ∈ Gi and every 1 ≤ i ≤ m). Thus, if an instance Ci(G′i, Ti) can be constructed
in polynomial time equivalent to (Gi, γi), for every 1 ≤ i ≤ m, then an instance
C(G′, T) can also be constructed in polynomial time equivalent to (G, γ), where
G′ = G′1 ∪ · · · ∪G′m, and where T is a tree consisting of a root having T1, . . . , Tm as
subtrees.

Further, we assume that (G, γ) is proper. If this is not the case, then the reduc-
tion described in Section 6.3 can be applied in order to obtain an equivalent proper
instance.

Summarizing, we can suppose w.l.o.g. that (G, γ) is connected, proper, and has
k ≥ 3 strips. We now describe how to construct C(G′, T) (see Figs. 6.20(a)-(b)).

Graph G′ is composed of G and of a triconnected plane graph H , which con-
sists of vertices a, b, c, d, u1, . . . , uk, v1, . . . , vk, and of edges (a, b), (b, c), (c, d),
(a, d), (b, d), (a, uk), (a, vk), (c, u1), (c, v1), (b, u1), . . . , (b, uk), (d, v1), . . . , (d, vk),
(u1, u2), . . . , (uk−1, uk), and (v1, v2), . . . , (vk−1, vk).

Tree T is constructed as follows. Initialize T with a root cluster µ. Add to T
four clusters µa, µb, µc, and µd as children of µ, containing vertices a, b, c, and d,
respectively. Then, for each i = 1, . . . , k, add a cluster µi to T , as a child of µ, that
contains vertices ui, vi, and each vertex w ∈ G such that γ(w) = i.

Clearly, C(G′, T) can be constructed in polynomial time. We prove that C(G′, T)
admits a c-planar drawing if and only if (G, γ) admits a strip planar drawing.

Suppose that C(G′, T) admits a c-planar drawing Γ′. We construct a strip planar
drawing Γ of (G, γ) as follows.

i
i

“thesis” — 2015/4/29 — 21:44 — page 184 — #196 i
i

i
i

i
i

184 CHAPTER 6. STRIP PLANARITY TESTING

µc

µd

µa a

b

c

d

uk vk

u1 v1

µk

µ1

µb

(a) (b)

µc µdµa a

b c d
u1 µ1

µb

uk µk

v1

vk

0 j

Y i
0

Y i
1

uk µk

µ1

v1u1

vk

µiyi

xi

wi

zi

(c) (d)

Figure 6.20: Illustration for the proof of Theorem 6.2. (a) Instance (G, γ) of STRIP
PLANARITY; (b) instance C(G′, T) of C-PLANARITY obtained from (G, γ); (c) a c-
planar drawing Γ′ of C(G′, T); (d) the strip planar drawing Γ of (G, γ) obtained from
Γ′.

SinceH is triconnected, it has a unique planar embedding. Moreover, since k ≥ 3,
just one of the faces of H has incident vertices belonging to all clusters µ1, . . . , µk,
namely the face f delimited by cycle Cf = (u1, . . . , uk, a, vk, . . . , v1, c). Hence, all
the vertices and edges of G are embedded inside f in Γ′, given that G is connected.
Moreover, for each 1 ≤ i ≤ k, the intersection of the region R(µi) representing
cluster µi in Γ′ with the interior of f is a connected region containing ui and vi,
given that ui and vi are separated by path (a, b, c) in the region delimited by cycle Cf
different from f . Then, the edges connecting a vertex of µi to a vertex of µi+1 cut the
boundary of R(µi) consecutively, for every 1 ≤ i ≤ k − 1; denote by si1, . . . , s

i
ni the

clockwise order in which these edges cut the boundary of R(µi), starting at the first
edge si1 crossing the boundary of R(µi) after (ui, ui+1). Analogously, the mi edges

i
i

“thesis” — 2015/4/29 — 21:44 — page 185 — #197 i
i

i
i

i
i

6.4. REDUCTION 185

connecting a vertex of µi to a vertex of µi−1 cut the boundary ofR(µi) consecutively,
for every 2 ≤ i ≤ k. Observe that, since (G, γ) is proper, it holds that ni = mi+1 for
each i = 1, . . . , k − 1.

We now show how to construct Γ. We first construct an auxiliary graph Cx.
Initialize Cx as G. We replace each edge sij , where sij connects a vertex uij in µi
to a vertex ui+1

j in µi+1, with a path (uij , p
i
j , q

i+1
j , ui+1

j). Further, add to Cx (i)
dummy edges (pij , p

i
j+1), with j = 1, . . . , ni − 1, (ii) dummy edges (qij , q

i
j+1), with

j = 1, . . . ,mi − 1, (iii) dummy edges (pi1, y
i), (xi, yi), and (xi, qi1), where xi and

yi are two dummy vertices, and (iv) dummy edges (pini , w
i), (zi, wi), and (zi, qimi),

where zi and wi are two dummy vertices. Also, add edges (x1, z1) and (yk, wk) to
Cx.

For each i = 1, . . . , k, denote by Cµi the subgraph of Cx induced by the vertices
inside or on the boundary of cycle Ci = (pi1, . . . , p

i
n, w

i, zi, qimi , . . . , q
i
1, x

i, yi).
Consider any set of k horizontal strips γ1, . . . , γk. For each i = 1, . . . , k, let

y = Y i0 and y = Y i1 be the higher and lower horizontal lines delimiting the strip γi,
respectively.

We first show how to draw each graph Cµi . Place vertex yi at point (0, Y i0),
vertex xi at point (0, Y i1), vertex wi at point (max{mi, ni}+ 1, Y i0), and vertex zi at
point (max{mi, ni} + 1, Y i1). Also, place each vertex pij at point (j, Y i0), and each
vertex qij at point (j, Y i1). By construction, Ci is represented by a convex quadrilateral
Qi. Then, extend Qi to a straight-line planar drawing Γi of Cµi . Observe that Cµi
can be augmented to an internally-triangulated planar graph with no edge connecting
two non-consecutive vertices on the outer face. Hence, Γi always exists [CEGL12].
Slightly perturbing the position of the internal vertices of Cµi results in a drawing in
which all the edges, except for the ones incident to the outer face, are y-monotone.

Finally, for each i = 1, . . . , k − 1 and j = 1, . . . , ni, vertices pij and qi+1
j have

the same x-coordinate, and hence can be connected with a vertical straight-line seg-
ment not intersecting any other edge. Now removing the inserted dummy edges and
replacing all dummy vertices pij and qij with bends results in a strip planar drawing Γ
of (G, γ).

Suppose now that (G, γ) admits a strip planar drawing Γ. A c-planar drawing Γ′

of C(G′, T) can be constructed as follows. First, let the drawings ofG′ in Γ′ and ofG
in Γ coincide. Let X0 and X1 be the smallest and the largest x-coordinate of a vertex
in Γ, respectively. For each i = 1, . . . , k, let y = Y i0 and y = Y i1 be the horizontal
lines delimiting strip γi from above and from below, respectively. Refer to Fig. 6.21.

Place vertices ui and vi at points (X0 − 1,
Y i0 +Y i1

2) and (X1 + 1,
Y i0 +Y i1

2), respec-
tively, and represent µi as a rectangular region R(µi) with corners at (X0 − 2, Y i0),
(X0 − 2, Y i1), (X1 + 2, Y i0), and (X1 + 2, Y i1). Then, place vertex a at point (Xa =

i
i

“thesis” — 2015/4/29 — 21:44 — page 186 — #198 i
i

i
i

i
i

186 CHAPTER 6. STRIP PLANARITY TESTING

X0+X1

2 , Ya = Y k0 +1), vertex b at point (Xb = X0−4, Yb =
Y k0 +Y 1

1

2), vertex c at point

(Xc = X0+X1

2 , Yc = Y 1
1 − 1), and vertex d at point (Xd = X1 + 4, Yd =

Y k0 +Y 1
1

2).

µc

µd

µa a

b

c

d

uk vk

u1 v1

µk

µ1

µb

X0 X1

Y k
0

Y k
1

Y 1
1

Figure 6.21: The c-planar drawing Γ′ of C(G′, T) obtained from a strip planar draw-
ing Γ of (G, γ).

Draw edges (a, b), (b, c), (c, d), and (d, a) as polygonal lines bending at points
(Xb+1, Ya), (Xb, Yc), (Xd, Yc), and (Xd−1, Ya), respectively. Draw edge (b, d) as a
polygonal line bending at points (Xb, Ya+1) and (Xd, Ya+1). For each i = 1, . . . , k,
draw edges (b, ui) and (d, vi) as polygonal lines bending at points (Xb + 1,

Y i0 +Y i1
2)

and (Xd − 1,
Y i0 +Y i1

2), respectively. Draw edges (a, uk), (a, vk), (c, u1), and (c, v1)
as polygonal lines bending at points (X0, Y

k
0), (X1, Y

k
0), (X0, Y

1
1), and (X1, Y

1
1),

respectively. Draw edges (ui, ui+1) and (vi, vi+1) as straight-line segments, for each
1 ≤ i ≤ k − 1.

Finally, draw cluster µa (µb, µc, µd) as a small disk R(µa) (resp. R(µb), R(µc),
R(µd)) enclosing only vertex a (resp. b, c, d) and not overlapping with any other
region.

This results in a c-planar drawing of C(G′, T). 2

6.5 Conclusions

In this chapter, we introduced the STRIP PLANARITY testing problem and showed
how to solve it in polynomial time if the input graph has a prescribed plane embedding.
The main question raised by this chapter is whether the STRIP PLANARITY testing
problem can be solved in polynomial time or it is rather NP -hard for graphs without

i
i

“thesis” — 2015/4/29 — 21:44 — page 187 — #199 i
i

i
i

i
i

6.5. CONCLUSIONS 187

a prescribed plane embedding. The problem is intriguing even if the input graph is a
tree.

We also proved the existence of a polynomial-time reduction from the STRIP
PLANARITY testing problem to the C-PLANARITY testing problem. Recently, Fulek
proved [Ful14] a stronger result: For every instance (G, γ) of STRIP PLANARITY,
an equivalent instance C(G,T) of C-PLANARITY can be constructed in polynomial
time such that T only contains three clusters. Thus, designing a polynomial-time al-
gorithm for the STRIP PLANARITY testing problem is a vital step towards deepening
our understanding of C-PLANARITY.

i
i

“thesis” — 2015/4/29 — 21:44 — page 188 — #200 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 189 — #201 i
i

i
i

i
i

Chapter 7

C-Level Planarity and T-Level
Planarity Testing

In this chapter1 we study two problems related to the drawing of level graphs and clus-
tered graphs, that is, T -LEVEL PLANARITY and CLUSTERED-LEVEL PLANARITY.
We show that both problems are NP -complete in the general case and that they be-
come polynomial-time solvable when restricted to proper instances.

7.1 Introduction and Overview

A level graph is proper if every of its edges spans just two consecutive levels. Several
papers dealing with the construction of level drawings of level graphs assume that the
input graph is proper. Otherwise, they suggest to make it proper by “simply adding
dummy vertices” along the edges spanning more than two levels. In this chapter
we show that this apparently innocent augmentation has dramatic consequences if,
instead of constructing just a level drawing, we are also interested in representing
additional constraints, like a clustering of the vertices or consecutivity constraints on
the orderings of the vertices along the levels.

A level graph G = (V,E, γ) is a graph with a function γ : V → {1, 2, ..., k},
with 1 ≤ k ≤ |V | such that γ(u) 6= γ(v) for each edge (u, v) ∈ E. The set Vi = {v |
γ(v) = i} is the i-th level of G. A level graph G = (V,E, γ) is proper if for every
edge (u, v) ∈ E, it holds γ(u) = γ(v)± 1. A level planar drawing of (V,E, γ) maps

1The contents of this chapter are a joint work with Patrizio Angelini, Giuseppe Di Battista, Fabrizio
Frati and Vincenzo Roselli, appeared partially in [ALD+14b] and in a journal [ALD+15]. Thanks to
Maurizio Patrignani for fruitful discussions and helpful comments.

189

i
i

“thesis” — 2015/4/29 — 21:44 — page 190 — #202 i
i

i
i

i
i

190CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

each vertex v of each level Vi to a point on the line y = i, denoted by Li, and each
edge to a y-monotone curve between its endpoints so that no two edges intersect. A
level graph is level planar if it admits a level planar drawing. A linear-time algorithm
for testing level planarity was presented by Jünger et al. [JLM98].

A clustered-level graph (cl-graph) (V,E, γ, T) is a level graph (V,E, γ) equipped
with a cluster hierarchy T , that is, a rooted tree where each leaf is an element of V
and each internal node µ, called cluster, represents the subset Vµ of V composed of
the leaves of the subtree of T rooted at µ. A clustered-level planar drawing (cl-planar
drawing) of (V,E, γ, T) is a level planar drawing of level graph (V,E, γ) together
with a representation of each cluster µ as a simple closed region enclosing all and
only the vertices in Vµ such that: (1) no edge intersects the boundary of a cluster
more than once; (2) no two cluster boundaries intersect; and (3) the intersection of
Li with any cluster µ is a straight-line segment, that is, the vertices of Vi that belong
to µ are consecutive along Li. A cl-graph is clustered-level planar (cl-planar) if
it admits a cl-planar drawing. CLUSTERED-LEVEL PLANARITY (CL-PLANARITY)
is the problem of testing whether a given cl-graph is cl-planar. This problem was
introduced by Forster and Bachmaier [FB04], who showed a polynomial-time testing
algorithm for the case in which the level graph is a proper hierarchy and the clusters
are level-connected.

A T -level graph (also known as generalized k-ary tanglegram) (V,E, γ, T) is a
level graph (V,E, γ) equipped with a set T = {T1, . . . , Tk} of trees such that the
leaves of Ti are the vertices of level Vi of (V,E, γ), for 1 ≤ i ≤ k. A T -level
planar drawing of (V,E, γ, T) is a level planar drawing of (V,E, γ) such that, for
i = 1, . . . , k, the order in which the vertices of Vi appear along Li is compatible with
Ti, that is, for each node w of Ti, the leaves of the subtree of Ti rooted at w appear
consecutively alongLi. A T -level graph is T -level planar if it admits a T -level planar
drawing. T -LEVEL PLANARITY is the problem of testing whether a given T -level
graph is T -level planar. This problem was introduced by Wotzlaw et al. [WSP12],
who showed a quadratic-time algorithm for the case in which the number of vertices
in each level is constant.

The definition of proper naturally extends to cl-graphs and T -level graphs. Note
that, given any non-proper level graph G it is easy to construct a proper level graph
G′ that is level planar if and only if G is level planar. However, as mentioned above,
there exists no trivial transformation from a non-proper cl-graph (a non-proper T -level
graph) to an equivalent proper cl-graph (resp., an equivalent proper T -level graph).

In this chapter we show that CL-PLANARITY and T -LEVEL PLANARITY are
NP -complete for non-proper instances. Conversely, we show that both problems
are polynomial-time solvable for proper instances.

Our results have several consequences: (1) They narrow the gap between polyno-

i
i

“thesis” — 2015/4/29 — 21:44 — page 191 — #203 i
i

i
i

i
i

7.2. NP-HARDNESS 191

miality and NP -completeness in the classification of Schaefer [Sch13] (see Fig. 0.1
in the Introduction and Fig. 7.1 in which the contributions of the chapters of Parts II
and III are highlighted). Note that the reduction of Schaefer between T -LEVEL PLA-
NARITY and SEFE-2 holds for proper instances [Sch13]. (2) They allow to par-
tially answer a question from [Sch13] asking whether a reduction exists from CL-
PLANARITY to SEFE-2. We show that such a reduction exists for proper instances
and that a reduction from general instances would imply the NP -hardness of SEFE-
2. (3) They improve on the results of Forster and Bachmaier [FB04] and of Wotzlaw et
al. [WSP12] by extending the classes of instances which are decidable in polynomial-
time for CL-PLANARITY and T -LEVEL PLANARITY, respectively. (4) They provide
the first, as far as we know,NP -completeness for a problem that has all the constraints
of the clustered planarity problem (and some more).

The chapter is organized as follows. The NP -completeness proofs are in Sec-
tion 7.2, while the algorithms are in Section 7.3. We conclude with open problems in
Section 7.4.

7.2 NP-Hardness

In this section we prove that the T -LEVEL PLANARITY and the CL-PLANARITY
problems are NP -complete. In both cases, the NP -hardness is proved by means of a
polynomial-time reduction from theNP -complete problem BETWEENNESS [Opa79],
that takes as input a finite setA of n objects and a setC ofm ordered triples of distinct
elements of A, and asks whether a linear ordering O of the elements of A exists such
that for each triple 〈α, β, δ〉 of C, we have either O =<. . . , α, . . . , β, . . . , δ, . . .> or
O =<. . . , δ, . . . , β, . . . , α, . . .>.

Theorem 7.1 T -LEVEL PLANARITY is NP -complete.

Proof: The problem clearly belongs to NP . We prove the NP -hardness. Given
an instance 〈A,C〉 of BETWEENNESS, we construct an equivalent instance (V ,E, γ, T)
of T -LEVEL PLANARITY as follows. Let A = {1, . . . , n} and m = |C|. The graph
(V,E) is a tree composed of n paths all incident to a common vertex v. More in detail,
(V,E) is constructed as follows. Refer to Fig. 7.2(a).

Initialize V = {v} and E = ∅, set γ(v) = 0, and let T0 ∈ T be a tree with a
single node v. For each j = 1, . . . , n, add a vertex vj to V , with γ(vj) = 1, and add
an edge (v, vj) to E. Also, initialize a variable last(j) = vj . The tree T1 ∈ T is a
star whose leaves are all the vertices of the level V1.

Then, for each i = 1, . . . ,m, consider the triple ti = 〈α, β, δ〉 of C. Add six ver-
tices uα(i), u′α(i), uβ(i), u′β(i), uδ(i), and u′δ(i) to V , with γ(uα(i)) = γ(uβ(i)) =

i
i

“thesis” — 2015/4/29 — 21:44 — page 192 — #204 i
i

i
i

i
i

192CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

P

NPC

Upward

ec-planar
with free

edges

Partial
Rotation

(with flips)

Clustered
level (cl)

Partitioned
T -coherent

3-page

Outer

ec-planar

Partially
Embedded

Partial
rotation

SEFE-3

Radial
Level

Upward
(Embedded)

Strip ?

PStreamed
Backbone

Book 〈α, β, γ〉-
drawings

Standard

Partial
Planarity

Strip
(Embedded)

Partitioned
3-Page

T -level

Proper
T -level

PStreamed
Planarity

MaxSEFE

Partitioned
2-page

Weak
realizability

Weak
realizability

[Th. 7.4]

[Le.
7.3]

[Th. 7.3]

[Th.
6.2]

[Th. 6.1]

[Le. 6.6]

[Le. 7.1
& Sch13]

[Th. 7.1]
[Th. 7.2]

[Le. 4.7]

SEFE

Clustered
level (cl)

T -level

Clustered (c)

Partitioned
T -coherent

2-page
(C-SEFE-2)

SEFE-2

Level

Proper
Clustered

Level

Figure 7.1: View of the schema proposed in the Introduction in which the contribu-
tions of Chapters 4 and 5 of Part II, and the contributions of Chapters 6 and 7 of
Part III are highlighted by using the red color. The prefix “proper” has been added to
two classes in [Sch13] to better clarify their nature.

γ(uδ(i)) = 2i and γ(u′α(i)) = γ(u′β(i)) = γ(u′δ(i)) = 2i + 1. Also, add six edges
(last(α), uα(i)), (last(β), uβ(i)), (last(δ), uδ(i)), (uα(i), u′α(i)), (uβ(i), u′β(i)), and
(uδ(i), u

′
δ(i)) to E. Further, set last(α) = u′α(i), last(β) = u′β(i), and last(δ) =

u′δ(i). Let T2i ∈ T be a binary tree with a root r2i, an internal node x2i and a
leaf uα(i) both adjacent to r2i, and with leaves uβ(i) and uδ(i) both adjacent to x2i.

i
i

“thesis” — 2015/4/29 — 21:44 — page 193 — #205 i
i

i
i

i
i

7.2. NP-HARDNESS 193

T2i+1

L0

L1

L2i+1

L2i
uα(i)uβ(i) uδ(i)

v

r2i+1

T2i

u′δ(i)

vβ vδ

u′α(i)
r2i

u′β(i)

x2i

x2i+1

T1
vα

(a)

v

vα vβ vδ

µi

uα(i)uβ(i) uδ(i)

νi

L0

L1

L2i+1

L2i

u′δ(i)u′α(i) u
′
β(i)

(b)

Figure 7.2: Illustrations for the proof of (a) Theorem 7.1 and (b) Theorem 7.2.

Moreover, let T2i+1 ∈ T be a binary tree with a root r2i+1, an internal node x2i+1

and a leaf u′δ(i) both adjacent to r2i+1, and two leaves u′α(i) and u′β(i) both adjacent
to x2i+1.

The reduction is easily performed in O(n+m) time. We prove that (V ,E, γ, T)
is T -level planar if and only if 〈A,C〉 is a positive instance of BETWEENNESS.

Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ. Consider the left-
to-right order O1 in which the vertices of the level V1 appear along L1. Construct an
order O of the elements of A such that α ∈ A appears before β ∈ A if and only if
vα ∈ V1 appears before vβ ∈ V1 in O1. In order to prove that O is a positive solution
for 〈A,C〉 it suffices to prove that, for each triple ti = 〈α, β, δ〉 ∈ C, vertices vα,
vβ , and vδ appear either in this order or in the reverse order in O1. Note that the tree
T2i enforces uα(i) not to lie between uβ(i) and uδ(i) along L2i; also, the tree T2i+1

enforces u′δ(i) not to lie between u′α(i) and u′β(i) along L2i+1. Since the three paths
connecting u′α(i), u′β(i), and u′δ(i) with v are y-monotone, do not cross each other,
and contain uα(i) and vα, uβ(i) and vβ , and uδ(i) and vδ , respectively, we have that
vα, vβ , and vδ appear either in this order or in the reverse order in O1.

Suppose that an ordering O of the elements of A exists that is a positive solution
of BETWEENNESS for the instance 〈A,C〉. In order to construct Γ, place the vertices
of V1 along L1 in such a way that each vertex vj ∈ V1, for j = 1, . . . , n, is assigned
x-coordinate equal to s if j is the s-th element of O. Also, for i = 1, . . . ,m, consider
the triple ti = 〈α, β, δ〉 ∈ C. Place the vertices uλ(i) and u′λ(i), with λ ∈ {α, β, δ},
on L2i and L2i+1, respectively, in such a way that uλ(i) and u′λ(i) are assigned x-

i
i

“thesis” — 2015/4/29 — 21:44 — page 194 — #206 i
i

i
i

i
i

194CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

coordinate equal to s if λ is the s-th element of O. Finally, place v at any point on
L0 and draw the edges of E as straight-line segments. We prove that Γ is a T -level
planar drawing of (V ,E, γ, T). First, Γ is a level planar drawing of (V,E, γ), by
construction. Further, for each i = 1, . . . ,m, the vertices uα(i), uβ(i), and uδ(i)
appear along L2i either in this order or in the reverse order; in both cases, the order
is compatible with the tree T2i. Analogously, u′α(i), u′β(i), and u′δ(i) appear along
L2i+1 either in this order or in the reverse order; in both cases, the order is compatible
with T2i+1. Finally, the order in which vertices of V0 and V1 appear along L0 and L1

are trivially compatible with T0 and T1, respectively. 2

Theorem 7.2 CLUSTERED-LEVEL PLANARITY is NP -complete.

Proof: The problem clearly belongs to NP . We prove the NP -hardness. Given
an instance 〈A,C〉 of BETWEENNESS, we construct an instance (V ,E, γ, T) of T -
LEVEL PLANARITY as in the proof of Theorem 7.1; then, starting from (V ,E, γ, T),
we construct an instance (V ,E, γ, T) of CL-PLANARITY that is cl-planar if and only
if (V ,E, γ, T) is T -level planar. This, together with the fact that (V ,E, γ, T) is T -
level planar if and only if 〈A,C〉 is a positive instance of BETWEENNESS, implies the
NP -hardness of CL-PLANARITY. Refer to Fig. 7.2(b).

We describe how to construct (V ,E, γ, T) from (V ,E, γ, T) by defining the
cluster hierarchy T as follows. Initialize T with a root ρ, and insert u′δ(m) and a node
µm as children of ρ. Then for i = m, . . . , 1, perform the following insertions in T :
Insert u′α(i), u′β(i), uα(i), and a node νi in T as children of µi; then insert uβ(i),
uδ(i), x, and a node y in T as children of νi, where x = u′δ(i − 1) and y = µi−1, if
i > 1, and x = V0 ∪ V1 and y = ∅, if i = 1.

We prove that (V ,E, γ, T) is cl-planar if and only if (V ,E, γ, T) is T -level
planar.

Suppose that (V ,E, γ, T) admits a cl-planar drawing Γ. Construct a T -level
planar drawing Γ∗ of (V ,E, γ, T) by removing from Γ the clusters of T . The draw-
ing of (V,E, γ) in Γ∗ is level-planar, since it is level-planar in Γ. Further, for each
i = 1, . . . ,m, the vertex uα(i) does not appear between uβ(i) and uδ(i) along L2i,
since uβ(i), uδ(i) ∈ Vνi and uα(i) /∈ Vνi ; analogously, u′δ(i) does not appear between
u′α(i) and u′β(i) along L2i+1, since u′α(i), u′β(i) ∈ Vµi and u′δ(i) /∈ Vµi . Hence, the
order of the vertices of V2i and V2i+1 along L2i and L2i+1, respectively, are compati-
ble with the trees T2i and T2i+1. Finally, the order in which the vertices in V0 and V1

appear along L0 and L1 are trivially compatible with T0 and T1, respectively.
Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ∗; we describe how

to construct a cl-planar drawing Γ of (V ,E, γ, T). Assume that Γ∗ is a straight-
line drawing, which is not a loss of generality [EFLN06]. Initialize Γ = Γ∗. Draw

i
i

“thesis” — 2015/4/29 — 21:44 — page 195 — #207 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHMS 195

each cluster α in T as a convex region R(α) in Γ slightly surrounding the border
of the convex hull of its vertices and slightly surrounding the border of the regions
representing the clusters that are its descendants in T . Let j be the largest index such
that Vj contains a vertex of α. Then, R(α) contains all and only the vertices that are
descendants of α in T ; moreover, any two clusters α and β in T are one contained
into the other, hence R(α) and R(β) do not cross; finally, we prove that no edge e in
E crosses more than once the boundary of R(α) in Γ. First, if at least one end-vertex
of e belongs to α, then e and the boundary of R(α) cross at most once, given that e is
a straight-line segment and that R(α) is convex. All the vertices in V0 ∪ · · · ∪ Vj−1

and at least two vertices of Vj belong to α, hence their incident edges do not cross the
boundary of R(α) more than once. Further, all the vertices in Vj+1 ∪ · · · ∪ V2m+3

have y-coordinates larger than every point of R(α), hence edges between them do not
cross R(α). It remains to consider the case in which e connects a vertex x1 in Vj not
in α (there is at most one such vertex) with a vertex x2 in Vj+1 ∪ · · · ∪ V2m+2; in this
case e and R(α) do not cross given that x1 is outside R(α), that x2 has y-coordinate
larger than every point of R(α), and that R(α) is arbitrarily close to the convex hull
of its vertices. 2

The reductions described in Theorems 7.1 and 7.2 can be modified so that (V,E)
consists of a set of paths (by removing the levels V0 and V1), or so that (V,E) is a
2-connected series-parallel graph (by introducing two levels V2m+2 and V2m+3 “sym-
metric” to levels V1 and V0, respectively).

7.3 Polynomial-Time Algorithms

In this section we prove that both T -LEVEL PLANARITY and CL-PLANARITY are
polynomial-time solvable problems if restricted to proper instances.

T -LEVEL PLANARITY

We start by describing a polynomial-time algorithm for T -LEVEL PLANARITY that
is based on a reduction to the Simultaneous Embedding with Fixed Edges problem for
two graphs (SEFE-2), which is defined as follows.

A simultaneous embedding with fixed edges (SEFE) of two graphs G1 = (V,E1)
and G2 = (V,E2) on the same set V of vertices consists of two planar drawings Γ1

and Γ2 ofG1 andG2, respectively, such that each vertex v ∈ V is mapped to the same
point in both drawings and each edge of the common graph G∩ = (V,E1 ∩ E2) is
represented by the same simple curve in the two drawings. The SEFE-2 problem asks
whether a given pair of graphs 〈G1, G2〉 admits a SEFE [BKR13b]. The computa-

i
i

“thesis” — 2015/4/29 — 21:44 — page 196 — #208 i
i

i
i

i
i

196CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

Li+1

Li

Li−1

Ti−1

Ti+1

x

z

y

Ti

u

(a)

Ti−1 Ti Ti+1

C

pi−1 qi−1 pi qi pi+1 qi+1

ti−1 ti+1ti

Pi−1 Qi−1 Pi Qi Pi+1 Qi+1

(b)

Figure 7.3: Illustration for the proof of Lemma 7.1. Index i is assumed to be even.
(a) A T -level planar drawing Γ of instance (V ,E, γ, T). (b) The SEFE 〈Γ1,Γ2〉 of
the instance 〈G∗1, G∗2〉 of SEFE-2 corresponding to Γ. The correspondence between a
vertex u ∈ Vi and the leaves u(Ti) ∈ Ti, u(Pi) ∈ Pi, and u(Qi) ∈ Qi is highlighted
by representing all such vertices as white boxes.

tional complexity of the SEFE-2 problem is unknown, but there exist polynomial-time
algorithms for instances that respect some conditions [ADF+12, BKR13b, BKR13a,
BR13, Sch13]. We are going to use a result by Bläsius and Rütter [BR13], who pro-
posed a quadratic-time algorithm for instances 〈G1, G2〉 of SEFE-2 in which G1 and
G2 are 2-connected and the common graph G∩ is connected.

In the following, by size of an instance (V ,E, γ, T) of T -LEVEL PLANARITY
we mean the number of vertices in V plus the total number of internal nodes of the
trees in T ; also, by size of an instance (V ,E, γ, T) of CL-PLANARITY we mean the
number of vertices in V plus the number of internal nodes of T .

Lemma 7.1 Let (V ,E, γ, T) be a proper instance of T -LEVEL PLANARITY. There
exists an equivalent instance 〈G∗1, G∗2〉 of SEFE-2 such that G∗1 = (V ∗, E∗1) and
G∗2 = (V ∗, E∗2) are 2-connected and the common graph G∩ = (V ∗, E∗1 ∩ E∗2) is
connected. Further, the instance 〈G∗1, G∗2〉 can be constructed in linear time.

Proof: We describe how to construct the instance 〈G∗1, G∗2〉. Refer to Fig. 7.3.
The common graphG∩ contains a cycle C = (t1, t2, . . . , tk, qk, pk, qk−1, pk−1, . . . ,

q1, p1), where k is the number of levels of (V ,E, γ, T). For each i = 1, . . . , k, the
graph G∩ contains a copy Ti of the tree Ti ∈ T , whose root is a vertex ti, and con-
tains two stars Pi and Qi centered at pi and qi, respectively, whose number of leaves
is determined as follows. For each vertex u ∈ Vi such that an edge (u, v) ∈ E exists
connecting u to a vertex v ∈ Vi−1, the star Pi contains a leaf u(Pi); also, for each

i
i

“thesis” — 2015/4/29 — 21:44 — page 197 — #209 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHMS 197

vertex u ∈ Vi such that an edge (u, v) ∈ E exists connecting u to a vertex v ∈ Vi+1,
the star Qi contains a leaf u(Qi). We also denote by u(Ti) a leaf of Ti corresponding
to a vertex u ∈ Vi.

The graph G∗1 contains G∩ plus the following edges. For i = 1, . . . , k, consider
each vertex u ∈ Vi. Suppose that i is even. Then, G∗1 has an edge connecting the leaf
u(Ti) of Ti corresponding to u with either the leaf u(Qi) of Qi corresponding to u,
if it exists, or with qi, otherwise; also, for each edge in E connecting a vertex u ∈ Vi
with a vertex v ∈ Vi−1, the graph G∗1 has an edge connecting the leaf u(Pi) of Pi
corresponding to u with the leaf v(Qi−1) of Qi−1 corresponding to v (these leaves
exist by construction). Suppose that i is odd. Then, G∗1 has an edge between u(Ti)
and either u(Pi), if it exists, or pi, otherwise.

The graph G∗2 contains G∩ plus the following edges. For i = 1, . . . , k, consider
each vertex u ∈ Vi. Suppose that i is odd. Then, G∗2 has an edge connecting u(Ti)
with either the leaf u(Qi) of Qi corresponding to u, if it exists, or with qi, otherwise;
also, for each edge in E connecting a vertex u ∈ Vi with a vertex v ∈ Vi−1, the graph
G∗2 has an edge (u(Pi), v(Qi−1)). Suppose that i is even. Then, G∗2 has an edge
between u(Ti) and either u(Pi), if it exists, or pi, otherwise.

The graph G∩ is clearly connected. We prove that G∗1 and G∗2 are 2-connected,
that is, removing any vertex v disconnects neither G∗1 nor G∗2. If v is a leaf of Ti, Pi,
or Qi, with 1 ≤ i ≤ k, then removing v disconnects neither G∗1 nor G∗2, since G∩
remains connected. If v is an internal node (the root) of Ti, Pi, or Qi, say of Ti, with
1 ≤ i ≤ k, then removing v disconnects G∩ into one component Ti(v) containing
all the vertices of C (resp. all the vertices of C, except for v) and into some subtrees
Ti,j of Ti rooted the children of v; however, by construction, each leaf u(Ti) of Ti,j
is connected to Ti(v) via an edge of G∗1, namely either (u(Ti), u(Pi)), (u(Ti), pi),
(u(Ti), u(Qi)), or (u(Ti), qi) (and similar for G∗2), hence G∗1 (and G∗2) is connected
after the removal of v.

Observe that, if nT denotes the total number of nodes in the trees in T , then
〈G∗1, G∗2〉 contains at most 3nT vertices. Also, the number of edges of 〈G∗1, G∗2〉 is at
most |E| + 2nT . Hence, the size of 〈G∗1, G∗2〉 is linear in the size of (V ,E, γ, T);
also, it is easy to see that 〈G∗1, G∗2〉 can be constructed in linear time.

We prove that 〈G∗1, G∗2〉 admits a SEFE if and only if (V ,E, γ, T) is T -level
planar.

Suppose that 〈G∗1, G∗2〉 admits a SEFE 〈Γ∗1,Γ∗2〉. We show how to construct a
drawing Γ of (V ,E, γ, T). For 1 ≤ i ≤ k, let Θ(Ti) be the order in which the leaves
of Ti appear in a pre-order traversal of Ti in 〈Γ∗1,Γ∗2〉; then, let the ordering Oi of the
vertices of Vi along Li be either Θ(Ti), if i is odd, or the reverse of Θ(Ti), if i is even.

We prove that Γ is T -level planar. For each i = 1, . . . , k, Oi is compatible with
Ti ∈ T , since the drawing of Ti, that belongs to G∩, is planar in 〈Γ∗1,Γ∗2〉. Suppose,

i
i

“thesis” — 2015/4/29 — 21:44 — page 198 — #210 i
i

i
i

i
i

198CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

for a contradiction, that two edges (u, v), (w, z) ∈ E exist, with u,w ∈ Vi and v, z ∈
Vi+1, that intersect in Γ. Hence, either u appears before w in Oi and v appears after
z in Oi+1, or vice versa. Since i and i + 1 have different parity, either u appears
before w in Θ(Ti) and v appears before z in Θ(Ti+1), or vice versa. We claim that,
in both cases, this implies a crossing in 〈Γ∗1,Γ∗2〉 between paths (qi, u(Qi), v(Pi+1),
pi+1) and (qi, w(Qi), z(Pi+1), pi+1) in 〈G∗1, G∗2〉. Since the edges of these two paths
belong all to G∗1 or all to G∗2, depending on whether i is even or odd, this yields a
contradiction. We now prove the claim. The pre-order traversal Θ(Qi) of Qi (the
pre-order traversal Θ(Pi+1) of Pi+1) in 〈Γ∗1,Γ∗2〉 restricted to the leaves of Qi (of
Pi+1) is the reverse of Θ(Ti) (of Θ(Ti+1)) restricted to the vertices of Vi (of Vi+1)
corresponding to leaves of Qi (of Pi+1). Namely, each leaf x(Qi) of Qi (y(Pi+1)
of Pi+1) is connected to the leaf x(Ti) of Ti (y(Ti+1) of Ti+1) in the same graph,
either G∗1 or G∗2, by construction. Hence, the fact that u appears before (after) w in
Θ(Ti) and v appears before (after) z in Θ(Ti+1) implies that u appears after (before)
w in Θ(Qi) and v appears after (before) z in Θ(Pi+1). In both cases, this implies a
crossing in 〈Γ∗1,Γ∗2〉 between the two paths.

Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ. We show how
to construct a SEFE 〈Γ∗1,Γ∗2〉 of 〈G∗1, G∗2〉. For 1 ≤ i ≤ k, let Oi be the order of
the vertices of the level Vi along Li in Γ. Since Γ is T -level planar, there exists an
embedding Γi of the tree Ti ∈ T that is compatible with Oi. If i is odd (even), then
assign to each internal vertex of Ti the same (resp. the opposite) rotation scheme as
its corresponding vertex in Γi. Also, if i is odd, then assign to pi (to qi) the rotation
scheme in G∗1 (resp. in G∗2) such that the paths that connect pi (resp. qi) to the leaves
of Ti, either with an edge or passing through a leaf of Pi (resp. of Qi), appear in the
same clockwise order as the vertices of Vi appear in Oi; if i is even, then assign to
pi (to qi) the rotation scheme in G∗2 (resp. in G∗1) such that the paths that connect pi
(resp. qi) to the leaves of Ti appear in the same counterclockwise order as the vertices
of Vi appear in Oi. Finally, consider the embedding Γi,i+1 obtained by restricting
Γ to the vertices and edges of the subgraph induced by the vertices of Vi and Vi+1.
If i is odd (even), then assign to the leaves of Qi and Pi+1 in G∗1 (in G∗2) the same
rotation scheme as their corresponding vertices have in Γi,i+1. This completes the
construction of 〈Γ∗1,Γ∗2〉.

We prove that 〈Γ∗1,Γ∗2〉 is a SEFE of 〈G∗1, G∗2〉. Since the rotation scheme of the
internal vertices of each Ti are constructed starting from an embedding Γi of Ti ∈ T
that is compatible with Oi, the drawing of Ti is planar. Further, since the rotation
schemes of pi (of qi) are also constructed starting from Oi, there exists no crossing
between two paths connecting ti and pi (ti and qi), one passing through a leaf u(Ti) of
Ti and, possibly, through a leaf u(Pi) of Pi (through a leaf u(Qi) ofQi), and the other
passing through a leaf v(Ti) of Ti and, possibly, through a leaf v(Pi) of Pi (through

i
i

“thesis” — 2015/4/29 — 21:44 — page 199 — #211 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHMS 199

a leaf v(Qi) of Qi). Finally, since the rotation schemes of the leaves of Qi and Pi+1

are constructed from the embedding Γi,i+1 obtained by restricting Γ to the vertices
and edges of the subgraph induced by the vertices of Vi and Vi+1, there exist no two
crossing edges between leaves of Qi and Pi+1. 2

We remark that a reduction from T -LEVEL PLANARITY to SEFE-2 was described
by Schaefer in [Sch13]; however, the instances of SEFE-2 obtained from that re-
duction do not satisfy any conditions that make SEFE-2 known to be solvable in
polynomial-time.

Theorem 7.3 There exists a quadratic-time algorithm that decides whether a proper
instance (V ,E, γ, T) of T -LEVEL PLANARITY is T -level planar.

Proof: The statement follows from Lemma 7.1 and from the existence of a quadratic-
time algorithm [BR13] that decides whether an instance 〈G1, G2〉 of SEFE-2 such that
G1 and G2 are 2-connected and the common graph G∩ is connected admits a SEFE.

2

CL-PLANARITY

In the following we show how to test in polynomial time the existence of a cl-planar
drawing for a proper instance (V ,E, γ, T) of CL-PLANARITY.

Let (V ,E, γ, T) be a proper cl-graph, let µ be a cluster of T , and recall that Vµ
denotes the subset of V composed of the leaves of the subtree of T rooted at µ. We
say that (V ,E, γ, T) is µ-connected between two levels Vi and Vi+1 if there exist
two vertices u ∈ Vµ ∩ Vi and v ∈ Vµ ∩ Vi+1 such that edge (u, v) ∈ E. Also, let
γmin (µ) = min {i | Vi ∩ Vµ 6= ∅} and let γmax (µ) = max {i | Vi ∩ Vµ 6= ∅}. Then
(V ,E, γ, T) is level-µ-connected if it is µ-connected between levels Vi and Vi+1 for
each i = γmin(µ), . . . , γmax(µ) − 1. Finally, (V ,E, γ, T) is level-connected if it is
µ-level-connected for each cluster µ ∈ T .

Our strategy consists of first transforming a proper instance of CL-PLANARITY
into an equivalent level-connected instance, and then transforming such a
level-connected instance into an equivalent proper instance of T -LEVEL PLANARITY.

Lemma 7.2 Let (V ,E, γ, T) be a proper instance of CL-PLANARITY. An equiv-
alent level-connected instance (V ∗, E∗, γ∗, T ∗) of CL-PLANARITY whose size is
quadratic in the size of (V ,E, γ, T) can be constructed in quadratic time.

Proof: The construction of (V ∗, E∗, γ∗, T ∗) consists of two steps. See Fig. 7.4.

i
i

“thesis” — 2015/4/29 — 21:44 — page 200 — #212 i
i

i
i

i
i

200CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

(a) (b) (c)

Figure 7.4: Illustration for the proof of Lemma 7.2. (a) An instance (V ,E, γ, T)
with flat hierarchy containing clusters µ�, µ�, and µ◦. (b) Insertion of dummy
vertices in (V ,E, γ, T) to obtain (V ′, E′, γ′, T ′). (c) The level-connected instance
(V ∗, E∗, γ∗, T ∗) obtained from (V ′, E′, γ′, T ′).

In the first step we turn (V ,E, γ, T) into an equivalent instance (V ′, E′, γ′, T ′).
Initialize V ′ = V , E′ = E, and T ′ = T . For each i = 1, . . . , k and for each vertex
u ∈ Vi, set γ′(u) = 3(i − 1) + 1. Then, for each i = 1, . . . , k − 1, consider each
edge (u, v) ∈ E such that γ(u) = i and γ(v) = i + 1; add two vertices du and dv
to V ′, and replace (u, v) in E′ with three edges (u, du), (du, dv), and (dv, v). Set
γ′(du) = 3(i − 1) + 2 and γ′(dv) = 3i. Finally, add du (dv) to T ′ as a child of
the parent of u (of v) in T ′. The described transformation can be easily performed in
linear time. Moreover, the size of (V ′, E′, γ′, T ′) is linear in the size of (V ,E, γ, T).

We prove that (V ′, E′, γ′, T ′) is equivalent to (V ,E, γ, T).
Suppose that (V ,E, γ, T) admits a cl-planar drawing Γ; a cl-planar drawing Γ′

of (V ′, E′, γ′, T ′) is constructed as follows. Initialize Γ′ = Γ. Scale Γ′ up by a factor
of 3 and vertically translate it so that the vertices in V ′1 lie on the line y = 1. After the
two affine transformations have been applied (i) Γ′ has no crossing, (ii) every edge is a
y-monotone curve, (iii) for i = 1, . . . , k, the vertices in Vi = V ′3(i−1)+1 are placed on
the line y = 3(i−1) + 1, that we denote by L′3(i−1)+1, and (iv) the order in which the
vertices in Vi = V ′3(i−1)+1 appear along L′3(i−1)+1 is the same as the order in which
they appear along Li. For each i = 1, . . . , k − 1, consider each edge (u, v) ∈ E such
that γ(u) = i and γ(v) = i + 1. Place the vertices du and dv in Γ′ on the two points
of the curve representing (u, v) having y-coordinate equal to 3(i − 1) + 2 and 3i,
respectively. Then the curves representing any two edges in E′ are part of the curves
representing any two edges in E. Hence Γ′ is a cl-planar drawing of (V ′, E′, γ′, T ′).

Suppose that (V ′, E′, γ′, T ′) admits a cl-planar drawing Γ′; a cl-planar drawing Γ

i
i

“thesis” — 2015/4/29 — 21:44 — page 201 — #213 i
i

i
i

i
i

7.3. POLYNOMIAL-TIME ALGORITHMS 201

of (V ,E, γ, T) is constructed as follows. Initialize Γ = Γ′. For i = 1, . . . , k − 1,
consider each path (u, du, dv, v) such that γ′(u) = 3(i− 1) + 1 and γ′(v) = 3i+ 1;
remove du, dv , and their incident edges in E′ from Γ; draw the edge (u, v) ∈ E in Γ
as the composition of the curves representing the edges (u, du), (du, dv), and (dv, v)
in Γ′. Scale Γ down by a factor of 3 and vertically translate it so that the vertices of
V1 lie on the line y = 1. After the two affine transformations have been applied (i)
Γ has no crossing, (ii) every edge is a y-monotone curve, (iii) for i = 1, . . . , k, the
vertices of Vi are placed on the line y = i, and (iv) the order in which the vertices in
Vi = V ′3(i−1)+1 appear along Li is the same as the order in which they appear along
L′3(i−1)+1. Since Γ′ is cl-planar, this implies that Γ is cl-planar, as well.

The goal of this transformation was to obtain an instance (V ′, E′, γ′, T ′) such
that, if there exists a vertex u ∈ V ′j , with 1 ≤ j ≤ 3(k − 1) + 1, that is adjacent to
two vertices v, w ∈ V ′h, with h = j ± 1, then u, v, and w have the same parent node
µ ∈ T ′; hence, (V ′, E′, γ′, T ′) is µ-connected between levels V ′j and V ′h.

In the second step we transform (V ′, E′, γ′, T ′) into an equivalent level-connected
instance (V ∗, E∗, γ∗, T ∗). Initialize (V ∗, E∗, γ∗, T ∗) =(V ′, E′, γ′, T ′). Consider
each cluster µ ∈ T ′ according to a bottom-up visit of T ′. If there exists a level V ′i ,
with γ′min (µ) ≤ i < γ′max (µ), such that no edge in E′ connects a vertex u ∈ V ′i ∩V ′µ
with a vertex v ∈ V ′i+1 ∩ V ′µ, then add two vertices u∗ and v∗ to V ∗, add an edge
(u∗, v∗) to E∗, set γ∗(u∗) = i and γ∗(v∗) = i + 1, and add u∗ and v∗ to T ∗ as
children of µ.

Observe that, for each cluster µ ∈ T ′ and for each level 1 ≤ i ≤ 3k − 2, at
most two dummy vertices are added to (V ∗, E∗, γ∗, T ∗). This implies that the size
of (V ∗, E∗, γ∗, T ∗) is quadratic in the size of (V ′, E′, γ′, T ′) and hence in the size of
(V ,E, γ, T). Also, the whole construction can be performed in quadratic time.

It remains to prove that (V ∗, E∗, γ∗, T ∗) is equivalent to (V ′, E′, γ′, T ′).
Suppose that (V ∗, E∗, γ∗, T ∗) admits a cl-planar drawing Γ∗; a cl-planar drawing

Γ′ of (V ′, E′, γ′, T ′) can be constructed as follows. Initialize Γ′ = Γ∗ and remove
from V ′, E′, and Γ′ all the vertices and edges added when constructing Γ∗. Since all
the other vertices of V ′ and edges of E′ have the same representation in Γ′ and in Γ∗,
and since Γ∗ is cl-planar, it follows that Γ′ is cl-planar, as well.

Suppose that (V ′, E′, γ′, T ′) admits a cl-planar drawing Γ′; a cl-planar drawing
Γ∗ of (V ∗, E∗, γ∗, T ∗) can be constructed as follows. Initialize Γ∗ = Γ′. Consider a
level V ′i , with 1 ≤ i ≤ 3(k − 1), such that the vertices u∗, v∗ ∈ µ with γ′(u∗) = i
and γ′(v∗) = i + 1, for some cluster µ ∈ T , have been added to (V ∗, E∗, γ∗, T ∗).
By construction, (V ′, E′, γ′, T ′) is not µ-connected between the levels V ′i and V ′i+1.
As observed before, this implies that no vertex u ∈ V ′i ∩ V ′µ exists that is connected
to two vertices v, w ∈ V ′i+1, and no vertex u ∈ V ′i+1 ∩ V ′µ exists that is connected to

i
i

“thesis” — 2015/4/29 — 21:44 — page 202 — #214 i
i

i
i

i
i

202CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

two vertices v, w ∈ V ′i . Hence, u∗, v∗, and the edge (u∗, v∗) connecting them can
be drawn in Γ∗ entirely inside the region representing µ in such a way that u∗ and v∗

lie along the lines L′i and L′i+1 and there exists no crossing between (u∗, v∗) and any
other edge.

This concludes the proof of the lemma. 2

Lemma 7.3 Let (V ,E, γ, T) be a level-connected instance of CL-PLANARITY. An
equivalent proper instance (V ,E, γ, T) of T -LEVEL PLANARITY whose size is lin-
ear in the size of (V ,E, γ, T) can be constructed in quadratic time.

Proof: We construct (V ,E, γ, T) from (V ,E, γ, T) as follows. Initialize T = ∅.
For i = 1, . . . , k, add to T a tree Ti that is the subtree of the cluster hierarchy T whose
leaves are all and only the vertices of level Vi.

We prove that (V ,E, γ, T) is T -level planar if and only if (V ,E, γ, T) is cl-
planar.

Suppose that (V ,E, γ, T) admits a T -level planar drawing Γ∗; we show how to
construct a cl-planar drawing Γ of (V ,E, γ, T). Initialize Γ = Γ∗. Consider each
level Vi, with i = 1, . . . , k. By construction, for each cluster µ ∈ T such that there
exists a vertex v ∈ Vi ∩ Vµ, there exists an internal node of the tree Ti ∈ T whose
leaves are all and only the vertices of Vi ∩ Vµ. Since Γ∗ is T -level planar, such
vertices appear consecutively along Li. Hence, in order to prove that Γ is a cl-planar
drawing, it suffices to prove that there exist no four vertices u, v, w, z such that (i)
u, v ∈ Vi and w, z ∈ Vj , with 1 ≤ i < j ≤ k; (ii) u,w ∈ Vµ and v, z ∈ Vν , with
µ 6= ν; and (iii) u appears before v on Li and w appears after z on Lj , or vice versa.
Suppose, for a contradiction, that such four vertices exist. We can assume j = i ± 1
without loss of generality, as (V ,E, γ, T) is level-connected. Assume that u appears
before v along Li and w appears after z along Lj , the other case being symmetric.
Since Γ∗ is T -level planar, all the vertices of Vµ appear before all the vertices of
Vν along Li and all the vertices of Vµ appear after all the vertices of Vν along Lj .
Also, since (V ,E, γ, T) is level-connected, there exists at least an edge (a, b) such
that a ∈ Vi ∩ Vµ and b ∈ Vj ∩ Vµ, and an edge (c, d) such that c ∈ Vi ∩ Vν and
d ∈ Vj ∩Vν . However, under the above conditions, these two edges intersect in Γ and
in Γ∗, hence contradicting the hypothesis that Γ∗ is T -level planar.

Suppose that (V ,E, γ, T) admits a cl-planar drawing Γ; we show how to con-
struct a T -level planar drawing Γ∗ of (V ,E, γ, T). Initialize Γ∗ = Γ. Consider each
level Vi, with i = 1, . . . , k. By construction, for each internal node w of the tree
Ti ∈ T , there exists a cluster µ ∈ T such that the vertices of Vi ∩ Vµ are all and only
the leaves of the subtree of Ti rooted at w. Since Γ is cl-planar, such vertices appear
consecutively along Li. Hence, Γ∗ is T -level planar.

i
i

“thesis” — 2015/4/29 — 21:44 — page 203 — #215 i
i

i
i

i
i

7.4. OPEN PROBLEMS 203

The construction of (V ,E, γ, T) can be easily performed in quadratic time by
visiting T a number of times equal to the number of levels of (V ,E, γ, T).

The size of (V ,E, γ, T) might be quadratic in the size of (V ,E, γ, T). However,
(V ,E, γ, T) can be modified so that its size is linear in the size of (V ,E, γ, T) as fol-
lows. Consider the tree Ti, for each i = 1, . . . , k. Replace each path (ν1, . . . , ν`) in Ti
such that νj is the parent of νj+1, for i = 1, . . . , `−1, and such that νj has no children
other than νj+1, for i = 2, . . . , ` − 1, with a single edge (ν1, ν`). After this transfor-
mation, each internal node of Ti has at least two children, hence the size of Ti is linear
in the size of Vi. Since the vertex sets of (V ,E, γ, T) and (V ,E, γ, T) coincide, it
follows that the size of (V ,E, γ, T) is linear in the size of (V ,E, γ, T). Finally, the
described transformation does not alter the T -LEVEL PLANARITY of (V ,E, γ, T).
This concludes the proof of the lemma. 2

We get the following.

Theorem 7.4 There exists a quartic-time algorithm that decides whether a proper
instance (V ,E, γ, T) of CLUSTERED-LEVEL PLANARITY is cl-planar.

Proof: By Lemma 7.2, a level-connected instance (V ′, E′, γ′, T ′) of CL-PLANARITY
can be constructed that is cl-planar if and only if (V ,E, γ, T) is cl-planar. The con-
struction can be accomplished in quadratic time in the size of (V ,E, γ, T); moreover,
the size of (V ′, E′, γ′, T ′) is quadratic in the size of (V ,E, γ, T).

By Lemma 7.3, a proper instance (V ′, E′, γ′, T ′) of T -LEVEL PLANARITY can be
constructed that is T -level planar if and only if (V ′, E′, γ′, T ′) is cl-planar. The con-
struction can be accomplished in linear time in the size of (V ′, E′, γ′, T ′), and hence
in quadratic time in the size of (V ,E, γ, T); moreover, the size of (V ′, E′, γ′, T ′) is
linear in the size of (V ′, E′, γ′, T ′), and hence quadratic in the size of (V ,E, γ, T).

Finally, by Theorem 7.3, it is possible to test whether (V ′, E′, γ′, T ′) is T -level
planar in quadratic time in the size of (V ′, E′, γ′, T ′), and hence in quartic time in the
size of (V ,E, γ, T). 2

7.4 Open Problems

Several problems are opened by this research:

1. The algorithms for testing level planarity [JLM98] and for testing cl-planarity
for level-connected proper hierarchies [FB04] both have linear-time complexity.
Although our algorithms solve more general problems than the ones above, they
are less efficient. This leaves room for future research aiming at improving our
complexity bounds.

i
i

“thesis” — 2015/4/29 — 21:44 — page 204 — #216 i
i

i
i

i
i

204CHAPTER 7. C-LEVEL PLANARITY AND T-LEVEL PLANARITY TESTING

2. Our NP -hardness result on the complexity of CL-PLANARITY exploits a clus-
ter hierarchy whose depth is linear in the number of vertices of the underlying
graph. Does the NP -hardness hold if the cluster hierarchy is flat?

3. The NP -hardness of CL-PLANARITY is, to the best of our knowledge, the
first hardness result for a variation of the clustered planarity problem in which
none of the c-planarity constraints is dropped. Is it possible to use similar tech-
niques to tackle the problem of determining the complexity of CLUSTERED
PLANARITY?

i
i

“thesis” — 2015/4/29 — 21:44 — page 205 — #217 i
i

i
i

i
i

Part IV

Simultaneous Embedding
with Fixed Edges

205

i
i

“thesis” — 2015/4/29 — 21:44 — page 206 — #218 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 207 — #219 i
i

i
i

i
i

Chapter 8

Advancements on SEFE and
Partitioned Book Embedding
Problems

In this chapter1 we investigate the complexity of some combinatorial problems related
to the SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE) and the PARTI-
TIONED T-COHERENT k-PAGE BOOK EMBEDDING (PTBE-k) problems, which are
known to be equivalent under certain conditions.

The SEFE problem is NP -complete for k ≥ 3 even if the intersection graph is
the same for each pair of graphs (sunflower intersection). We prove that this is true
even when the intersection graph is a tree and all the input graphs are biconnected.
This result implies the NP -completeness of PTBE-k for k ≥ 3. However, we prove
stronger results on this problem, namely that PTBE-k remains NP -complete for k ≥
3 even if (i) two of the input graphsGi = T ∪Ei are biconnected and T is a caterpillar
or if (ii) T is a star. This latter setting is also known in the literature as PARTITIONED
k-PAGE BOOK EMBEDDING. On the positive side, we provide a linear-time algorithm
for PTBE-k when all but one of the edge-sets induce connected graphs.

Finally, we prove that the problem of maximizing the number of edges that are
drawn the same in a SEFE of two graphs (optimization of SEFE) is NP -complete,
even in several restricted settings.

1The contents of this chapter are a joint work with Patrizio Angelini and Daniel Neuwirth, appeared
partially in [ADN14] and in a journal [ADN15].

207

i
i

“thesis” — 2015/4/29 — 21:44 — page 208 — #220 i
i

i
i

i
i

208 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

8.1 Introduction

The possibility of drawing together a set of graphs gives the opportunity to represent
at the same time a set of different binary relationships among the same objects or a
single relationship evolving over time, hence making this topic a fundamental tool in
Information Visualization [EKLN05]. Motivated by such applications and by their
theoretical appeal, simultaneous graph embeddings received wide research attention
in the last few years. For an up-to-date survey, see [BKR13b].

Recently, a new major milestone to assert the importance of SEFE has been pro-
vided by Schaefer [Sch13], who discussed its relationships with some other famous
problems in Graph Drawing, proving that SEFE generalizes several of them. In par-
ticular, he showed a polynomial-time reduction to SEFE with k = 2 from the C-
PLANARITY problem, whose computational complexity is still one of the most im-
portant open questions in Graph Drawing. Recently, the reduction in the opposite
direction has been proved [AD14], but only for instances of SEFE of two graphs in
which the intersection graph is connected. Chapter 9 is mostly devoted to the descrip-
tion of such a new reduction. We remark that this “connected” version of SEFE is
equivalent to problem PTBE-k for k = 2 [ADF+12].

We refer the reader to Section 3.2 for an exhaustive survey of the state of the art of
the computational complexity of the SEFE and of the PTBE-k problems before the
contributions of this chapter (see also [ADN15] and [ADN14]).

In Chapter 11 of the Handbook of Graph Drawing and Visualization [BKR13b],
the SEFE problem with sunflower intersection (SUNFLOWER SEFE) is reported as
an open question (Open Problem 7). As described in Section 3.2, in this setting the
intersection graph G∩ is such that, if an edge belongs to G∩, then it belongs to all the
input graphs. See Fig. 8.1(a) for an example. Note that every instance of SEFE with
k = 2 obviously has sunflower intersection. We remark that the same technique used
in [ADF+12] to prove that SEFE-2 of two graphs with connected intersection is equiv-
alent to PTBE-2 can be applied to prove that SUNFLOWER SEFE of k graphs with
connected intersection is equivalent to PTBE-k. Haeupler et al. [HJL13] conjectured
that SUNFLOWER SEFE is polynomial-time solvable. However, Schaefer [Sch13]
recently proved that this problem is NP -complete for k ≥ 3 by providing a reduc-
tion from PTBE-k. Observe that, this reduction produces instances of SUNFLOWER
SEFE in which the intersection graph is a spanning forest composed of an unbounded
number of star graphs [Sch13].

i
i

“thesis” — 2015/4/29 — 21:44 — page 209 — #221 i
i

i
i

i
i

8.1. INTRODUCTION 209

(a)

u

v

(b)

Figure 8.1: (a) A SUNFLOWER SEFE of three planar graphs. (b) A MAX SEFE
of two graphs. Note that edge (u, v) is represented as a different curve in the two
drawings.

Our Results

In this chapter, we prove that SUNFLOWER SEFE is NP -complete for k ≥ 3 even if
G∩ is a single spanning tree and all the input graphs are biconnected. We remark that
having higher connectivity, both on the input graphs and on their intersection, is often
a key factor to obtain polynomial-time solutions for this problem [ADF+12, HJL13,
BKR13a, BR13].

Given the equivalence between the connected version of SUNFLOWER SEFE and
PTBE-k [ADF+12], our result implies the NP -completeness of PTBE-k for k ≥ 3;
however, the biconnectivity of the graphs in SUNFLOWER SEFE is not maintained in
the reduction to PTBE-k, that is, instances 〈T,E1, . . . , Ek〉 produced by the reduction
are such that graphs Gi = T ∪ Ei are possibly not biconnected. In this direction, we
investigate the complexity of PTBE-k under stronger assumptions on the connectivity
of the input graphs and show that it remains NP -complete for k ≥ 3 even if two of
the input graphs Gi are biconnected. Further, we prove NP -completeness for this
problem when T is a star; this setting, in which the tree T basically does not impose
any constraint on the ordering of the vertices, is also known as PARTITIONED k-PAGE
BOOK EMBEDDING (PBE-k). Since PBE-k with k = 2 can be solved in linear
time [HN14], this result is tight.

From the algorithmic point of view, we prove that PTBE-k with k ≥ 2 can be
solved in linear time if k − 1 of the input edge-sets Ei induce connected graphs (note
that, this is a stronger condition than graph Gi being biconnected), hence improving
on a result by Hoske [Hos12], that requires all the k input edge-sets to have this
property. Of course, relaxing this constraint on one of the k input edge-sets becomes

i
i

“thesis” — 2015/4/29 — 21:44 — page 210 — #222 i
i

i
i

i
i

210 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

Problem G∩ k Bico T -Bico Complexity
SUNFLOWER tree k ≥ 3 k – NPC (Th.8.1)

PBE-k star k ≥ 3 – – NPC (Th. 8.4)
PBE-2 star k = 2 – – O(n) ([HN14])

PTBE-3 caterpillar k ≥ 3 2 – NPC (Th. 8.2)
PTBE-k tree k ≥ 2 k − 1 k − 1 O(n) (Th. 8.5)

tree k = 2 2 – O(n2) ([BR13])
PTBE-2 binary tree k = 2 – – O(n2) ([Hos12])

tree k = 2 1 – OPEN (Th. 8.6)

Table 8.1: Complexity status for SUNFLOWER SEFE, PTBE-k, and PBE-k.
Columns with labels Bico and T -Bico report how many of the input graphs are bi-
connected and T -biconnected, respectively.

more relevant for small values of k; in particular, it contributes to extend the class of
instances that can be solved in polynomial time also for k = 2.

An updated summary of the results on SUNFLOWER SEFE and on PTBE-k is
presented in Table 8.1.

For the setting k = 2 we also prove that, given any instance of PTBE-k (and hence
of SEFE in which G∩ is connected), it is possible to construct an equivalent instance
of the same problem in which one of the input graphs, say G1, is biconnected and
series-parallel. This implies that it would be sufficient to find a polynomial-time algo-
rithm for this seemingly restricted case in order to have a polynomial-time algorithm
for the whole problem.

Finally, still in the setting k = 2, we study the optimization version of SEFE, that
we call MAX SEFE, which is cited as an open question by Haeupler et al. [HJL13]
and in Chapter 11 (Open Problem 9) of the Handbook of Graph Drawing and Visual-
ization [BKR13b]. In this problem, one asks for drawings of G1 and G2 such that as
many edges ofG∩ as possible are drawn the same. See Fig. 8.1(b) for an example. We
prove that MAX SEFE isNP -complete, even under some strong constraints. Namely,
the problem is NP -complete if G1 and G2 are triconnected, and G∩ is composed of
a cubic triconnected component plus a set of isolated vertices. This implies that the
problem is computationally hard both in the fixed and in the variable embedding case.
In the latter case, however, we can prove that MAX SEFE is NP -complete even if
G∩ has degree at most 2. Observe that any of these constraints would be sufficient
to obtain polynomial-time algorithms for the original decision version of SEFE with
k = 2.

i
i

“thesis” — 2015/4/29 — 21:44 — page 211 — #223 i
i

i
i

i
i

8.2. SUNFLOWER SEFE 211

The chapter is structured as follows. In Sect. 8.2 we deal with the sunflower inter-
section scenario; in Sect. 8.3 we focus on the PTBE-k problem; while in Sect. 8.4 we
study the MAX SEFE problem. Finally, in Sect. 8.5 we give concluding remarks and
discuss some open problems.

8.2 Sunflower SEFE

In this section we study the SUNFLOWER SEFE problem, that is the restriction of
SEFE to instances in which the intersection graph G∩ is the same for each pair of
graphs, that is, G∩ = Gi ∩ Gj for each 1 ≤ i < j ≤ k. We prove that SUNFLOWER
SEFE is NP -complete with k ≥ 3 even if G∩ is a spanning tree and all the input
graphs are biconnected.

The proof is based on a polynomial-time reduction from theNP -complete [Opa79]
problem BETWEENNESS, that takes as input a finite set A = {1, . . . , n} of n ob-
jects and a set C ⊆ A × A × A of m ordered triples of distinct elements of A,
and asks whether a linear ordering O of the elements of A exists such that for each
triple 〈α, β, γ〉 ∈ C, we have either O =< . . . , α, . . . , β, . . . , γ, . . . > or O =<
. . . , γ, . . . , β, . . . , α, . . . >.

In order to simplify the proof, we first give in Lemma 8.1 an NP -completeness
proof for a less restricted setting of SUNFLOWER SEFE and then describe how the
produced instances can be modified in order to obtain equivalent instances with the
desired properties.

Lemma 8.1 SUNFLOWER SEFE with k = 3 is NP -complete even if two of the input
graphs are biconnected and the intersection graph G∩ is a spanning pseudo-tree.

Proof: The membership in NP of SUNFLOWER SEFE descends from that of SEFE,
which has been proved in [GJP+06] by a reduction to the Weak Realizability prob-
lem [Kra98, KLN91].

The NP -hardness is proved by means of a polynomial-time reduction from prob-
lem BETWEENNESS. Given an instance 〈A,C〉 of BETWEENNESS, we construct
an instance 〈G1, G2, G3〉 of SUNFLOWER SEFE that admits a SEFE if and only if
〈A,C〉 is a positive instance of BETWEENNESS, as follows.

Refer to Fig. 8.2 for an illustration of the construction of G∩, G1, G2, and G3.
Graph G∩ contains a cycle C = u1, v1, u2, v2, . . . , um, vm, wm, . . . , w1 of 3m

vertices. Also, for each i = 1, . . . ,m, G∩ contains a star Si with n leaves centered
at ui and a star Ti with n leaves centered at vi. For each i = 1, . . . ,m, the leaves
of Si are labeled xji and the leaves of Ti are labeled yji , for j = 1, . . . , n. Graph
G1 contains all the edges of G∩ plus a set of edges (yji , x

j
i+1), for i = 1, . . . ,m

i
i

“thesis” — 2015/4/29 — 21:44 — page 212 — #224 i
i

i
i

i
i

212 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

xα2 xβ2 xγ2

u2 v2

T2

yα2 yβ2 yγ2

S2

u1 v1

T1S1 Tm

um vm

Sm

w1 w2 wm

Figure 8.2: Illustration of the composition of G∩, G1, G2, and G3 in Lemma 8.1,
focused on triple t2 = 〈α, β, γ〉 of C. The three leaves of each star Si and Ti corre-
sponding to triple the elements of t2 are represented as white circles.

and j = 1, . . . , n. Here and in the following, i + 1 is computed modulo m. Graph
G2 contains all the edges of G∩ plus a set of edges (xji , y

j
i), for i = 1, . . . ,m and

j = 1, . . . , n. Graph G3 contains all the edges of G∩ plus a set of edges defined
as follows. For each i = 1, . . . ,m, consider the i-th triple ti = 〈α, β, γ〉 of C, and
the corresponding vertices xαi , xβi , and xγi of Si; graph G3 contains edges (wi, x

α
i),

(wi, x
β
i), (wi, x

γ
i), (xαi , x

β
i), and (xβi , x

γ
i).

First note that, by construction, 〈G1, G2, G3〉 is an instance of SUNFLOWER SEFE
and graph G∩ is a spanning pseudo-tree. Also, one can easily verify that G1 and G2

are biconnected.
We claim that, in any SEFE of 〈G1, G2, G3〉, the following two properties hold:

Property 1 for each i = 1, . . . ,m, the ordering of the edges of Si around ui is the
same as the ordering of the edges of Si+1 around ui+1, where the vertices of Si
and Si+1 are identified based on j.

Property 2 for each i = 1, . . . ,m, edges (ui, x
α
i), (ui, x

β
i), and (ui, x

γ
i), corre-

sponding to triple ti = 〈α, β, γ〉 in C, appear either in this order or in the
reverse order around ui.

To prove Property 1, note that the ordering of the edges of Si around ui is reversed
with respect to the ordering of the edges of Ti around vi, due to the presence of the

i
i

“thesis” — 2015/4/29 — 21:44 — page 213 — #225 i
i

i
i

i
i

8.2. SUNFLOWER SEFE 213

edges of G2 between the leaves of Si and the leaves of Ti. Also, the ordering of the
edges of Ti around vi is reversed with respect to the ordering of the edges of Si+1

around ui+1, due to the presence of the edges of G1 between the leaves of Ti and the
leaves of Si+1. The proof of Property 2 descends from the fact that the subgraph of
G3 induced by vertices wi, ui, xαi , xβi , and xγi is such that adding edge (ui, wi) would
make it triconnected, and hence it admits exactly two planar embeddings, which differ
by a flip.

In the following we prove that 〈G1, G2, G3〉 is a positive instance if and only if
〈A,C〉 is a positive instance of BETWEENNESS.

Suppose that 〈G1, G2, G3〉 is a positive instance, that is, there exists a SEFE
〈Γ1,Γ2,Γ3〉.

We construct a linear ordering O of the elements of A from the ordering of
the leaves of S1 in 〈Γ1,Γ2,Γ3〉. Starting from the edge of S1 clockwise following
(u1, w1) around u1, consider the leaves xd11 , . . . , x

dn
1 of S1 as they appear in clock-

wise order around u1, with dj ∈ A for each 1 ≤ j ≤ n. Then, set O = d1, . . . , dn.
We prove that O is a solution of 〈A,C〉. By Property 1, the clockwise ordering

of the leaves of Si is the same for every i = 1, . . . ,m. Also, by Property 2, for each
triple ti = 〈α, β, γ〉, edges (ui, x

α
i), (ui, x

β
i), and (ui, x

γ
i) appear around ui either in

this order or in the reverse one. Hence, α, β, and γ appear in O either in this order or
in the reverse one, which implies that O is a solution of 〈A,C〉.

Suppose that 〈A,C〉 is a positive instance, that is, there exists an ordering O =
d1, . . . , dn of the elements of A in which for each triple ti of C, the three elements of
ti appear in one of their two admissible orderings.

We construct an embedding for G1,G2, and G3. For each i = 1, . . . ,m, the ro-
tation schemes of ui and vi in all the three graphs are constructed as follows. The
rotation scheme of ui is (ui, vi−1), (ui, x

d1
i), . . . , (ui, x

dn
i), (ui, vi), and the rota-

tion scheme of vi is (vi, ui), (vi, y
dn
i), . . . , (vi, y

d1
i), (vi, ui+1), where v0 = w1

and um+1 = wm. Since all the vertices of G1 and of G2 different from ui and
vi (i = 1, . . . ,m) have degree 2, the embeddings Γ1 and Γ2 of G1 and G2 are com-
pletely specified. To complete the embedding Γ3 ofG3, we have to specify the rotation
scheme of wi and of the three leaves of Si adjacent to wi, for each i = 1, . . . ,m. Con-
sider triple ti = 〈α, β, γ〉 of C. If α, β, and γ appear in this order in O (see Fig. 8.2),
then the rotation scheme of wi is (wi, wi+1), (wi, x

γ
i), (wi, x

β
i), (wi, x

α
i), (wi, wi−1);

the rotation scheme of xαi is (xαi , wi), (xαi , x
β
i), (xαi , ui); the rotation scheme of xβi

is (xβi , wi), (xβi , x
γ
i), (xβi , ui), (xβi , x

α
i); and the rotation scheme of xγi is (xγi , wi),

(xγi , ui), (xγi , x
β
i), where w0 = u1 and wm+1 = vm. If α, β, and γ appear in the

reverse order in O, then the rotation scheme of wi is (wi, wi+1), (wi, x
α
i), (wi, x

β
i),

(wi, x
γ
i), (wi, wi−1); the rotation scheme of xαi is (xαi , wi), (xαi , ui), (xαi , x

β
i); the ro-

i
i

“thesis” — 2015/4/29 — 21:44 — page 214 — #226 i
i

i
i

i
i

214 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

tation scheme of xβi is (xβi , wi), (xβi , x
α
i), (xβi , ui), (xβi , x

γ
i); and the rotation scheme

of xγi is (xγi , wi), (xγi , x
β
i), (xγi , ui), where w0 = u1 and wm+1 = vm.

In order to prove that 〈Γ1,Γ2,Γ3〉 is a SEFE, we first observe that the embeddings
ofG∩ obtained by restricting Γ1, Γ2, and Γ3 to the edges ofG∩, respectively, coincide
by construction.

In order to prove the planarity of Γ1 (of Γ2), observe that vi and ui+1 (vi and ui),
for each i = 1, . . . ,m, are the poles of a parallel subgraph composed of m paths.
Since the order of the edges around vi in Γ1 (in Γ2) is the reverse of the order of the
edges around ui+1 (around ui), these paths can be drawn without intersections.

The planarity of Γ3 is due to the fact that, by construction, for each i = 1, . . . ,m,
the subgraph induced by wi, ui, xαi , xβi , and xγi is planar in Γ3.

This concludes the proof of the lemma. 2

We are now ready to prove the main result of the section, by showing how to
extend the reduction of Lemma 8.1 to obtain instances with k ≥ 3 in which all graphs
are biconnected and G∩ is a tree.

Theorem 8.1 SUNFLOWER SEFE is NP -complete for k ≥ 3 even if all the input
graphs are biconnected and the intersection graph is a spanning tree.

Proof: The membership in NP has been proved in [GJP+06].
The NP -hardness is proved by means of a polynomial-time reduction from prob-

lem BETWEENNESS. Given an instance 〈A,C〉 of BETWEENNESS, we first construct
an instance 〈G∗1, G∗2, G∗3〉 of SUNFLOWER SEFE that admits a SEFE if and only if
〈A,C〉 is a positive instance of BETWEENNESS by applying the reduction shown in
Lemma 8.1. We show how to modify 〈G∗1, G∗2, G∗3〉 to obtain an equivalent instance
〈G1, G2, G3〉 with the required properties.

Refer to Fig. 8.3 for an illustration of the construction of G∩, G1, G2, and G3.
Graph G∩ is initialized to G∗∩. For i = 1, . . . ,m, subdivide edge (wu, wi+1)

(where wm+1 = vm) with two vertices si and ti, add a star with 3 leaves αi, βi,
and γi with center ci, and add an edge connecting wi to ci. Graph G1 contains all
the edges of G∩ plus a set of edges defined as follows. As in 〈G∗1, G∗2, G∗3〉, for
i = 1, . . . ,m, graph G1 contains edges (yji , x

j
i+1), with j = 1, . . . , n, connecting

the leaves of Ti to the leaves of Si+1. Additionally, for i = 1, . . . ,m, G1 contains
edges (wi, αi),(αi, βi),(βi, γi), (γi, wi), and (βi, si). Here and in the following, i+ 1
is computed modulo m. Graph G2 contains all the edges of G∩ plus a set of edges
defined as follows. As in 〈G∗1, G∗2, G∗3〉, for i = 1, . . . ,m, graph G2 contains edges
(xji , y

j
i), with j = 1, . . . , n. Additionally, for i = 1, . . . ,m, G2 contains edges

(αi, ti), (βi, ti), and (γi, ti). Graph G3 contains all the edges of G∩ plus a set of
edges defined as follows. For each i = 1, . . . ,m, consider the i-th triple ti = 〈α, β, γ〉

i
i

“thesis” — 2015/4/29 — 21:44 — page 215 — #227 i
i

i
i

i
i

8.2. SUNFLOWER SEFE 215

T1S1 TmSm

xα2 xβ2 xγ2

u2 v2

T2

yα2 yβ2 yγ2

S2

u1 v1 um vm

α1

w1 w2 wms1 t1 s2 t2 sm tm

γ1

β1

α2 γ2

β2

αm γm

βm

c1 c2 c3

Figure 8.3: Illustration of the composition of G∩, G1, G2, and G3 in Theorem 8.1,
focused on triple t2 = 〈α, β, γ〉 of C.

of C, and the corresponding vertices xαi , xβi , and xγi of Si; graph G3 contains edges
(αi, x

α
i), (βi, x

β
i), (γi, x

γ
i), and edges (xji , ci), for every j /∈ {α, β, γ}. Also, for

i = 1, . . . ,m, graph G3 contains edges (yji , ti), with j = 1, . . . , n.
Observe that, graph G∩ is a pseudo-tree and graphs G1, G2, and G3 are bicon-

nected. We first prove that the constructed instance 〈G1, G2, G3〉 of SUNFLOWER
SEFE is equivalent to instance 〈A,C〉 of BETWEENNESS. Then, we show how to
modify 〈G1, G2, G3〉 in such a way that G∩ is a tree, without losing the biconnectiv-
ity of the input graphs.

We claim that, in any SEFE 〈Γ1,Γ2,Γ3〉 of 〈G1, G2, G3〉, Property 1 and Prop-
erty 2 of Lemma 8.1 hold. Observe that the claim implies the statement, since the two
directions of the proof flow exactly as in Lemma 8.1. Hence, in the following we only
prove that the two properties hold.

Property 1 holds for 〈G1, G2, G3〉 due to the fact that the same property holds for
〈G∗1, G∗2, G∗3〉, as proved in Lemma 8.1.

As for Property 2, first note that, for each i = 1, . . . ,m, the subgraph of G1

induced by vertices wi, αi, βi, γi, and ci is a triconnected subgraph attached to the
rest of the graph through the split pair {wi, βi}. Hence, in Γ1 the rotation scheme of ci
is either (ci, αi), (ci, wi), (ci, γi), (ci, βi), or (ci, αi), (ci, βi), (ci, γi), (ci, wi). This
implies that in Γ3 the rotation scheme of ci restricted to the edges belonging to G∩ is
either (ci, αi), (ci, wi), (ci, γi), (ci, βi), or (ci, αi), (ci, βi), (ci, γi), (ci, wi). In order
to prove that xαi , xβi , and xγi appear either in this or in the reverse order around ui,
note that the rotation scheme of ci in Γ3 is the reverse of the rotation scheme of ui in

i
i

“thesis” — 2015/4/29 — 21:44 — page 216 — #228 i
i

i
i

i
i

216 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

Γ3 (and hence in G∩), where edges are identified based on the path between ci and ui
in G3 they belong to.

Finally, in order to make G∩ a spanning tree, remove edge (u1, w1) from G∩;
add to G∩ two star graphs with 3 leaves, and add to G∩ an edge connecting u1 to
the center of the first star and an edge connecting w1 to the center of the second star.
Also, add edges to G1, to G2, and to G3 among vertices of the two stars so that (i)
all graphs remains biconnected, (ii) there exists an edge of G1, an edge of G2, and an
edge of G3 connecting a leaf of the first star to a leaf of the second star, and (iii) no
edge is added to more than one graph. A suitable augmentation is shown in Fig. 8.3.

The above discussion proves the statement for k = 3. To extend the theorem to
any value of k observe that, given an instance of SUNFLOWER SEFE with k0 ≥ 3
biconnected graphs whose intersection graph G∩ is a tree, an equivalent instance with
k0 + 1 biconnected graphs whose intersection graph is a tree can be obtained by
subdividing an edge of G∩ that is not incident to a leaf with a dummy vertex and
by connecting it to all the leaves of G∩ with edges only belonging to the (k0 + 1)-th
graph. This concludes the proof of the theorem. 2

8.3 Partitioned T -Coherent k-Page Book Embedding

In this section we turn our attention to the problem of computing k-page book-em-
beddings in which the assignment of the k sets of edges to the k pages is given as part
of the input. In the original definition of this problem [HN14], called PARTITIONED
k-PAGE BOOK EMBEDDING (PBE-k), an ordering of the vertices is required such
that edges belonging to the same page do not cross each other. We study a general-
ization of the PBE-k problem, called PARTITIONED T-COHERENT k-PAGE BOOK
EMBEDDING (PTBE-k), in which the order of the vertices must satisfy an additional
constraint, namely it must be represented by a tree T , also given as part of the input.
Observe that, problem PTBE-k in which T is a star is exactly the same problem as
PBE-k. Given that the original formulation of PBE-k is better known, we describe
the results for PTBE-k when T is a star graph in terms of PBE-k.

Problem PTBE-k has been defined in [ADF+12] and proved equivalent to the
case of SUNFLOWER SEFE in which the intersection graph G∩ is a spanning tree and
all the edges not belonging to G∩ are incident to two leaves of such tree2. For this
reason, in the following we will indifferently denote an instance 〈T,E1, . . . , Ek〉 of
PTBE-k by the corresponding instance 〈G1, . . . , Gk〉 of SUNFLOWER SEFE, where
Gi = (V (T), E(T) ∪ Ei), for each i = 1, . . . , k, and vice versa.

2Although Angelini et al. [ADF+12] proved the equivalence only for k = 2, their result can be easily
extended to any value of k > 2.

i
i

“thesis” — 2015/4/29 — 21:44 — page 217 — #229 i
i

i
i

i
i

8.3. PARTITIONED T -COHERENT k-PAGE BOOK EMBEDDING 217

We remark that the instances of SUNFLOWER SEFE constructed in the reduction
performed in Theorem 8.1 are such that the intersection graph G∩ is a spanning tree,
but there exist edges not belonging to G∩ that are incident to internal vertices of such
tree. In order to obtain equivalent instances of SUNFLOWER SEFE satisfying both
properties, it would be possible to apply a procedure described in [ADF+12] that, for
each edge e ∈ ⋃k

i=1Ei incident to an internal vertex v of G∩, adds a new leaf to G∩
attached to v and replaces v with this leaf as an endvertex of e. Hence, Theorem 8.1
implies that PTBE-k is NP -complete for k ≥ 3. However, every time a new leaf
is attached to an internal vertex, such a vertex becomes a cut-vertex for k − 1 of the
input graphs; thus, none of the k graphs Gi can be assumed to be biconnected after
the whole procedure has been applied.

The relevance of this latter observation is motivated by the fact that the biconnec-
tivity of the input graphs Gi, together with the “simplicity” of T , seems to be the key
factor allowing for polynomial-time algorithms for the partitioned book-embedding
problems. Indeed, Hoske [Hos12] proved that PBE-k becomes solvable in linear-
time if each graph Gi is T -biconnected, that is, Ei induces a connected graph. No-
tice that, T -biconnectivity is a stronger requirement than biconnectivity, since any
T -biconnected graph is also biconnected, while the converse is not always true. To
give an example, consider a biconnected graph composed of two copies of a complete
binary tree on seven vertices whose leaves are connected by a matching. It is easy to
see that such a graph cannot be spanned by a tree in such a way that the set of edges
not included in the spanning tree induces a connected graph.

We observe that the algorithm by Hoske can be easily generalized from PBE-k
to PTBE-k in which T is not necessarily a star; hence, the same algorithmic result
can be stated also for PTBE-k. Furthermore, to support the importance of the above
mentioned key factors, we recall that PTBE-k is polynomial-time solvable for k = 2
if either both input graphs are biconnected [BR13], or T = G∩ is a star [HN14], or
T = G∩ is a binary tree [Hos12, Sch13].

In this section we provide several results that considerably narrow the gap between
the instances of PTBE-k that can be solved in polynomial time and those that cannot
(unless P = NP), by studying their complexity with respect to such factors. Namely,
we prove that:

◦ PTBE-k remains NP -complete for k ≥ 3 when T is a caterpillar and two of the
input graphs are biconnected (Theorem 8.2);

◦ PTBE-k can be reduced in polynomial time to PBE-(k + 1) (Theorem 8.3);

◦ PBE-k (with no restriction on the biconnectivity of the input graphs) isNP -complete
for k ≥ 3 (Theorem 8.4), which was known only for k unbounded [Sch13];

i
i

“thesis” — 2015/4/29 — 21:44 — page 218 — #230 i
i

i
i

i
i

218 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

◦ PTBE-k is linear-time solvable if k − 1 of the input graphs are T -biconnected
(Theorem 8.5);

◦ requiring one of the two graphs of an instance 〈T,E1, E2〉 of PTBE-2 to be a
biconnected series-parallel graph does not alter the computational complexity of
the problem (Theorem 8.6).

NP-completeness

Due to the equivalence between PTBE-k and SUNFLOWER SEFE in which G∩ is a
spanning tree and all the edges not belonging to G∩ connect two of its leaves, in order
to prove Theorem 8.2 it suffices to show that the instances produced in the reduction
of Lemma 8.1 can be modified to obtain equivalent instances satisfying the above
properties in which two of the input graphs are biconnected.

Theorem 8.2 PTBE-k is NP -complete for k ≥ 3 even if two of the input graphs are
biconnected and T = G∩ is a caterpillar tree.

Proof: Consider an instance 〈G1, G2, G3〉 obtained from the reduction described in
Lemma 8.1. We describe how to obtain an equivalent instance satisfying the required
properties.

Refer to Fig. 8.2 and to Fig. 8.4. First, for i = 1, . . . ,m, replace the edges
(wi, x

α
i), (wi, x

β
i), and (wi, x

γ
i) of G3 with length-2 paths composed of a black and

of a green edge and such that the black edge is incident to wi. Denote by Φi the
star graph centered at wi induced by the newly inserted black edges. Second, for
i = 1, . . . ,m, subdivide edge (wi, wi+1) of G∩ (where wm+1 = vm) with a dummy
vertex ti, and add to G∩ a star graph Ψi with 3 leaves centered at ti. Observe that, at
this stage of the construction, G∩ is a spanning pseudo-caterpillar.

It is now possible to obtain an equivalent instance of SUNFLOWER SEFE where
G1 and G2 are biconnected and G∩ remains a spanning pseudo-caterpillar, by only
adding edges to G1 and to G2 among the leaves of Φi and Ψi, for i = 1, . . . ,m, as in
Fig. 8.4.

Further, in order to make G∩ a spanning caterpillar, remove edge (u1, w1) from
G∩; add to G∩ two star graphs with 3 leaves, and add to G∩ an edge connecting u1 to
the center of the first star and an edge connecting w1 to the center of the second star.

Finally, add edges to G1, to G2, and to G3 among the leaves of the two stars so
that (i) G1 and G2 are biconnected, (ii) there exists an edge of G3 connecting a leaf
of the first star to a leaf of the second star, and (iii) no edge is added to more than one
graph. A suitable augmentation is shown in Fig. 8.4.

i
i

“thesis” — 2015/4/29 — 21:44 — page 219 — #231 i
i

i
i

i
i

8.3. PARTITIONED T -COHERENT k-PAGE BOOK EMBEDDING 219

xα2 xβ2 xγ2

u2 v2

T2

yα2 yβ2 yγ2

S2

u1 v1

T1S1 Tm

um vm

Sm

w1 w2 wmt1 t2 tm

Φ1 Φ2 ΦmΨ1 Ψ2 Ψm

Figure 8.4: Illustration of how to modify the instance of SUNFLOWER SEFE so that:
(i) the intersection graph G∩ is a spanning caterpillar and (ii) G1 and G2 are bicon-
nected.

It is easy to observe that the constructed instance satisfies Properties 1 and 2 de-
fined in Lemma 8.1. As described in the proof of the lemma, this is sufficient to prove
the statement of the theorem.

In order to extend the theorem to any value of k observe that, given an instance of
SUNFLOWER SEFE with k0 ≥ 3 graphs satisfying the properties of the theorem, an
equivalent instance with k0 + 1 graphs still satisfying the properties can be obtained
as follows. Subdivide an edge that is not incident to a leaf of G∩ with four dummy
vertices a, b, c, d, add four new vertices a′, b′, c′, d′, and add edges (a, a′), (b, b′),
(c, c′), and (d, d′) toG∩. Also, add edges (a′, b′) and (c′, d′) toG1; add edges (a′, d′)
and (b′, c′) to G2; and add edge (a′, c′) to the (k0 + 1)-th graph. This concludes the
proof of the theorem. 2

In the following we prove that dropping the requirement of biconnectivity of the
graphs allows us to prove NP -completeness also for PBE-k when k is bounded by
a constant, thus improving on the result of Hoske [Hos12]. We first prove that the
NP -completeness of PTBE-k for k ≥ 3 proved in Theorem 8.2 implies the NP -
completeness of PBE-k for k ≥ 4. Then, in Theorem 8.4 we show that PBE-k is
NP -complete even for k = 3. We recall that a linear-time algorithm for the problem
is known when k = 2 [HN14].

Theorem 8.3 PTBE-k is polynomial-time reducible to PBE-(k + 1).

i
i

“thesis” — 2015/4/29 — 21:44 — page 220 — #232 i
i

i
i

i
i

220 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

Proof: Let 〈T,E1, . . . , Ek〉 be an instance of PTBE-k. We construct an instance
〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉 of PBE-(k + 1) as follows.

Set V ∗ = V (T) and E∗k+1 = E(T). Then, for each i = 1, . . . , k, set E∗i = Ei.
Refer to Fig. 8.5.

r

(a) 〈T,E1, E2〉

r

(b) 〈V ∗, E∗1 , E∗2 , E∗3 〉

Figure 8.5: Illustration of the proof of Theorem 8.3.

We prove that 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉 is a positive instance of PBE-(k + 1) if
and only if 〈T,E1, . . . , Ek〉 is a positive instance of PTBE-k.

Suppose that 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉 admits a partitioned (k + 1)-page book-
embedding O∗. Let O be the order obtained by restricting O∗ to the leaves of T . We
show that O is a partitioned T -coherent k-page book-embedding of 〈T,E1, . . . , Ek〉.

For each i = 1, . . . , k, no two edges of Ei alternate in O, as otherwise the corre-
sponding two edges of E∗i would alternate in O∗, hence contradicting the hypothesis
that O∗ is a partitioned (k + 1)-page book-embedding. Also, we claim that order O
is represented by T . Namely, place the vertices of T on a horizontal line in the same
order as they appear in O∗; since O∗ supports a crossing-free drawing of the edges of
E∗k+1 = E(T) on a single page and since O∗ restricted to the leaves of T coincides
with O, the claim follows.

Suppose that 〈T,E1, . . . , Ek〉 admits a partitioned T -coherent k-page book-em-
bedding O. We show how to construct a partitioned (k + 1)-page book-embedding
O∗ of 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉.

Initialize O∗ = O. Root T at an arbitrary internal vertex. Then, consider each
internal vertex w of T according to a bottom-up traversal. Consider the subtree T (w)
of T rooted at w and consider the vertex z of T (w) appearing in O∗ right before all
the other vertices of T (w). Place w right before z in O∗.

We show that order O∗ is a partitioned (k + 1)-page book-embedding of instance
〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉 of PBE-(k + 1) .

For each i = 1, . . . , k, no two edges of E∗i alternate in O∗, as otherwise the cor-
responding two edges of Ei would alternate in O, hence contradicting the hypothesis

i
i

“thesis” — 2015/4/29 — 21:44 — page 221 — #233 i
i

i
i

i
i

8.3. PARTITIONED T -COHERENT k-PAGE BOOK EMBEDDING 221

that O is a partitioned T -coherent k-page book-embedding. Also, the fact that no two
edges of E∗k+1 alternate in O∗ descends from the fact that, for each vertex w of T ,
all the vertices belonging to the subtree T (w) of T rooted at w appear consecutively
in O∗. We prove this property by induction. In the base case w is the parent of a set
of leaves. In this case, the statement holds since O is represented by T . Inductively
assume that, for all children ui of w, the vertices of T (ui) are consecutive in O∗. By
construction, w has been placed right before all vertices of T (w). It follows that all
vertices of T (w) (including w) are consecutive inO∗. This concludes the proof of the
theorem. 2

As PBE-k is a special case of PTBE-k, the problem belongs to NP . Hence,
putting together the results of Theorem 8.3 and of Theorem 8.2, we obtain the follow-
ing:

Corollary 8.1 PBE-k is NP -complete for k ≥ 4.

We strengthen this result by proving that the NP -hardness of PBE-k holds even
for k = 3. As for Theorem 8.2, we describe the proof in terms of the corresponding
SUNFLOWER SEFE problem, namely in the case in which G∩ is a star graph and all
the edges not belonging to G∩ connect two of its leaves.

Theorem 8.4 PBE-k is NP -complete for k ≥ 3.

Proof: We prove the statement for k = 3, as for k ≥ 4 it descends from Corol-
lary 8.1. The NP -hardness is shown by means of a polynomial-time reduction from
problem BETWEENNESS. Given an instance 〈A,C〉 of BETWEENNESS, we construct
an instance 〈G1, G2, G3〉 of SUNFLOWER SEFE in which G∩ is a star that admits a
SEFE if and only if 〈A,C〉 is a positive instance of BETWEENNESS. Refer to Fig. 8.6.

Graph G∩ is initialized to a star graph with center φ, a leaf ω and, for i =
0, . . . ,m, leaves ai and bi. Also, for i = 1, . . . ,m, G∩ contains n leaves x1

i , . . . , x
n
i ,

n leaves y1
i , . . . , y

n
i , plus two additional leaves x∗i and y∗i . Finally, G∩ contains n

leaves y1
0 , . . . , y

n
0 , plus an additional leaf y∗0 .

Graph G1 contains all the edges of G∩ plus a set of edges defined as follows. For
i = 1, . . . ,m, graph G1 contains an edge (ω, ai). Also, for i = 1, . . . ,m, graph G1

contains edges (xji , y
j
i−1), with j = 1, . . . n, and edge (x∗i , y

∗
i−1).

Graph G2 contains all the edges of G∩ plus a set of edges defined as follows. For
i = 0, . . . ,m − 1, graph G2 contains an edge (ω, bi). Also, for i = 1, . . . ,m, graph
G2 contains edges (xji , y

j
i), with j = 1, . . . n, and edge (x∗i , y

∗
i).

Graph G3 contains all the edges of G∩ plus a set of edges defined as follows.
Graph G3 contains edges (ω, ao) and (ω, bm). Also, for each i = 0, . . . ,m, graph

i
i

“thesis” — 2015/4/29 — 21:44 — page 222 — #234 i
i

i
i

i
i

222 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

bm

yβiyγi yαixαi xβi x
γ
i

x∗i y
∗
i

ω

aiai−1 bi−1a0 b0

.

φ

ambi

Figure 8.6: Illustration of the composition of G∩, G1, G2, and G3 in Theorem 8.4,
focused on the i-th triple ti = 〈α, β, γ〉 of C.

G3 contains edges (ai, bi), (ai, y
∗
i), (bi, y

∗
i), and edges (y∗i , x

j
i), with j = 1, . . . , n.

Finally, for i = 1, . . . ,m, consider the i-th triple ti = 〈α, β, γ〉 of C, and the
corresponding vertices xαi , xβi , and xγi ; graph G3 contains edges (ai, x

α
i), (ai, x

β
i),

(ai, x
γ
i), (xαi , x

β
i), and (xβi , x

γ
i).

Before proceeding with the proof that the constructed instance 〈G1, G2, G3〉 of
SUNFLOWER SEFE is equivalent to instance 〈A,C〉 of BETWEENNESS, we prove
some properties of 〈G1, G2, G3〉.

Namely, since vertices φ, ω, and vertices ai and bi, with i = 1, . . . ,m, induce
a wheel with central vertex φ in G3, in any planar embedding of G3, edges (ω, φ),
(ao, φ), (bo, φ),. . . ,(am, φ), and (bm, φ) appear in this order (or in the reverse order)
around φ. Also, since y∗i is adjacent in G3 to both ai and bi, for i = 0, . . . ,m, edge
(y∗i , φ) appears between edges (ai, φ) and (bi, φ) around φ in any planar embedding
of G3. Hence, since all vertices yji , with j = 1, . . . , n, are adjacent in G3 to y∗i , also
edges (yji , φ) appear between (ai, φ) and (bi, φ) around φ in any planar embedding
of G3. Further, for i = 1, . . . ,m, edges (xji , φ), with j = 1 . . . , n, and edge (x∗i , φ)
appear between (bi−1, φ) and (ai, φ) around φ in 〈Γ1,Γ2,Γ3〉. This is due to the
following two facts: (1) all vertices xji and vertex x∗i are adjacent in G1 to a vertex
yi−1 such that edge (yi−1, φ) appears between edges (ai−1, φ) and (bi1 , φ) around
φ, and in G2 to a vertex yi such that edge (yi, φ) appears between edges (ai, φ) and
(bi, φ) around φ; (2) there exists edges (ω, bi−1) in G2 and (ω, ai) in G1. Refer to
Fig. 8.6 for a possible ordering of the edges around φ in a SEFE.

i
i

“thesis” — 2015/4/29 — 21:44 — page 223 — #235 i
i

i
i

i
i

8.3. PARTITIONED T -COHERENT k-PAGE BOOK EMBEDDING 223

Observe that, due to the properties of the ordering of the edges of G∩ around φ
discussed above, for i = 1, . . . ,m, edge (x∗i , φ) and edges (xji , φ), with j = 1, . . . , n,
behave similarly to the edges of the star graph Si used in Lemma 8.1, and edge (y∗i , φ)

and edges (yji , φ), with j = 1, . . . , n, behave similarly to the edges of the star graph
Ti used in Lemma 8.1. Namely, in any SEFE of G1, G2, and G3, for each i =
1, . . . ,m − 1, the ordering of the edges (xji , φ), with j = 1, . . . , n, and edge (x∗i , φ)

around φ is the same as the ordering of the edges (xji+1, φ), with j = 1, . . . , n, and
edge (x∗i+1, φ) around φ, where the vertices are identified based on index j. In other
words, 〈G1, G2, G3〉 satisfies Property 1 of Lemma 8.1.

Further, for each i = 1, . . . ,m, the subgraph of G3 induced by vertices φi, xαi ,
xβi , xγi , and ai is a triconnected subgraph attached to the rest of the graph through the
split pair {φ, ai}. Hence, in any planar embedding of G3 (and hence also in Γ3) edges
(φ, xαi), (φ, xβi), (φ, xγi) appear either in this order or in the reverse order around φ.
In other words, 〈G1, G2, G3〉 satisfies Property 2 of Lemma 8.1.

As described in the proof of Lemma 8.1, the fact that 〈G1, G2, G3〉 satisfies Prop-
erties 1 and 2 is sufficient to prove the statement of the theorem. 2

A Polynomial-Time Algorithm

Although PTBE-k has been shown NP -complete for k ≥ 3 even when two of the
input graphs are biconnected in Theorem 8.2, we show that stronger conditions on the
connectivity of the graphs allow for a polynomial-time solution of the problem. As
observed before, the linear-time algorithm by Hoske [Hos12] for PBE-k with k ≥ 2
when each graph is T -biconnected can be easily extended to solve PTBE-k under the
same conditions. In the following theorem we prove that this is true even if only k−1
graphs are T -biconnected.

At this aim, we describe an algorithm (ALGORITHM-1) to decide whether an in-
stance 〈T,E1, . . . , Ek〉 of PTBE-k is positive in the case in which k − 1 graphs Gi
are T -biconnected. In the description of the algorithm we assume, without loss of
generality, that graphs G1, . . . , Gk−1 are T -biconnected. The algorithm consists of
seven steps, described hereunder.

ALGORITHM-1:

STEP 1. For i = 1, . . . , k − 1, we construct an auxiliary graph Hi as follows. Ini-
tialize Hi to Gi; remove from Hi the internal vertices of T and their incident
edges; and add to Hi a vertex wi and connect it to all vertices of Hi (that is, to
all leaves of T).

i
i

“thesis” — 2015/4/29 — 21:44 — page 224 — #236 i
i

i
i

i
i

224 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

STEP 2. For i = 1, . . . , k − 1, we construct a PQ-tree Ti representing all possible
orders of the edges around wi in a planar embedding of Hi by applying the
planarity testing algorithm of Booth and Lueker [BL76]. Since, by construction,
all vertices of Hi different from wi are adjacent to wi, the leaves of Ti are in
one-to-one correspondence with the leaves of T . Hence, all PQ-trees Ti have
the same leaves.

STEP 3. We intersect all PQ-trees T1, . . . , Tk−1 to obtain a PQ-tree T ∗ represent-
ing all the possible partitioned book-embeddings of graphs Hi \ wi, for i =
1, . . . , k− 1. We remark that the procedure described so far is analogous to the
one described in [Hos12] to compute a PBE-k of k T -biconnected graphs.

STEP 4. We intersect3 T ∗ with T to obtain a PQ-tree T representing all the possible
partitioned T -coherent book-embeddings of instance 〈T,E1, . . . , Ek−1〉.

STEP 5. We construct a representative graph GT from T , as described in [FCE95b],
composed of (i) wheel graphs (that is, graphs consisting of a cycle, called rim,
and of a central vertex connected to every vertex of the rim), of (ii) edges con-
necting vertices of different rims not creating simple cycles containing vertices
belonging to more than one wheel, and of (iii) vertices of degree 1, which are
in one-to-one correspondence with the leaves of T , each connected to a vertex
of some rim.

STEP 6. We extend graph GT by adding an edge between two degree-1 vertices if
and only if the two leaves of T corresponding to such vertices are connected by
an edge of Ek, hence obtaining graph H .

STEP 7. We return YES if H is planar, otherwise we return NO.

In the following theorem we prove the correctness and the time complexity of
ALGORITHM-1.

Theorem 8.5 Let 〈T,E1, . . . , Ek〉 be an instance of PTBE-k with k ≥ 2 in which k−
1 graphs are T -biconnected. There exists anO(k·n)-time algorithm to decide whether
〈T,E1, . . . , Ek〉 admits a PARTITIONED T-COHERENT k-PAGE BOOK EMBEDDING,
where n is the number of vertices of T .

Proof: The algorithm that decides PTBE-k for 〈T,E1, . . . , Ek〉 is ALGORITHM-
1.

3This is the extension of the algorithm by Hoske [Hos12] to instances of PTBE-k mentioned before.

i
i

“thesis” — 2015/4/29 — 21:44 — page 225 — #237 i
i

i
i

i
i

8.3. PARTITIONED T -COHERENT k-PAGE BOOK EMBEDDING 225

We prove the correctness. First, observe that, as proved in [Hos12], the PQ-tree
T ∗ constructed at STEP 3 encodes all and only the partitioned (k − 1)-page book-
embeddings of instance 〈L(T), E1, . . . , Ek−1〉. Thus, intersecting T ∗ with tree T
yields a PQ-tree T (see STEP 4) encoding all and only the partitioned T -coherent
(k − 1)-page book-embeddings of instance 〈T,E1, . . . , Ek−1〉.

Also, as proved in [FCE95b], there exists a one-to-one correspondence between
the possible orderings of the leaves of T and the possible orderings obtained by re-
stricting the order of the vertices in an Eulerian tour of the outer face in a planar
embedding of GT to the degree-1 vertices.

Given a planar embedding Γ of H (see Fig. 8.7(a)), we construct a partitioned
T -coherent k-page book embedding O of 〈T,E1, . . . , Ek〉. We claim that Γ can be
modified in order to obtain a planar embedding Γ′ of H (see Fig. 8.7(c)) such that all
the degree-1 vertices ofGT lie on the outer face of the embedding ΓT ofGT obtained
by restricting Γ′ to the vertices and edges of GT .

The claim implies that the orderO of the degree-1 vertices in a Eulerian tour of the
outer face of ΓT is a partitioned T -coherent k-page book embedding of 〈T,E1, . . . , Ek〉
since (i) O is represented by T and (ii) no two edges of Ek alternate in O, given that
Γ′ is planar.

We prove the claim. First, we show that starting from Γ we can obtain a planar
drawing Γ∗ of H such that every wheel of GT is drawn canonically (see Fig. 8.7(b)),
that is, with its central vertex lying in the interior of its rim. Consider any wheel W of
GT with central vertex ω that is not drawn canonically in Γ. This implies that there
exist two vertices a and b of the rim of W such that all the vertices of W different
from a, b, and ω lie in the interior of cycle (a, b, ω). Since, by construction of GT
and of H , vertex ω is not adjacent to any vertex not belonging to W , it is possible to
reroute edge (a, b) as a curve arbitrarily close to path (a, ω, b) so that cycle (a, b, ω)
does not enclose any vertex of H . Observe that such an operation might determine
a change in the rotation scheme of a or b. Applying such a procedure to all non-
canonically drawn wheels eventually results in a planar drawing Γ∗ of H such that
all wheels of GT are drawn canonically. Second, we show how to obtain Γ′ starting
from Γ∗ (see Fig. 8.7(c)). Consider any wheel W of GT , with central vertex ω. For
each two adjacent vertices a and b of the rim of W , if there exist vertices of H in the
interior of cycle (a, b, ω), then we reroute edge (a, b) as a curve arbitrarily close to
path (a, ω, b) so that cycle (a, b, ω) does not enclose any vertex of H . Since ω is not
connected to vertices of H other than those belonging to the rim of W , this operation
does not introduce any crossing. After this operation has been performed for every
two adjacent edges of the rim ofW , there exists no vertex ofH not belonging toW in
the interior of the rim of W , since W is drawn canonically. This concludes the proof
of the claim, since GT does not contain any simple cycle whose vertices belong to

i
i

“thesis” — 2015/4/29 — 21:44 — page 226 — #238 i
i

i
i

i
i

226 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

more than one wheel and no wheel of GT contains in its interior vertices of H not
belonging to it.

(a) (b) (c)

Figure 8.7: Illustration for the proof of Theorem 8.5. Edges of GT are black solid
curves. Edges of Ek are blue dotted curves. Edges of H which have been redrawn
with respect to the previous drawing are red dashed curves. Central vertices of the
wheels are white squares. Degree-1 vertices of GT are white circles. (a) Planar draw-
ing Γ of H . (b) Planar drawing Γ∗ of H in which every wheel of GT is drawn
canonically. (c) Planar drawing Γ′ of H in which all the degree-1 vertices of GT lie
in the outer face of Γ′ restricted to GT .

Given a partitioned T -coherent k-page book embedding O of 〈T,E1, . . . , Ek〉,
we construct a planar embedding Γ of H . To obtain Γ, we first augment GT to an
auxiliary graph U by adding a dummy edge between two degree-1 vertices of GT if
and only if the corresponding leaves of T are either adjacent inO or appear as the first
and last element in O. Since O is a partitioned T -coherent k-page book embedding
O of 〈T,E1, . . . , Ek〉, it is possible to find a planar embedding of GT in which the
degree-1 vertices appear along the Eulerian tour of the outer face in the same order as
O. Hence, graph U is planar. Produce a planar drawing Γ∗ of H whose outer face
is the cycle composed of all the dummy edges. Since O is a partitioned T -coherent
k-page book embedding, no two edges of Ek alternate inO. Hence they can be drawn
in the outer face of Γ∗ without introducing crossings. Removing all dummy edges
yields a planar embedding Γ of H .

We prove the time complexity. STEP 1 and STEP 2 take O(k · n) time, since the
time-complexity of constructing a PQ-tree on a ground set of n elements is linear in
the size of the ground set [Boo75, BL76]. STEP 3 and STEP 4 takeO((k−2) ·n) and
O(n) time, respectively, since the intersection of two PQ-trees can be performed in
amortized linear time in their size [Boo75, BL76] and the size of the obtained PQ-tree

i
i

“thesis” — 2015/4/29 — 21:44 — page 227 — #239 i
i

i
i

i
i

8.3. PARTITIONED T -COHERENT k-PAGE BOOK EMBEDDING 227

stays linear in the size of the ground set. STEP 5 takes linear time in the size of T ,
since it corresponds to replacing each Q-node with a wheel and each P-node with a
cut-vertex connecting the wheels [FCE95b]. Observe that, graph GT has size linear
in n, since each vertex of the rim of a wheel corresponds to exactly one edge of T .
STEP 6 takes O(|Ek|) = O(n) time and produces a graph H with O(n) vertices.
Finally, testing the planarity of H takes linear time in the size of H [BL76].

This concludes the proof of the theorem. 2

Partitioned T -Coherent 2-Page Book Embedding

In this subsection we restrict our attention to instances 〈T,E1, E2〉 of PTBE-k with
k = 2. We remark that this problem has been proved [ADF+12] equivalent to SEFE
for k = 2 when the intersection graphG∩ is connected. This problem was only known
to be polynomial-time solvable if (i) T is a star [HN14], (ii)G1 = (V (T), E(T)∪E1)
and G2 = (V (T), E(T) ∪ E2) are biconnected [BR13], or (iii) T is binary [Hos12,
Sch13].

As a first milestone of this subsection, we observe that restricting Theorem 8.5 to
the case k = 2 yields a result that extends the class of polynomially-solvable instances
for this case.

Corollary 8.2 PTBE-2 is linear-time solvable if either G1 or G2 is T -biconnected.

The second part of this subsection is instead devoted to prove that, in order to find
a polynomial-time algorithm for the general setting of PTBE-2, it suffices to focus
on instances of the same problem in which only one of the two graphs is biconnected
(not T -biconnected) and series-parallel.

Theorem 8.6 Let 〈T,E1, E2〉 be an instance of PTBE-2. There exists an equivalent
instance 〈T ∗, E∗1 , E∗2 〉 of PTBE-2 such that one of the two graphs is biconnected and
series-parallel.

Proof: We describe how to construct instance 〈T ∗, E∗1 , E∗2 〉 starting from 〈T,E1, E2〉.
Refer to Fig 8.8.

Let r be any internal vertex of T . Tree T ∗ is constructed as follows. Initialize tree
T ∗ to the union of two copies T ′ and T ′′ of T . For each vertex v ∈ T , let v′ and v′′

be the two copies of v in T ′ and in T ′′, respectively. Add a vertex r∗ to T ∗ and edges
(r∗, r′) and (r∗, r′′). Sets E∗1 and E∗2 are defined as follows. Set E∗1 = {(v′i, v′j) :
(vi, vj) ∈ E1} ∪ {(v′′i , v′′j) : (vi, vj) ∈ E2}. Also, set E∗2 = {(v′i, v′′i) : vi ∈ L(T)},
where L(T) denotes the set of leaves of T .

i
i

“thesis” — 2015/4/29 — 21:44 — page 228 — #240 i
i

i
i

i
i

228 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

r

T

(a) 〈T,E1, E2〉

r′

r′′

T ′

T ′′

r∗

(b) 〈T ∗, E∗1 , E∗2 〉

Figure 8.8: Illustration of the proof of Theorem 8.6.

It is straightforward to observe that, by construction, the graph G∗2 composed of
T ∗ plus the edges inE∗2 is biconnected and series-parallel. We prove that 〈T ∗, E∗1 , E∗2 〉
is equivalent to 〈T,E1, E2〉.

Suppose that 〈T,E1, E2〉 admits a partitioned T -coherent 2-page book embedding
O. We construct an orderO∗ for 〈T ∗, E∗1 , E∗2 〉 as follows. For each i = 1, . . . , |L(T)|,
consider the vertex vj at position i in O. Place vertices v′j and v′′j at positions i and
2 · |L(T)| − i+ 1 in O∗, respectively.

We prove that order O∗ is a partitioned T -coherent 2-page book embedding of
〈T ∗, E∗1 , E∗2 〉. First, we observe that O∗ is represented by T ∗, as (i) T ∗ is composed
of two copies of T connected through r∗, (ii) O∗ is composed of two suborders of
which the first coincides with O and the second coincides with the reverse of O,
where each element vj of O is identified with elements v′j and v′′j of O∗, and (iii) O
is represented by T . Second, we prove that the endvertices of edges in E∗1 and E∗2 do
not alternate in O∗. As for the edges in E∗2 , observe that for every two edges (v′i, v

′′
i)

and (v′j , v
′′
j) with i < j, both vertices v′j and v′′j lie between v′i and v′′i in O∗. As for

the edges in E∗1 , first observe that no alternation occurs between the endvertices of
edges (v′i, v

′
j) and (v′′h, v

′′
k), since both v′i and v′j appear in O∗ before v′′h and v′′k , by

construction. Also, no two edges (v′i, v
′
j) and (v′h, v

′
k) alternate in O∗, as otherwise

edges (vi, vj) and (vh, vk) would alternate in O. For the same reason, no two edges
(v′′i , v

′′
j) and (v′′h, v

′′
k) alternate in O∗.

Suppose that 〈T ∗, E∗1 , E∗2 〉 admits a partitioned T -coherent 2-page book embed-
ding O∗. We first observe that in O∗ either all vertices v′i ∈ T ′ appear consecutively
or all vertices v′′i ∈ T ′′ do, as O∗ is represented by T ∗ and T ∗ consists of the two

i
i

“thesis” — 2015/4/29 — 21:44 — page 229 — #241 i
i

i
i

i
i

8.4. MAX SEFE 229

copies T ′ and T ′′ of T . Also, given a partitioned T -coherent 2-page book embedding
O1, it is possible to obtain a new one O2 by performing a circular shift on the ele-
ments of O1, that is, by setting the first element of O1 as the last element of O2 and
by setting the element at position i in O1 as the element at position i − 1 in O2, for
each i = 2, . . . , |O1|. Hence, in the following, we will assume that O∗ is such that all
the vertices v′i ∈ T ′ appear before all the vertices v′′j ∈ T ′′.

We construct an order O for 〈T,E1, E2〉 as follows. For each i = 1, . . . , |L(T ′)|,
consider the vertex v′j at position i in O∗ and place vertex vj at position i in O.

We prove thatO is a partitioned T -coherent 2-page book embedding of 〈T,E1, E2〉.
First, we observe that O is represented by T , as the suborder of O∗ restricted to its
first |L(T)| elements (that corresponds to a copy of O) is represented by T ′ (that is a
copy of T , where vertex v′i ∈ T ′ is identified with vertex vi ∈ T). Second, we prove
that the endvertices of edges inE1 andE2 do not alternate inO. In order to prove that,
first observe that the suborder O′ of O∗ restricted to its first |L(T)| elements is the
reverse of the suborder O′′ of O∗ restricted to its last |L(T)| elements, where vertex
v′i ∈ T ′ is identified with vertex v′′i ∈ T ′′. This is due to the fact that (i) for every
i = 1, . . . , |L(T)|, there exists edge (v′i, v

′′
i) and (ii) all the vertices v′i ∈ T ′ appear

before all the vertices v′′j ∈ T ′′. This implies that if the endvertices of two edges
(vi, vj) and (vh, vk) belonging to E1 (to E2) alternate in O, then the corresponding
copies v′i, v

′
j , v
′
h, and v′k (the corresponding copies v′′i , v′′j , v′′h , and v′′k) alternate in

O∗. However, this contradicts the fact that O∗ is a partitioned T -coherent 2-page
book embedding of 〈T,E1, E2〉, since edges (v′i, v

′
j) and (v′h, v

′
k) (edges (v′′i , v

′′
j) and

(v′′h, v
′′
k)) exist in E∗1 by construction. This concludes the proof of the theorem. 2

8.4 MAX SEFE

In this section we study the optimization version of the SEFE problem, in which two
drawings of the input graphs G1 and G2 are searched so that as many edges of G∩ as
possible are drawn the same. We study the problem in its decision version and call
it MAX SEFE. Namely, given a triple 〈G1, G2, k

∗〉 composed of two planar graphs
G1 and G2 on the same set of vertices, and an integer k∗ > 0, the MAX SEFE
problem asks whether G1 and G2 admit a simultaneous embedding 〈Γ1,Γ2〉 in which
at most k∗ edges of G∩ have a different drawing in Γ1 and in Γ2. First, in Lemma 8.2,
we state the membership of MAX SEFE in NP , which descends from the fact that
SEFE belongs to NP . Then, in Theorem 8.7 and in Theorem 8.8 we prove the NP -
completeness, even under several restrictions on the input graphs G1 and G2, and on
their intersection graph G∩.

i
i

“thesis” — 2015/4/29 — 21:44 — page 230 — #242 i
i

i
i

i
i

230 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

Lemma 8.2 MAX SEFE is in NP .

Proof: The statement descends from the fact that the SEFE problem belongs
to NP [GJP+06]. Namely, let 〈G1, G2, k

∗〉 be an instance of MAX SEFE. Non-
deterministically construct in polynomial time all the sets of at most k∗ edges of G∩.
Then, for each of the constructed sets, replace every edge in the set with a path of
length 2 in one of the two graphs, say G1, hence obtaining a graph G′1, and test
whether a SEFE of G′1 and G2 exists in polynomial time with a non-deterministic
Turing machine [GJP+06]. If at least one of the performed tests succeeds, then
〈G1, G2, k

∗〉 is a positive instance. 2

In order to prove that MAX SEFE is NP -complete, we show a reduction from a
variant of theNP -complete [GJ77] problem PLANAR STEINER TREE (PST), defined
as follows: Given an instance 〈G(V,E), S, k〉 of PST, where G(V,E) is a planar
graph whose edges have weights ω : E → N, S ⊂ V is a set of terminals, and k > 0
is an integer, the PST problem asks whether there exists a tree T ∗(V ∗, E∗) such that
(1) V ∗ ⊆ V , (2) E∗ ⊆ E, (3) S ⊆ V ∗, and (4)

∑
e∈E∗ ω(e) ≤ k. The edge weights

in ω are bounded by a polynomial function p(n) (see [GJ77]). In our variant, that
we call UNIFORM TRIANGULATED PST (UTPST), graph G is a triangulated planar
graph and all the edge weights are equal to 1.

Lemma 8.3 UNIFORM TRIANGULATED PST is NP -complete.

Proof: The membership in NP follows from the fact that an instance of UTPST
is also an instance of PST.

The NP -hardness is proved by means of a polynomial-time reduction from the
version of the PST in which all the edge weights are equal to 1, G is a subdivision of
a triconnected planar graph, and no subdivision vertex is a terminal, that is known to
be NP -complete [ADD+15].

Let 〈G,S, k〉 be any instance of PST with the above described properties. We
construct an equivalent instance 〈G′, S′, k′〉 of UTPST as follows. Initialize G′ = G.
Since G′ is a subdivision of a triconnected planar graph, it admits a unique planar
embedding.

1. For each face f of such a planar embedding, consider the vertices v1, . . . , vh
of f as they appear on the boundary of f . Add to G′ a vertex vf inside f and
connect it to each vertex vi, for i = 1, . . . , h, with a path vi, u1

i , . . . , u
h
i , vf .

Then, for i = 1, . . . , h and j = 1, . . . , h, add to G′ edge (uji , u
j
i+1), where

h + 1 = 1. See Fig. 8.9(a). Note that, at this stage of the construction, every
face has either three or four incident vertices.

i
i

“thesis” — 2015/4/29 — 21:44 — page 231 — #243 i
i

i
i

i
i

8.4. MAX SEFE 231

f
g

v1

v2vh

(a)

a

b

c

d d′
a′

b′
c′

g

(b)

f

u5i
vp

vq

Pp

Pq

vi

(c)

f vi

vq

vp
u5i

(d)

Figure 8.9: (a) Step 1 of the augmentation of a face f of graph G in the proof of
Lemma 8.3. Vertex vf is represented as a black square. (b) Step 2 of the augmentation
of f , focused on a face g with 4 incident vertices. (c) The portion of T ′ inside f ,
represented by fat (red and green) edges. The green edges represent the two paths Pp
and Pq connecting the degree-3 vertex uji , with j = 5, to vertices of f . (d) The portion
of T ′′ replacing Pp and Pq (in green).

2. For each face g with four incident vertices a, b, c, d, add inside g a 4-cycle C4 =
(a′, b′, c′, d′), and add edges (a, a′), (a, b′), (b, b′), (b, c′), (c, c′), (c, d′), (d, d′),
(d, a′), and (a′, c′). See Fig. 8.9(b).

All the edges added in the construction have weight 1. Finally, set S′ = S and k′ = k.
By construction, G′ is a triangulated planar graph. Also, the reduction can be

performed in polynomial time, since the number of vertices added in the construction
is polynomial. In the following we prove that 〈G,S, k〉 is a positive instance of PST
if and only if 〈G′, S′, k′〉 is a positive instance of UTPST.

i
i

“thesis” — 2015/4/29 — 21:44 — page 232 — #244 i
i

i
i

i
i

232 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

Suppose that 〈G,S, k〉 is a positive instance of PST. Since G ⊆ G′, since none of
the vertices of G′ \ G is a terminal, and since k′ = k, the solution T of 〈G,S, k〉 is
also a solution of 〈G′, S′, k′〉.

Suppose that 〈G′, S′, k′〉 is a positive instance of UTPST. Let T ′ be the solution
of 〈G′, S′, k′〉. Assume that T ′ is an optimal solution of 〈G′, S′, k′〉, i.e., there exists
no solution T] of 〈G′, S′, k′〉 such that

∑
e∈T] ω(e) <

∑
e∈T ′ ω(e).

We claim that no vertex of T ′ is a vertex that has been added in the interior of a
face f of the unique embedding of G, that is, T ′ ⊆ G. Note that, the claim easily
implies that T = T ′ is a solution of 〈G,S, k〉.

In order to prove the claim, first observe that, for any face f of the unique embed-
ding of G, vertex vf does not belong to T ′. This is due to the fact that no vertex in
the interior of f is a terminal and, by construction, the distance between vf and any
vertex of f is h+ 1. Hence, a tree T ′′ with fewer edges than T ′ could be obtained by
replacing all the edges of T ′ that are in the interior of f with a set of at most h − 1
edges on the boundary of f .

Second, no vertex a′, b′, c′, d′ added inside a face g with four incident vertices
belongs to T ′. In fact, none of these vertices is a terminal, by construction; also, if T ′

contained one of these vertices, a tree T ′′ with fewer edges than T ′ could be obtained
by replacing all the edges of T ′ that are in the interior of g with a set of edges on the
boundary of g.

Third, no vertex of T ′ of degree at least 3 is a vertex that has been added in the
interior of a face f of the unique embedding of G. In fact, suppose that such a vertex
exists. Then, there exists a vertex uji of degree at least 3, for some 1 ≤ i ≤ h and
1 ≤ j ≤ h, in the interior of f with two paths Pp and Pq connecting s to two vertices
vp and vq of f , for some 1 ≤ p, q ≤ h such that no other vertex of degree at least 3
exists along Pp and Pq or inside one of the cycles delimited by Pp, Pq , and f . See
Fig. 8.9(c). In this case, a tree T ′′ with fewer edges than T ′ could be created by
replacing Pp and Pq with paths uji , u

j−1
i , . . . , u1

i , vi and with the shortest path along
f that contains vi, vp, and vq . See Fig. 8.9(d). This is due to the fact that Pp (Pq)
contains at least j edges of the form (uyx, u

y−1
x) and at least |i − p| edges (|i − q|

edges) of the form (uyx, u
y
x±1). Hence, Pp and Pq contain at least 2j+ |i−p|+ |i−q|,

while the set of edges we add to T ′′ has size j+m, where m ≤ |i− p|+ |i− q| is the
length of the shortest path along f that contains vi, vp, and vq .

Finally, no vertex of T ′ of degree 2 is a vertex that has been added in the interior
of a face f of the unique embedding of G. In fact, any path connecting two vertices of
f that passes through a vertex in the interior of f is longer than one of the two paths
connecting such vertices along f .

This concludes the proof of the claim. As observed above, this also implies the
statement of the lemma. 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 233 — #245 i
i

i
i

i
i

8.4. MAX SEFE 233

Then, based on the previous lemma, we prove the first result of this section.

Theorem 8.7 MAX SEFE is NP -complete, even if the two input graphs G1 and G2

are triconnected, and the intersection graph G∩ is composed of a cubic triconnected
component and of a set of isolated vertices.

Proof: The membership in NP follows from Lemma 8.2.
TheNP -hardness is proved by means of a polynomial-time reduction from problem

UTPST. Let 〈G,S, k〉 be an instance of UTPST. We construct an instance 〈G1, G2, k
∗〉

of MAX SEFE as follows (refer to Fig. 8.10).
SinceG is a triangulated planar graph, it admits a unique planar embedding ΓG, up

to a flip. We now constructG1 andG2. InitializeG∩ =G1 ∩G2 as the dual ofGwith
respect to ΓG, plus a set of isolated vertices corresponding to the terminal vertices of
G. Note that, the dual of G is a cubic triconnected planar graph. Consider a terminal
vertex s∗ ∈ S, the set EG(s∗) of the edges incident to s∗ in G, and the face fs∗ of
the dual of G composed of the edges that are dual to the edges in EG(s∗). Let v∗ be
any vertex incident to fs∗ , and let v∗1 and v∗2 be the neighbors of v∗ on fs∗ . Subdivide
edge (v∗, v∗1) with a dummy vertex u∗1 and edge (v∗, v∗2) with two dummy vertices u∗2
and u∗3. Add to G∩ edges (s∗, u∗1), (s∗, u∗2), and (s∗, u∗3). Since v∗ has exactly one
neighbor not incident to fs∗ in G∩, no separation pair is created. Also, vertices s∗,
u∗1, u∗2, and u∗3 have degree 3 in G∩. Hence, G∩ remains a cubic triconnected graph
plus a set of isolated vertices. See Fig. 8.10(a).

Graph G1 contains all the vertices and edges of G∩ plus a set of edges defined as
follows. For each terminal s ∈ S, consider the set EG(s) of edges incident to s in G
and the face fs of G∩ composed of the edges dual to the edges in EG(s). Add to G1

an edge (s, vi) for each vertex vi incident to fs. Note that, graph G1 is triconnected.
See Fig. 8.10(b).

Graph G2 contains all the vertices and edges of G∩ plus a set of edges defined
as follows. Rename the terminal vertices in S as x1, . . . , x|S|, in such a way that
s∗ = x1. For i = 1, . . . , |S| − 1, add edge (xi, xi+1) to G2.

In order to obtain an instance of MAX SEFE in which both graphs are tricon-
nected, we augmentG2 to triconnected by only adding edges among vertices {u∗1, u∗3}∪
{x1, . . . , x|S|}. See Fig. 8.10(b).

Finally, set k∗ = k.
We show that 〈G1, G2, k

∗〉 admits a solution if and only if 〈G,S, k〉 does.
Suppose that 〈G,S, k〉 admits a solution T . Construct a planar drawing Γ1 of G1.

The drawing Γ2 of G2 is constructed as follows. The edges of G∩ that are not dual
to edges of T are drawn in Γ2 with the same curve as in Γ1, where edges (v∗1 , u

∗
1)

and (v∗2 , u
∗
3) play the role of (v∗1 , v

∗) and (v∗2 , v
∗), respectively. Observe that, in

i
i

“thesis” — 2015/4/29 — 21:44 — page 234 — #246 i
i

i
i

i
i

234 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

u∗3

x2

x3

fs∗v∗2

v∗1

u∗1

s∗

u∗2
v∗

(a)

u∗3

x2

x3

fs∗v∗2

v∗1

u∗1

s∗

u∗2
v∗

(b)

u∗3

x2

x3

fs∗v∗2

v∗1

u∗1

s∗

u∗2
v∗

(c)

u∗3

x2

x3

fs∗v∗2

v∗1

u∗1

s∗

u∗2
v∗

(d)

Figure 8.10: Illustration for the proof of Theorem 8.7. Black lines are edges of G∩; grey lines
are edges of G; dashed red and solid blue lines are edges of G1 and G2, respectively; green
edges compose the Steiner tree T ; white squares and white circles are terminal vertices and
non-terminal vertices of G, respectively. (a) G∩, G and T ; (b) G1 ∪ G2; (c) a drawing of G∩
where 5 edges have two different drawings; and (d) a solution 〈Γ1,Γ2〉 of 〈G1, G2, 5〉.

the current drawing Γ2 all the terminal vertices in S lie inside the same face f (see
Fig. 8.10(c)). Hence, all the remaining edges of G2 can be drawn [PW01] inside f
without intersections, as the subgraph of G2 induced by the vertices incident to f and
by the vertices of S is planar (see Fig. 8.10(d)). Since the only edges of G∩ that have
a different drawing in Γ1 and Γ2 are those that are dual to edges of T , 〈Γ1,Γ2〉 is a
solution for 〈G1, G2, k

∗〉.
Suppose that 〈G1, G2, k

∗〉 admits a solution 〈Γ1,Γ2〉 and assume that 〈Γ1,Γ2〉
is optimal (that is, there exists no solution with fewer edges of G∩ not drawn the
same). Consider the graph T composed of the dual edges of the edges of G∩ that are

i
i

“thesis” — 2015/4/29 — 21:44 — page 235 — #247 i
i

i
i

i
i

8.4. MAX SEFE 235

not drawn the same, where edges (v∗1 , u
∗
1) and (v∗2 , u

∗
3) play the role of (v∗1 , v

∗) and
(v∗2 , v

∗), respectively. We claim that T has at least one edge incident to each terminal
in S and that T is connected. The claim implies that T is a solution for instance
〈G,S, k〉 of UTPST, since T has at most k edges and since 〈Γ1,Γ2〉 is optimal.

Suppose for a contradiction that there exist two connected components T1 and T2

of T (possibly composed of a single vertex). Consider the edges of G incident to
vertices of T1 and not belonging to T1, and consider the face f1 composed of their
dual edges. Note that, f1 is a cycle of G∩. By definition of T , all the edges incident
to f1 have the same drawing in Γ1 and in Γ2. Finally, there exists at least one vertex
of S that lies inside f1 and at least one that lies outside f1. Since all the vertices in S
belong to a connected subgraph of G2 not containing any vertex incident to f1, there
exist two terminal vertices s′ and s′′ such that s′ lies inside f1, s′′ lies outside f1, and
edge (s′, s′′) belongs to G2. This implies that (s′, s′′) crosses an edge incident to f1

in Γ2, a contradiction. This concludes the proof of the theorem. 2

We remark that, under the conditions on G1, G2, and G∩ of Theorem 8.7, the
original SEFE problem is polynomial-time solvable. Actually, this is also true if each
of the conditions is considered alone. Namely, it is sufficient that at least one ofG1 and
G2, say G1, is triconnected (or has a fixed embedding) in order to have a polynomial-
time algorithm [ADF+10], independently of G2 and G∩. On the other hand, the
existence of a SEFE of any two graphs G1 and G2 can be tested in polynomial time
if G∩ is subcubic [Sch13].

In the following we go farther in the direction of investigating the complexity
of MAX SEFE when the maximum degree of G∩ is bounded. In fact, we prove
that MAX SEFE remains NP -complete even if the degree of the vertices in G∩
is at most 2. The proof is based on a reduction from the NP -complete problem
MAX 2-XORSAT [MM11], which takes as input (i) a set of Boolean variables B =
{x1, ..., xl}, (ii) a 2-XorSat formula F =

∧
xi,xj∈B(li ⊕ lj), where li is either xi or

xi and lj is either xj or xj , and (iii) an integer k > 0, and asks whether there exists a
truth assignment A for the variables in B such that at most k of the clauses in F are
not satisfied by A.

Theorem 8.8 MAX SEFE is NP -complete even if the intersection graph G∩ of the
two input graphs G1 and G2 is composed of a set of cycles of length 3.

Proof: The membership in NP follows from Lemma 8.2.
The NP -hardness is proved by means of a polynomial-time reduction from prob-

lem MAX 2-XORSAT. Let 〈B,F, k〉 be an instance of MAX 2-XORSAT. We con-
struct an instance 〈G1, G2, k

∗〉 of MAX SEFE as follows. Refer to Fig. 8.11(a).

i
i

“thesis” — 2015/4/29 — 21:44 — page 236 — #248 i
i

i
i

i
i

236 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

ui

bi

ci

bi,j

vjvi

uj

ai

ai,j

ci,j

aj
bj

cj

aj,i

cj,i

di dj

C

Vi,j Vj,iGi,j
2

bj,i

Vi Vj

Gi
1 Gj

1

(a)

ui

bi

vi

diVi

ui

di

vi

biVi

bi,j

ai,j

ci,j

Vi,j
bi,j

ai,j

ci,j

Vi,j

(b)

Figure 8.11: (a) Illustration of the construction of instance 〈G1, G2, k
∗〉 of MAX

SEFE. (b) Illustration of the two cases in which li evaluates to true in A.

GraphG1 is composed of a cycleC with 2l vertices v1, v2, . . . , vl, ul, ul−1, . . . , u1.
Also, for each variable xi ∈ B, with i = 1, . . . , l, G1 contains a set of vertices and
edges defined as follows. First, G1 contains a 4-cycle Vi = (ai, bi, ci, di), that we
call variable gadget, connected to C through edge (ai, vi). Further, for each clause
(li ⊕ lj) ∈ F (or (lj ⊕ li) ∈ F) such that li ∈ {xi, xi}, G1 contains (i) a 3-cycle
Vi,j = (ai,j , bi,j , ci,j), that we call clause-variable gadget, (ii) an edge (bi,j , w),
where either w = bi, if li = xi, or w = di, if li = xi, and (iii) an edge (ai,j , ci,h),
where (li ⊕ lh) (or (lh ⊕ li)) is the last considered clause to which li participates; if
(li⊕ lj) (or (lj ⊕ li)) is the first considered clause containing li, then ci,h = ci. When
the last clause (li⊕ lq) (or (lq⊕ li)) has been considered, an edge (ci,q, ui) is added to
G1. Note that, the subgraph Gi1 of G1 induced by the vertices of the variable gadget
Vi and of all the clause-variable gadgets Vi,j to which li participates would result in a
subdivision of a triconnected planar graph by adding edge (ci,q, ai), and hence it has
a unique planar embedding (up to a flip). Graph G2 is composed as follows. For each
clause (li⊕ lj) ∈ F , with li ∈ {xi, xi} and lj ∈ {xj , xj}, graph G2 contains a tricon-
nected graph Gi,j2 , that we call clause gadget, composed of all the vertices and edges
of the clause-variable gadgets Vi,j and Vj,i, plus three edges (ai,j , aj,i), (bi,j , bj,i),
and (ci,j , cj,i). Finally, set k∗ = k.

Note that, with this construction, graph G∩ is composed of a set of 2|F | cycles of
length 3, namely the two clause-variable gadgets Vi,j and Vj,i for each clause (li⊕ lj).

We show that 〈G1, G2, k
∗〉 admits a solution if and only if 〈B,F, k〉 does.

i
i

“thesis” — 2015/4/29 — 21:44 — page 237 — #249 i
i

i
i

i
i

8.4. MAX SEFE 237

Suppose that 〈B,F, k〉 admits a solution, that is, an assignment A of truth values
for the variables of B not satisfying at most k clauses of F . We construct a solution
〈Γ1,Γ2〉 of 〈G1, G2, k

∗〉. First, we construct Γ1. Let the face composed only of the
edges of C be the outer face. For each variable xi, with i = 1, . . . , l, if xi is true in
A, then the rotation scheme of ai in Γ1 is (ai, vi), (ai, bi), (ai, di) (as in Fig. 8.11(a)).
Otherwise, xi is false in A, and the rotation scheme of ai is the reverse (as for
aj in Fig. 8.11(a)). Since Gi1 has a unique planar embedding, the rotation scheme
of all its vertices is univocally determined. Second, we construct Γ2. Consider each
clause (li ⊕ lj) ∈ F , with li ∈ {xi, xi} and lj ∈ {xj , xj}. If li evaluates to true
in A, then the embedding of Gi,j2 is such that the rotation scheme of ai,j in Γ2 is
(ai,j , bi,j), (ai,j , ci,j), (ai,j , aj,i) (as in Fig. 8.11(a)). Otherwise, li is false in A
and the rotation scheme of ai,j is the reverse (as for aj,i in Fig. 8.11(a)). Since Gi,j2

is triconnected, this determines the rotation scheme of all its vertices. To obtain Γ2,
compose the embeddings of all the clause gadgets in such a way that each clause
gadget lies on the outer face of all the others.

We prove that 〈Γ1,Γ2〉 is a solution of the MAX SEFE instance, namely that at
most k∗ edges of G∩ have a different drawing in Γ1 and in Γ2. Since G∩ is com-
posed of 3-cycles, this corresponds to saying that at most k∗ of such 3-cycles have a
different embedding in Γ1 and in Γ2 (where the embedding of a 3-cycle is defined by
the clockwise order of the vertices on its boundary). In fact, a 3-cycle with a different
embedding in Γ1 and in Γ2 can always be realized by drawing only one of its edges
with a different curve in the two drawings. By this observation and by the fact that at
most k = k∗ clauses are not satisifed by A, the following claim is sufficient to prove
the statement.

Claim 8.1 For each clause (li ⊕ lj) ∈ F , if (li ⊕ lj) is satisifed by A, then both Vi,j
and Vj,i have the same embedding in Γ1 and in Γ2, while if (li ⊕ lj) is not satisifed
by A, then exactly one of them has the same embedding in Γ1 and in Γ2.

Proof: Consider a clause (li ⊕ lj) ∈ F , where li ∈ {xi, xi} and lj ∈ {xj , xj}. First,
we prove that Vi,j has the same embedding in Γ1 and in Γ2, independently of whether
(li ⊕ lj) is satisfied or not. Namely, the flip of Gi1 selected in the construction of Γ1

is such that the rotation scheme of ai,j in Γ1 is (ai,j , bi,j), (ai,j , ci,j), (ai,j , cx) if and
only if li evaluates to true in A (where cx = ci if (li ⊕ lj) is the first considered
clause involving either xi or xi in the construction of G1, otherwise cx = ci,h where
(li⊕ lh) (or (lh⊕ li)) is the clause involving either xi or xi considered before (li⊕ lj)
in the construction of G1). This can be easily verified by considering the flip of Gi1
in Γ1 in the two cases in which li evaluates to true in A, namely when either xi =
true and li = xi or when xi = false and li = xi, that are depicted in Fig. 8.11(b).

i
i

“thesis” — 2015/4/29 — 21:44 — page 238 — #250 i
i

i
i

i
i

238 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

Recall that, by construction, the rotation scheme of ai,j in Γ2 is (ai,j , bi,j), (ai,j , ci,j),
and (ai,j , aj,i) if and only if li evaluates to true inA. Since cx lies outside Vi,j in Γ1

and aj,i lies outside Vi,j in Γ2, the embedding of Vi,j is determined by the evaluation
of li in A in the same way in Γ1 as in Γ2.

Hence, it remains to prove that, if (li ⊕ lj) is satisifed by A, then also Vj,i has
the same embedding in Γ1 and in Γ2. Suppose that lj evaluates to false in A. By
construction, the flip of Gj1 selected in the construction of Γ1 is such that the rotation
scheme of aj,i in Γ1 is (aj,i, cj,i), (aj,i, bj,i), (aj,i, cx) (where cx is defined as above).
This can be easily verified by considering the flip ofGi1 in Γ1 in the two cases in which
lj evaluates to false in A, namely when either xj = false and lj = xj or when
xj = true and lj = xj . Further, since (li ⊕ lj) is satisifed by A and lj evaluates
to false, li evaluates to true. Hence, by construction, the rotation scheme of ai,j
in Γ2 is (ai,j , bi,j), (ai,j , ci,j), (ai,j , aj,i). Since Gi,j2 is triconnected, the rotation
scheme of aj,i in Γ2 is (aj,i, cj,i), (aj,i, bj,i), (aj,i, ai,j). Since cx lies outside Vj,i in
Γ1 and ai,j lies outside Vj,i in Γ2, the embedding of Vj,i is the same in Γ1 and in Γ2

when lj evaluates to false in A.
The fact that the embedding of Vj,i be the same in Γ1 and in Γ2 when lj evaluates

to true in A (and hence li evaluates to false) can be proved analogously. 2

Suppose that 〈G1, G2, k
∗〉 admits a solution 〈Γ1,Γ2〉. Assume that 〈Γ1,Γ2〉 is op-

timal, that is, there exists no solution of 〈G1, G2, k
∗〉 with fewer edges of G∩ drawn

differently. We construct a truth assignment A that is a solution of 〈B,F, k〉, as fol-
lows. For each variable xi, with i = 1, . . . , l, assign true to xi if the rotation scheme
of ai in Γ1 is (ai, vi), (ai, bi), (ai, di). Otherwise, assign false to xi.

We prove that A is a solution of the MAX 2-XORSAT instance, namely that at
most k clauses of B are not satisfied by A. Since 〈Γ1,Γ2〉 is optimal, for any 3-cycle
Vi,j of G∩, at most one edge has a different drawing in Γ1 and in Γ2. Also, for any
clause (li⊕ lj), at most one of Vi,j and Vj,i has an edge drawn differently in Γ1 and in
Γ2, as otherwise one could flip Gi,j2 in Γ2 (that is, revert the rotation scheme of all its
vertices) and draw all the edges of Vi,j and Vj,i with the same curves as in Γ1. Since
k = k∗, the following claim is sufficient to prove the statement.

Claim 8.2 For each clause gadgetGi,j2 such that Vi,j and Vj,i have the same drawing
in Γ1 and in Γ2, the corresponding clause (li ⊕ lj) is satisfied by A.

Proof: Consider a clause gadget Gi,j2 and the drawing of the corresponding clause-
variable gadgets Vi,j and Vj,i in Γ2. Note that, sinceGi,j2 is triconnected, if the rotation
scheme of ai,j is (ai,j , bi,j), (ai,j , ci,j), (ai,j , aj,i), then the rotation scheme of aj,i is
(aj,i, cj,i), (aj,i, bj,i), (aj,i, ai,j). Otherwise, both the rotation schemes are reversed.

i
i

“thesis” — 2015/4/29 — 21:44 — page 239 — #251 i
i

i
i

i
i

8.5. CONCLUSIONS 239

Also, consider the clause-variable gadget Vi,j corresponding to any clause (li ⊕ lj)
or (lj ⊕ li) involving a variable xi. Note that, if the rotation scheme of ai,j in Γ1

is (ai,j , bi,j), (ai,j , ci,j), (ai,j , cx) (where cx is defined as in the proof of Claim 8.1),
then either edge (bi,j , bi) exists inG1 and the rotation scheme of ai is (ai, vi), (ai, bi),
(ai, di), or edge (bi,j , di) exists inG1 and the rotation scheme of ai is (ai, vi), (ai, di),
(ai, bi). In both cases, literal li evaluates to true in A. In fact, in the former case
li = xi and xi is true in A, while in the latter case li = xi and xi is false in A, by
the construction of 〈G1, G2, k

∗〉 and by the assignment chosen for A. Analogously, if
the rotation scheme of ai,j is the opposite, then li evaluates to false in A.

Consider any clause gadget Gi,j2 such that Vi,j and Vj,i have the same drawing in
Γ1 and in Γ2. By combining the observations on the relationships among the rotation
schemes of the vertices belonging to the clause gadget Gi,j2 , to the clause-variable
gadgets Vi,j and Vj,i, and to the variable gadgets Vi and Vj , it is possible to conclude
that li evaluates to true in A if and only if lj evaluates to false in A, that is,
(li ⊕ lj) is satisfied by A. 2

This concludes the proof of the theorem. 2

8.5 Conclusions

In this chapter we proved several results concerning the computational complexity of
some problems related to the SEFE and the PARTITIONED T-COHERENT k-PAGE
BOOK EMBEDDING problems. We showed that the version of SEFE in which all
graphs share the same intersection graph G∩ (SUNFLOWER SEFE) is NP -complete
for k ≥ 3 even when G∩ is a tree and all the input graphs are biconnected. This
improves on the result by Schaefer [Sch13] who proved NP -completeness when G∩
is a forest of stars and two of the input graphs consist of disjoint biconnected compo-
nents. Further, we prove NP -completeness of problem PTBE-k for k ≥ 3 when T
is a caterpillar and two of the input graphs are biconnected, and of problem PBE-k
for k ≥ 3. These results improve on the previously known NP -completeness for k
unbounded by Hoske [Hos12]. Also, we provided a linear-time algorithm to decide
PTBE-k for k ≥ 2 when k − 1 of the input graphs are T -biconnected. Most notably,
this result enlarges the set of instances of PTBE-2 (and hence of the long-standing
open problem SEFE when G∩ is connected) for which a polynomial-time algorithm
is known. For this problem, we also proved that all the instances can be encoded by
equivalent instances in which one of the two graphs is biconnected and series-parallel.
It is also known that the biconnectivity of both the input graphs suffices to make the
problem polynomial-time solvable [BKR13a]. On one hand, our results push PTBE-2
closer to the boundary of polynomiality. On the other hand, since we proved that for

i
i

“thesis” — 2015/4/29 — 21:44 — page 240 — #252 i
i

i
i

i
i

240 CHAPTER 8. ADVANCEMENTS ON SEFE AND PBE PROBLEMS

k ≥ 3 the biconnectivity of all the input graphs does not avoid NP -completeness, it
is natural to wonder whether dropping the biconnectivy condition on one of the two
graphs in the case k = 2 would make it possible to simulate the degrees of freedom
that are given by the fact of having more graphs.

Moreover, we considered the optimization version MAX SEFE of SEFE with
k = 2, in which one wants to draw as many common edges as possible with the
same curve in the drawings of the two input graphs. We showed NP -completeness of
this problem even under strong restrictions on the embedding of the input graphs and
on the degree of the intersection graph that are sufficient to obtain polynomial-time
algorithms for the original decision version of the problem.

i
i

“thesis” — 2015/4/29 — 21:44 — page 241 — #253 i
i

i
i

i
i

Chapter 9

Deepening the Relationship between
SEFE and C-Planarity

In this chapter1 we deepen the understanding of the connection between the two long-
standing Graph Drawing open problems that are the main subject of this thesis, that
is, SEFE and C-PLANARITY.

In a recent paper at GD ’12 [Sch13], Marcus Schaefer presented a reduction from
C-PLANARITY to SEFE-2. We prove that a reduction exists also in the opposite direc-
tion, if we consider instances of SEFE-2 in which the graph induced by the common
edges is connected (C-SEFE-2). We pose as an intriguing open question whether the
two problems are polynomial-time equivalent.

9.1 Introduction

In recent years the problem of displaying together multiple relationships among the
same set of entities has turned into a central subject of research in Graph Drawing
and Visualization. In this context, the two major paradigms that held the stage are
the simultaneous embedding of graphs, in which the relationships are described by
means of different sets of edges among the same set of vertices, and the visualization
of clustered graphs, in which the relationships are described by means of a single set
of edges plus a cluster hierarchy grouping together vertices with semantic affinities.

We study the connection between the two main problems adhering to such
paradigms, namely the SEFE and the C-PLANARITY problem.

1The contents of this chapter are a joint work with Patrizio Angelini, appeared in [AD14] and submitted
to journal.

241

i
i

“thesis” — 2015/4/29 — 21:44 — page 242 — #254 i
i

i
i

i
i

242 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

Due to their practical relevance and their theoretical appeal, these problems have
attracted a great deal of effort in the research community. However, despite several re-
stricted cases have been successfully settled, the question regarding the computational
complexity of the original problems keeps being as elusive as it is fascinating.

In a recent work [Sch13], Marcus Schaefer leveraged the expressive power of
SEFE – and in particular of SEFE-2– to generalize, in terms of polynomial-time re-
ducibility, several graph drawing problems, including C-PLANARITY. On the other
hand, also C-PLANARITY has shown a significant expressive power as it general-
izes relevant problems, like STRIP PLANARITY [ADDF13a]. Most notably, two spe-
cial cases of C-PLANARITY and SEFE-2 have been proved to be polynomial-time
equivalent [HN14, ADF+12], that is, C-PLANARITY with two clusters and SEFE-2
where the common graph, namely the graph composed of the edges that belong to
both graphs, is a star. Motivated by such results, we pose the question whether this
equivalence extends to the general case.

In this chapter we take a first step in this direction, by proving that C-SEFE-2,
that is the restriction of SEFE-2 to instances in which the common graph is connected,
reduces to C-PLANARITY.

Also, we give further evidence of the expressive power of C-PLANARITY by prov-
ing that this problem is able to generalize several of the graph drawing problems
that can be reduced to SEFE-2. We focus in particular on the well-known problem
LEVEL PLANARITY [JL02] and on two of its main variants, CLUSTERED-LEVEL
PLANARITY [FB04] and T -LEVEL PLANARITY [WSP12].

The chapter is structured as follows. In Section 9.2 we give basic definitions. In
Section 9.3 we show a polynomial-time reduction from C-SEFE-2 to C-PLANARITY.
In Section 9.4 we give further new examples of the expressive power of C-PLANARITY.
Finally, in Section 9.5 we give conclusive remarks and present some open problems.

9.2 Preliminaries

For the convenience of the reader, we recall the definition of the CONNECTED SEFE-
2 (C-SEFE-2) problem and of the PARTITIONED T-COHERENT 2-PAGE BOOK EM-
BEDDING (PTBE-2) problem. We refer the reader to Sections 3.2 and 3.1 for further
discussions and references about these problems.

Let 〈G1, G2〉 be an instance of SEFE-2 such that the common graphG∩ = (V,E1∩
E2) is connected. We call C-SEFE-2 problem the restriction of the SEFE-2 problem
to such instances. Recall that, SEFE-2, and hence C-SEFE-2, is a special case of
SUNFLOWER SEFE.

i
i

“thesis” — 2015/4/29 — 21:44 — page 243 — #255 i
i

i
i

i
i

9.3. REDUCTION 243

In this setting, efficient testing algorithms are known for several restricted cases.
Namely, the existence of a C-SEFE-2 can be tested in polynomial-time when (i) G∩
is a star graph [HN14, ADF+12, ADD12] or a subcubic graph [Sch13]; (ii) G∩ is
2-connected [HJL13, ADF+12]; (iii) G1 and G2 are 2-connected [BR13]. However,
the computational complexity of C-SEFE-2 is still open in the general case.

Given two planar graphs G1(V,E1) and G2(V,E2) such that E1 ∩ E2 = ∅, a
2-page book-embedding of graphs G1 and G2 consists of a linear ordering O of the
vertices of V such that for every set Ei there exist no two edges e1, e2 ∈ Ei whose
endvertices alternate in O. The PTBE-2 problem takes as input a rooted tree T with
leaves L(T) and two sets E1, E2 of edges among leaves such that E1 ∩ E2 = ∅,
and asks whether a 2-page book-embedding O of graphs G1 = (L(T), E1) and G2

= (L(T), E2) exists such that O is represented by T , that is, for each node v of
T , the leaves of the subtree T (v) of T rooted at v appear consecutively in O. It is
easy to verify that instance 〈T,E1, E2〉 admits a partitioned T-coherent 2-page book-
embedding if and only if graphsG∗1 = (V (T), E(T)∪E1) andG∗2 = (V (T), E(T)∪
E2) admit a SEFE. Since the reduction holds also in the opposite direction [ADF+12],
problems C-SEFE-2 and PTBE-2 are polynomial-time equivalent. Hence, in order
to simplify the description, in the remainder of the chapter we will equivalently use
the instances of the problem that better fits our scopes.

9.3 Reduction

In this section we prove the main result of the chapter, namely that C-SEFE-2 reduces
to C-PLANARITY. In order to ease the description, we first present in Theorem 9.1 a
reduction that produces non-flat clustered graphs; then, at the end of the section we
prove in Theorem 9.2 that the reduction can be extended to obtain flat instances whose
underlying graph is a set of paths.

We start by giving a high-level view of the first reduction. Due to the equivalence
between C-SEFE-2 and PTBE-2 [ADF+12], we can use an instance 〈T,E1, E2〉 of
PTBE-2 to describe the reduction. Refer to Fig 9.1. In order to enforce the edges
of E1 and E2 to lie in different pages, we subdivide each edge of these two sets and
assign the subdivision vertices to two different clusters; observe that, this is anal-
ogous to the technique used in [HN14] to reduce PTBE-2 in which T is a star to
C-PLANARITY. Then, we exploit a suitable cluster hierarchy to enforce the same
constraints that tree T imposes on the order of the vertices along the spine of the
book-embedding.

Theorem 9.1 C-SEFE-2 ∝ C-PLANARITY.

i
i

“thesis” — 2015/4/29 — 21:44 — page 244 — #256 i
i

i
i

i
i

244 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

r

vj

wh

vi

(a) 〈T,E1, E2〉

uB

uR

u2

u′β

u′α

u1

u10 u9

u′′β

u′′α

u′ρ u′′ρ u3

u4u5

u6

u7 u8

vi,jB
viα

viβ

νh
vj vi

(b) C(G, T)

Figure 9.1: Illustration of the reduction from C-SEFE-2 to C-PLANARITY. Corre-
spondence between internal vertices of T and clusters of T is encoded with colors.
The root cluster λ is not represented in (b).

Proof: Let 〈T,E1, E2〉 be an instance of PTBE-2 (corresponding to instance
〈G1, G2〉 of C-SEFE-2) and let r be the root of T . We describe how to construct
an equivalent instance C(G, T) of C-PLANARITY starting from 〈T,E1, E2〉. Refer
to Fig 9.1.

Initialize the underlying graph G to a graph H composed of two cycles C1 =
〈u1, u2, u3, u4, u5, u6〉 and C2 = 〈u7, uB , u8, u

′′
α, u
′′
ρ , u
′′
β , u9, uR, u10, u

′
β , u
′
ρ, u
′
α〉,

and of edges (u1, u7), (u2, u8), (u3, u
′′
ρ), (u4, u9), (u5, u10), and (u6, u

′
ρ). Observe

that H is a subdivision of a 3-connected planar graph.
Initialize T to a tree only composed of a root λ. For m = 1, . . . , 10, add a cluster

µm to T as a child of λ, containing only vertex um. Also, add clusters µB and
µR to T as children of λ, containing vertices uB and uR, respectively. Finally, for
σ ∈ {α, ρ, β}, add a cluster µσ to T as a child of λ, containing vertices u′σ and u′′σ .

Then, consider each internal vertex wh of T according to a top-down traversal of
T and add to T a cluster νh either as a child of cluster νk, if wk 6= r is the parent of
wh in T , or as a child of cluster µρ, if r is the parent of wh in T . Also, for each leaf
vertex vi of T , add to G a path (viα, v

i, viβ), that we call leaf-path. Add vertices viα
and viβ to clusters µα and µβ , respectively; add vi to cluster νh, if wh is the parent of
vi in T , or to cluster µρ, if r is the parent of vi in T .

Finally, for each edge (vi, vj) in E1 or in E2, add to G path (viβ , v
i,j
R , vjβ) or path

(viα, v
i,j
B , vjα), respectively, that we call edge-paths. Add each vertex vi,jR to µR and

i
i

“thesis” — 2015/4/29 — 21:44 — page 245 — #257 i
i

i
i

i
i

9.3. REDUCTION 245

each vertex vi,jB to µB .
Suppose that 〈T,E1, E2〉 admits a SEFE 〈Γ1,Γ2〉. We show how to construct a

c-planar drawing Γ of C(G, T). We will construct the drawing of G contained in Γ as
a straight-line drawing; hence, we only describe how to place the vertices of G. Refer
to Fig. 9.2.

` + 1

−`− 1
−`

`

1
0
−1

`
+
1

`
+
2

`−
1 0 1

x y

1
2 + |x− y|

`/
2

(x + y)/2

vqvj

C1

C2

u1 u2

u3

u4u5

u6

uB

uR

vi

Figure 9.2: Construction of a c-planar drawing of C(G, T) starting from 〈Γ1,Γ2〉,
where x = φ(vi) and y = φ(vj).

Let ` = |L(T)|. We first consider cycle C1. Place vertex u1 at point (−1, ` + 1),
u2 at (`+ 2, `+ 1), u3 at (`+ 2, 0), u4 at (`+ 2,−`− 1), u5 at (−1,−`− 1), and u6

at (−1, 0). Then, we consider cycle C2. Place vertex u7 at point (0, `), uB at (`2 , `),
u8 at (`+ 1, `), u′′α at (`+ 1, 1), u′′ρ at (`+ 1, 0), u′′β at (`+ 1,−1), u9 at (`+ 1,−`),
uR at (`2 ,−`), u10 at (0,−`), u′β at (0,−1), u′ρ at (0, 0), and u′α at (0, 1).

Consider the circular order of the leaves of T determined by 〈Γ1,Γ2〉 and consider
two consecutive leaves v′ and v′′ such that the lowest common ancestor of v′ and v′′

in T is the root r (note that, if r has degree greater than 1, there always exist two
such vertices; otherwise, we can obtain an equivalent instance of SEFE by removing
r from T). Consider the linear order O of the leaves of T obtained from this circular
order by selecting v′ and v′′ as the first and the last element of O, respectively. Let
φ : L(T) → 1, . . . , ` be a function such that φ(vi) = k if vi is the k-th element
in O. For each leaf vertex vi, we draw leaf-path (viα, v

i, viβ) by placing vertex vi

at point (x, 0), viα at (x, 1), and viβ at (x,−1), where x = φ(vi). Then, for each
edge (vi, vj) ∈ E2, we draw edge-path (vi, vi,jB , vj) by placing vertex vi,jB at point
(x+y

2 , |x − y| + 1
2), where x = φ(vi) and y = φ(vj). Symmetrically, for each

i
i

“thesis” — 2015/4/29 — 21:44 — page 246 — #258 i
i

i
i

i
i

246 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

edge (vi, vj) ∈ E1, we draw edge-path (vi, vi,jR , vj) by placing vertex vi,jR at point
(x+y

2 ,−|x− y| − 1
2), where x = φ(vi) and y = φ(vj).

Finally, we draw the region representing each cluster. Consider each cluster µ ∈ T
according to a bottom-up traversal and draw µ as an axis-parallel rectangular region
enclosing all and only the vertices and clusters in the subtree of T rooted at µ. Observe
that, this is always possible. Namely, for clusters µm, with m = 1, . . . , 10, and
clusters µB , µR, µα, and µβ this directly follows from the construction. Also, for
each cluster νh corresponding to an internal vertex wh of T , this descends from the
fact that the ordering of the leaves of T is determined by a SEFE 〈Γ1,Γ2〉. Indeed,
since the drawing of T is planar in 〈Γ1,Γ2〉, for any two vertices vi and vj of G
belonging to the same cluster, there exists no vertex vk with φ(vi) < φ(vk) < φ(vj)
belonging to a different cluster. Since all leaf-paths are drawn as vertical segments,
this implies that no edge-region crossing occurs between a cluster νh and an edge of
a leaf-path. Once all clusters νh have been drawn, cluster µρ can be drawn to enclose
all and only such clusters.

Further, observe that there exist no two edge-paths (viα, v
i,j
B , vjα) and (vpα, v

p,q
B , vqα),

corresponding to edges (vi, vj) and (vp, vq) ofE2, such that pairs 〈vi, vj〉 and 〈vp, vq〉
alternate in O. Hence, any two edge-paths are either disjoint or nested. In both cases,
by construction, they do not cross (see Fig. 9.2 for an illustration of the two cases). In
particular, if they are disjoint the statement is trivially true; if they are nested, we only
describe the limit case in which one of the endvertices of the two nesting edge-paths
(viα, v

i,j
B , vjα) and (vpα, v

p,q
B , vqα) coincide, the other case being analogous. Assume

without loss of generality that i = p and φ(vi) < φ(vj) < φ(vq). We compute the
slope coefficient of edge (viα, v

i,j
B).

y(vi,jB)− y(viα)

x(vi,jB)− x(viα)
=

(|φ(j)− φ(i)|+ 1
2)− 1

|φ(j)− φ(i)|/2 =
2|φ(j)− φ(i)| − 1

|φ(j)− φ(i)| = 2− 1

|φ(j)− φ(i)|

Analogously, the slope coefficient of edge (viα, v
i,q
B) is 2 − 1

|φ(q)−φ(i)| . Since

|φ(j)−φ(i)| < |φ(q)−φ(i)| and since x(vi,jB) < x(vi,qB), the statement follows. The
fact that no two edge-paths corresponding to edges of E1 cross can be proved in the
same way. This concludes the proof that Γ is a c-planar drawing of C(G, T).

Suppose that C(G, T) admits a c-planar drawing Γ. We show how to construct a
SEFE 〈Γ1,Γ2〉 of 〈T,E1, E2〉. First, observe that all leaf-paths entirely lie inside the
face f of H delimited by cycle C2, as f is the only face of H shared by u′α, u′ρ, u′β ,
u′′α, u′′ρ , and u′′β . Since all vertices vi,jB and vi,jR are adjacent to vertices of leaf-paths,
they also lie inside f . Further, since for σ ∈ {α, ρ, β} cluster µσ is represented by

i
i

“thesis” — 2015/4/29 — 21:44 — page 247 — #259 i
i

i
i

i
i

9.3. REDUCTION 247

a connected region enclosing vertices u′σ and u′′σ and not involved in any edge-region
and region-region crossing, all the edges connecting vertices of µσ to vertices of the
same cluster are consecutive in the order of the edges crossing the boundary of µσ .
This implies that the order in which leaf-paths cross the boundary of µα is the reverse
of the order in which they cross the boundary of µβ , since no two leaf-paths cross
each other in Γ. To obtain 〈Γ1,Γ2〉, we order the leaves vi of T according to the order
in which leaf-paths cross the boundary of µα. Let O be such an order.

First, we show that O is represented by T . In fact, by construction, for each inter-
nal vertex wh of T , the leaves of the subtree T (wh) of T rooted at wh belong to the
same cluster νh. Also, since Γ is c-planar, all the leaf-paths (viα, v

i, viβ) such that vi
is a leaf of T (wh) are consecutive in the order in which leaf-paths cross the boundary
of µα and hence the corresponding leaves vi are consecutive in O. Second, we show
how to construct two planar drawings Γ1 and Γ2 of G1 and G2, respectively, such
that the drawing of T contained in Γ1 and in Γ2 coincides with ΓT . We describe the
algorithm to construct Γ2, the algorithm for Γ1 being analogous. Consider two edges
(vi, vj) and (vp, vq) of E2. Since the drawing of G in Γ is planar, the correspond-
ing edge-paths (viα, v

i,j
B , vjα) and (vpα, v

p,q
B , vqα) do not intersect in Γ. Also, since the

edges belonging to edge-paths are consecutive in the order in which edges incident to
vertices of µα cross the boundary of µα, the pair of leaves 〈vi, vj〉 and 〈vp, vq〉 of T
corresponding to vertices viα, vjα, vpα, and vqα do not alternate in O. Hence, Γ2 can be
obtained from ΓT by drawing the edges of E2 as curves intersecting neither edges of
T nor other edges in E2. Since the drawing of G∩ = T is the same in Γ1 and in Γ2,
〈Γ1,Γ2〉 is a SEFE of 〈T,E1, E2〉. This concludes the proof of the theorem. 2

In the following we prove that the reduction of Theorem 9.1 can be modified in
such a way that the resulting instance of C-PLANARITY is flat and the underlying
graph consists of a set of paths.

Theorem 9.2 C-SEFE-2 ∝ C-PLANARITY with flat cluster hierarchy and underly-
ing graph that is a set of paths.

Proof: Let 〈T,E1, E2〉 be an instance of C-SEFE-2. We describe how to con-
struct an equivalent instance C(G, T) of C-PLANARITY with flat cluster hierarchy
and underlying graph that is a set of paths starting from 〈T,E1, E2〉.

First, we construct an instance C∗(G∗, T ∗) of C-PLANARITY with non-flat clus-
ter hierarchy by applying the reduction shown in Theorem 9.1. We describe how to
transformC∗ into an equivalent instanceC(G, T) of C-PLANARITY with the required
properties.

For vertices u′ρ, u′′ρ , and for all vertices viα and viβ having degree at least 2, consider
the parent cluster ν of any such vertex v in T . Add a cluster µv to T as a child of

i
i

“thesis” — 2015/4/29 — 21:44 — page 248 — #260 i
i

i
i

i
i

248 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

uB

uR

u′β

u′α

u′′β

u′′α

(a) C′′(G′′, T ′′)

u′β

u′α

u′′β

u′′α

uR

uB

(b) C(G, T)

Figure 9.3: Construction of an equivalent instance C(G, T) with the desired proper-
ties. (a) Obtaining an instance whose underlying graph is a set of paths. (b) Obtaining
a flat instance.

ν and containing only vertex v. The obtained instance C ′(G′ = G, T ′) is obviously
equivalent to C∗.

Let ∆ be the set of all clusters τ ∈ T ′ such that T ′(τ) has only one leaf t. Note
that, ∆ consists of all clusters µm, with m = 1, . . . , 10, and all clusters added at
the previous step to obtain C ′. For each cluster τ ∈ ∆, we perform the following
procedure. For each edge (t, z) of G′ such that t ∈ τ , add a vertex tz to τ and add
edge (tz, z) toG′. Finally, remove vertex t and its incident edges fromC ′. This can be
seen as replacing t with deg(t) copies of it. For simplicity, in the following we keep
the same notation (viα, v

i, viβ) for leaf-paths, and (viα, v
i,j
B , vjα) and (viβ , v

i,j
R , vjβ) for

edge-paths, where their endvertices have been naturally replaced by the appropriate
copy. See Fig. 9.3(a) for an illustration of this step.

Observe that the constructed instance C ′′(G′′, T ′′) is such that G′′ consists of a
set of paths. In fact, after performing the two steps described above, each vertex of
G′′ has either degree 1 or degree 2. Also, every vertex of degree 2 is the middle vertex
of either a leaf-path or an edge-path. Hence, no cycle is created. Further, C ′′(G′′, T ′′)
is equivalent to C ′, as in any c-planar drawing of C ′′ a vertex t that has been removed
from a cluster τ can be reinserted inside R(τ) and connected to all the vertices of τ

i
i

“thesis” — 2015/4/29 — 21:44 — page 249 — #261 i
i

i
i

i
i

9.3. REDUCTION 249

while maintaining c-planarity (the other direction being trivial).

We now show how to construct instance C starting from C ′′. For each vertex viα
whose parent τ iα in T ′′ is different from µα, we subdivide edge (viα, v

i) with a vertex
ziα; we add ziα to cluster µα; and we remove τ iα from the children of µα and add τ iα as
a child of the root λ. For each vertex viβ whose parent τ iβ in T ′′ is different from µβ ,
we subdivide edge (viβ , v

i) with a vertex ziβ ; we add ziβ to cluster µβ ; and we remove
τ iβ from the children of µβ and add τ iβ as a child of the root λ.

Let µ′ and µ′′ be the parent clusters of the 3 copies of u′ρ and u′′ρ , respectively, in
T ′′. Subdivide the edge connecting a vertex in µ′ to u′β with a new vertex and the
edge connecting a vertex in µ′′ to u′′β with a new vertex, and add both such vertices to
µρ. Also, remove µ′ and µ′′ from the children of µρ and add them as children of the
root λ.

Further, as long as there exists a cluster µ 6= µρ ∈ T ′′(µρ) such that all the
children of µ are leaves, we perform the following procedure. We add a new cluster
µ′ to T ′′ as a child of the root λ. Consider the parent ν of µ in T ′′. For each vertex vi ∈
µ, we remove vi from the children of µ and add it as a child of ν; also, we subdivide the
unique edge (viβ , x) incident to viβ with a new vertex that we add to cluster µ′. Finally,
we remove µ from T ′′. The instance C(G,T) obtained by applying the reduction to
the C-SEFE-2 instance of Fig. 9.1(a) can be seen in Fig. 9.3(b). In order to prove that
C is equivalent to C ′′, observe that paths (viα, z

i
α, v

i, ziβ , . . . , v
i
β) obtained from leaf-

paths (viα, v
i, viβ) cross the boundary of R(µα) in C in the same order in which the

corresponding leaf-paths cross the boundary ofR(µα) inC ′′. Namely, for each cluster
µ ∈ T ′′ there exists a cluster µ′ ∈ T imposing the same consecutivity constraint on
the ordering in which paths cross the boundary of R(µα). This concludes the proof of
the theorem. 2

We remark that the same technique used in Theorem 9.1 can be used to transform
any instance of C-PLANARITY into an equivalent instance in which the underlying
graph is a set of paths (actually, a matching). However, in general, this results in an
instance whose cluster hierarchy is non-flat, even if the original instance had a flat
cluster hierarchy.

Given the equivalence between C-SEFE-2 and PTBE-2, we can extend the result
of Theorem 9.1 as follows.

Corollary 9.1 PTBE-2 ∝ C-PLANARITY with flat cluster hierarchy and underlying
graph that is a set of paths.

i
i

“thesis” — 2015/4/29 — 21:44 — page 250 — #262 i
i

i
i

i
i

250 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

9.4 The Expressive Power of C-Planarity

In this section we further motivate the question we pose in this chapter about the
possible equivalence between C-PLANARITY and SEFE-2, by providing other exam-
ples of the expressive power of C-PLANARITY. Namely, we study the reducibility to
C-PLANARITY of some well-known constrained-planarity problems that have been
shown to be reducible to SEFE-2. Figure 0.1 in the Introduction provides an overview
of the known relationships among several constrained-planarity problems, as first de-
picted by Schaefer in [Sch13] and updated according to the results of this thesis. See
Fig. 9.4 in which the contributions of the chapters of Parts IV are highlighted.

In the following we recall the definition of problems LEVEL PLANARITY, CL-
PLANARITY, and T -LEVEL PLANARITY (see Chapter 7), and problem STRIP PLA-
NARITY (see Chapter 6), whose reducibility to C-PLANARITY will be discussed in
the following.

A level graph G = (V,E, γ) is a graph with an assignment γ of the vertices
in V to k horizontal lines L1, . . . , Lk with 1 ≤ k ≤ |V |, called levels, such that
no two vertices assigned to the same level are connected by an edge. A level graph
G = (V,E, γ) is proper if every edge spans two consecutive levels. A level planar
drawing of (V,E, γ) maps each vertex v to a point on the line Li : y = i, and each
edge to a y-monotone curve between its endpoints so that no two edges intersect.
The problem of testing the existence of a level planar drawing of a level graph is the
LEVEL PLANARITY problem.

A clustered-level graph (V,E, γ, T) is a level graph (V,E, γ) equipped with a
cluster hierarchy T over its vertices. A clustered-level planar drawing of (V,E, γ, T)
is a level planar drawing of (V,E, γ) together with a representation of each cluster
µ as a simple region enclosing all and only the vertices in Vµ such that: (i) no edge
intersects the boundary of a cluster more than once; (ii) no two cluster boundaries
intersect; and (iii) the intersection of Li with any cluster µ is a straight-line segment,
that is, the vertices of level Li that belong to µ are consecutive along Li. The problem
of testing the existence of a clustered-level planar drawing of a clustered-level graph
is the CL-PLANARITY problem.

A T -level graph (V,E, γ, T) is a level graph (V,E, γ) equipped with a set T =
T1, . . . , Tk of trees such that the leaves of Ti are the vertices of level Li, for 1 ≤ i ≤
k. A T -level planar drawing of (V,E, γ, T) is a level planar drawing of (V,E, γ)
such that, for i = 1, . . . , k, the order in which the vertices of Li appear along Li is
represented by Ti. The problem of testing the existence of a T -level planar drawing
of a T -level graph is the T -LEVEL PLANARITY problem.

Hereafter, we refer to the variants of the CL-PLANARITY problem and of the T -
LEVEL PLANARITY problem in which the underlying level graph is proper as the

i
i

“thesis” — 2015/4/29 — 21:44 — page 251 — #263 i
i

i
i

i
i

9.4. THE EXPRESSIVE POWER OF C-PLANARITY 251

P

NPC

Upward

ec-planar
with free

edges

Partial
Rotation

(with flips)

Outer

ec-planar

Partially
Embedded

Partial
rotation

SEFE-3

Radial
Level

Upward
(Embedded)

?

PStreamed
Backbone

Book

Standard

Partial
Planarity

PStreamed
Planarity

Partitioned
2-page

Weak
realizability

Weak
realizability

[Th. 8.3]

[Th. 9.3]

[Th. 9.2]

[Th. 8.7 & 8.8]

[Th. 8.4]
[Th. 8.2]

SEFE

Clustered
level (cl)

Strip

〈α, β, γ〉-
drawings

Strip
(Embedded)

T -level

Proper
T -level

Clustered
level (cl)

T -level

Clustered (c)

Partitioned
T -coherent

3-page

Partitioned
3-Page

MaxSEFE

Partitioned
T -coherent

2-page
(C-SEFE-2)

SEFE-2

Level

Proper
Clustered

Level

Figure 9.4: View of the schema proposed in the Introduction in which the contribu-
tions of Chapters 8 and 9 of Part IV are highlighted by using the red color.

PROPER CL-PLANARITY problem and as the PROPER T -LEVEL PLANARITY prob-
lem, respectively.

A strip graph G = (V,E, γ) is a graph with an assignment γ of the vertices in
V to k axis-aligned rectangular regions R1, . . . , Rk with 1 ≤ k ≤ |V |, called strips,
such that strip Ri lies entirely above region Ri+1, for each i = 1, . . . , k − 1. A strip
planar drawing of (V,E, γ) maps each vertex v to a point inside the strip Ri it is
assigned to, and each edge to a y-monotone curve between its endpoints so that no

i
i

“thesis” — 2015/4/29 — 21:44 — page 252 — #264 i
i

i
i

i
i

252 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

two edges intersect. The problem of testing the existence of a strip planar drawing of
a strip graph is the STRIP PLANARITY problem.

Since LEVEL PLANARITY, PROPER T -LEVEL PLANARITY, and PROPER CL-
PLANARITY can be reduced in polynomial time to C-SEFE-2, see [Sch13, ALD+14b]
and Chapter 7, the result we proved in Theorem 9.2 implies the following.

Corollary 9.2 LEVEL PLANARITY, PROPER T -LEVEL PLANARITY, and PROPER
CL-PLANARITY ∝ C-PLANARITY with flat cluster hierarchy and underlying graph
that is a set of paths.

For STRIP PLANARITY, instead, no reduction to C-SEFE-2 is known, to the best
of our knowledge. However, it is interesting to note that a reduction from STRIP
PLANARITY to C-PLANARITY (and hence to SEFE-2) exists, as proved in Chapter 6
(refer also to [ADDF13b]). All the more so, in a recent paper by Fulek [Ful14],
this result has been strengthened by showing a reduction yielding instances with flat
cluster hierarchy consisting of only three clusters.

We observe that a direct reduction from PROPER T -LEVEL PLANARITY (and
hence from LEVEL PLANARITY) to C-PLANARITY (with flat cluster hierarchy and
underlying graph that is a set of paths), not exploiting the transformation to C-SEFE-
2, can be obtained with similar techniques as those we used in the proofs of Theo-
rems 9.1 and 9.2. In fact, for each level Li of the level-graph, we introduce a leaf-path
for each of the vertices of level Li. The three vertices of the leaf-path are then as-
signed to three clusters that correspond to clusters µα, µβ , and µρ of Theorem 9.1.
Moreover, a cluster hierarchy representing the constraints imposed by the tree Ti of
Li is added to the middle vertices of the leaf-paths as a child of µρ. Finally, for each
edge that connects two vertices vj and vh at level Li and Li+1, respectively, add an
edge between the extremal vertex of the leaf-path corresponding to vj in µβ and the
extremal vertex of the leaf-path corresponding to vh in µα. See Fig. 9.5.

Note that both the direct reduction and the one via C-SEFE-2 yield instances of
C-PLANARITY in which the number of clusters is linear in the size of the original
instance of PROPER T -LEVEL PLANARITY. For LEVEL PLANARITY, instead, a re-
duction to C-PLANARITY yielding instances with flat cluster hierarchy consisting of
only three clusters can be obtained by reducing it to STRIP PLANARITY, which in
turn can be reduced to C-PLANARITY where the produced instances have this prop-
erty [Ful14].

A reduction from LEVEL PLANARITY to STRIP PLANARITY can be easily ob-
tained as follows. Assume that the instance of LEVEL PLANARITY is proper, as oth-
erwise it can be made proper by adding dummy vertices along the edges spanning
more than two levels. First, for each level Li, assign all the vertices of Li to strip

i
i

“thesis” — 2015/4/29 — 21:44 — page 253 — #265 i
i

i
i

i
i

9.5. CONCLUSIONS AND OPEN PROBLEMS 253

Li

Li+1

Ti+1

Ti

Li

Li+1

µβ

µα

Figure 9.5: Illustration of the reduction from PROPER T -LEVEL PLANARITY to C-
PLANARITY, focused on two consecutive levels Li and Li+1.

R3i−2. Then, subdivide each edge connecting a vertex u in Li to a vertex v in Li+1

with two dummy vertices u′ and v′, and assign u′ to strip R3i−1 and v′ to strip R3i.
Finally, for each vertex u of Li, add a dummy vertex to R3i−1 and a dummy vertex to
R3i−3, and connect them to u. The fact that the constructed instance of STRIP PLA-
NARITY is equivalent to the original instance of LEVEL PLANARITY can be proved by
observing that, with this construction, each vertex whose degree is greater than 1 has
at least a neighbor in both its adjacent strips. We formalize this result in the following.

Theorem 9.3 LEVEL PLANARITY ∝ C-PLANARITY with flat cluster hierarchy con-
sisting of three clusters.

9.5 Conclusions and Open Problems

In this chapter we show that problem C-SEFE-2 is polynomial-time reducible to
problem C-PLANARITY, where the reduction produces instances in which the cluster
hierarchy is flat and the underlying graph is a set of paths.

We regard as an intriguing open question whether a polynomial-time reduction
exists from general instances of SEFE-2 to C-PLANARITY, which would prove, to-
gether with the reduction by Schaefer [Sch13], these two problems to be ultimately
the same.

Moreover, as our reduction produces instances of C-PLANARITY with a number of
clusters depending linearly on the size of the reduced C-SEFE-2 instance, it is worth
of interest asking whether a sublinear or constant number of clusters would suffice. In
this direction, we provided a reduction from LEVEL PLANARITY to C-PLANARITY

i
i

“thesis” — 2015/4/29 — 21:44 — page 254 — #266 i
i

i
i

i
i

254 CHAPTER 9. THE RELATIONSHIP BETWEEN SEFE AND C-PLANARITY

producing instances with only three clusters. We remark that the complexity of C-
PLANARITY is still open even in this setting.

On the other hand, LEVEL PLANARITY, PROPER CL-PLANARITY, and PROPER
T -LEVEL PLANARITY are known to be polynomial-time solvable. It would be inter-
esting to understand whether there exist reductions yielding instances that are known
to be tractable, e.g., when the instances have only two clusters [BKM98, HN14]. As a
final observation, we would like to point out that any reduction from general instances
of CL-PLANARITY and T -LEVEL PLANARITY would imply the NP -completeness
of C-PLANARITY.

i
i

“thesis” — 2015/4/29 — 21:44 — page 255 — #267 i
i

i
i

i
i

Part V

Drawings with Crossings

255

i
i

“thesis” — 2015/4/29 — 21:44 — page 256 — #268 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 257 — #269 i
i

i
i

i
i

Chapter 10

Algorithms and Bounds for Drawing
Graphs with Crossing-free Subgraphs

In this chapter1 we initiate the study of the following problem: Given a non-planar
graph G and a planar subgraph S of G, does there exist a straight-line drawing Γ of
G in the plane such that the edges of S are not crossed in Γ by any edge of G? We
give positive and negative results for different kinds of connected spanning subgraphs
S of G. Moreover, in order to enlarge the subset of instances that admit a solution, we
consider the possibility of bending the edges of G not in S; in this setting we discuss
different trade-offs between the number of bends and the required drawing area.

10.1 Introduction

Many papers in graph drawing address the problem of computing drawings of non-
planar graphs with the goal of mitigating the negative effect that edge crossings have
on the readability of the drawing. Several of these papers describe crossing min-
imization methods, which are effective and computationally feasible for relatively
small and sparse graphs (see [BCG+13] for a survey). Other papers study how non-
planar graphs can be drawn such that the “crossing complexity” of the drawing is
somewhat controlled, either in the number or in the type of crossings. They include
the study of k-planar drawings, in which each edge is crossed at most k times (see,
e.g., [BEG+12, DDLM13, Did13, EHK+12, HELP12, KM13, PT97]), of k-quasi pla-

1The contents of this chapter are a joint work with Patrizio Angelini, Carla Binucci, Walter Didimo,
Luca Grilli, Fabrizio Montecchiani, Maurizio Patrignani and Ioannis G. Tollis, appeared in [ABD+13] and
submitted to journal.

257

i
i

“thesis” — 2015/4/29 — 21:44 — page 258 — #270 i
i

i
i

i
i

258CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

nar drawings, in which no k pairwise crossing edges exist (see, e.g., [Ack09, AT07,
GDLM12, FPS13, PSS96, Val98]), and of large angle crossing drawings, in which
any two crossing edges form a sufficiently large angle (see [DL12] for a survey).
Most of these drawings exist only for sparse graphs.

In this chapter we introduce a new graph drawing problem concerned with the
drawing of non-planar graphs. Namely: Given a non-planar graph G and a planar
subgraph S of G, decide whether G admits a drawing Γ such that (in Γ) the edges of
S are not crossed by any edge of G. Compute Γ if it exists.

Besides its intrinsic theoretical interest, this problem is also of practical relevance
in many application domains. Indeed, distinct groups of edges in a graph may have
different semantics, and a group can be more important than another for some appli-
cations; in this case a visual interface might attempt to display more important edges
without intersections. Furthermore, the user could benefit from a layout in which a
connected spanning subgraph is drawn crossing free, since it would support the user
to quickly recognize paths between any two vertices, while keeping the other edges of
the graph visible.

Please note that the problem of recognizing specific types of subgraphs that are not
self-crossing (or that have few crossings) in a given drawing Γ, has been previously
studied (see, e.g., [JW93, KSSW07, KLN91, RCUG13]). This problem, which turns
out to be NP-hard for most different kinds of instances, is also very different from
our problem. Indeed, in our setting the drawing is not the input, but the output of the
problem. Also, we require that the given subgraph S is not crossed by any edge of the
graph, not only by its own edges.

In this chapter we concentrate on the case in which S is a connected spanning
subgraph of G and consider both straight-line and polyline drawings of G. Namely:
(i) In the straight-line drawing setting we prove that if S is any given spanning spider
or caterpillar, then a drawing of G where S is crossing free always exists; such a
drawing can be computed in linear time and requires polynomial area (Section 10.3),
although our construction for caterpillars does not compute integer coordinates. We
also show that this positive result cannot be extended to any spanning tree, but we
describe a large family of spanning trees that always admit a solution, and we observe
that any graph G contains such a spanning tree; unfortunately, our drawing technique
for this family of trees may require exponential area. Finally, we characterize the
instances 〈G,S〉 that admit a solution when S is a triconnected spanning subgraph,
and we provide a polynomial-time testing and drawing algorithm, whose layouts have
polynomial area (Section 10.3).
(ii) We investigate polyline drawings where only the edges of G not in S are allowed
to bend. In this setting, we show that all spanning trees can be realized without cross-

i
i

“thesis” — 2015/4/29 — 21:44 — page 259 — #271 i
i

i
i

i
i

10.2. PRELIMINARIES AND DEFINITIONS 259

ings in a drawing of G of polynomial area, and we describe efficient algorithms that
provide different trade-offs between the number of bends per edge and the required
drawing area (Section 10.4). Also, we consider the case in which S is any given bicon-
nected spanning subgraph. In this case, we provide a characterization of the positive
instances, which yields drawings with polynomial area, if only one bend per edge is
allowed.

We finally remark that the study of our problem has been receiving some interest
in the Graph Drawing community. In particular, Schaefer proved that given a graph
G and a planar subgraph S of G, testing whether there exists a polyline drawing of G
where the edges of S are never crossed can be done in polynomial time [Sch14]. This
topological variant of the problem has been given the name of PARTIAL PLANARITY
and in its definition, differently from our setting, there is no restriction on the number
of bends on the edges in G \ S and the edges of S are not required to be drawn as
straight-line segments. In Chapter 11 we will consider a generalization of the PAR-
TIAL PLANARITY problem, called STREAMED PLANARITY WITH BACKBONE, and
show that the PARTIAL PLANARITY problem can be solved in linear time.

In Section 10.2 we give some preliminary definitions that will be used in the rest of
the chapter, while in Section 10.5 we discuss conclusions and open problems deriving
from this research work.

10.2 Preliminaries and Definitions

Let G(V,E) be a graph and let Γ be a drawing of G in the plane. If all vertices and
edge bends of Γ have integer coordinates, then Γ is a grid drawing of G, and the
area of Γ is the area of the minimum bounding box of Γ. We recall that the minimum
bounding box of a drawing Γ is the rectangle of minimum area enclosing Γ. If Γ is not
on an integer grid, we scale it in order to guarantee the same resolution rule of a grid
drawing; namely we expect that the minimum Euclidean distance between any two
points on which either vertices or bends of Γ are drawn is at least of one unit. Under
this resolution rule, we define the area of the drawing as the area of the minimum
bounding box of Γ.

Let G(V,E) be a graph and let S(V,W), W ⊆ E, be a spanning subgraph of
G. A straight-line drawing Γ of G such that S is crossing-free in Γ (i.e., such that
crossings occur only between edges of E \ W) is called a straight-line compatible
drawing of 〈G,S〉. If each edge of E \W has at most k bends in Γ (but still S is
drawn straight-line and crossing-free in Γ), Γ is called a k-bend compatible drawing
of 〈G,S〉.

If S is a rooted spanning tree of G such that every edge of G not in S connects

i
i

“thesis” — 2015/4/29 — 21:44 — page 260 — #272 i
i

i
i

i
i

260CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

either vertices at the same level of S or vertices that are on consecutive levels, then
we say that S is a proper level spanning tree of G.

A star is a tree T (V,E) such that all its vertices but one have degree one, that is,
V = {u, v1, v2, . . . , vk} and E = {(u, v1), (u, v2), . . . , (u, vk)}; any subdivision of
T (including T), is a spider: vertex u is the center of the spider and each path from u
to vi is a leg of the spider. A caterpillar is a tree such that removing all its leaves (and
their incident edges) results in a path, which is called the spine of the caterpillar. The
one-degree vertices attached to a spine vertex v are called the leaves of v.

In the remainder of the chapter we implicitly assume that G is always a connected
graph (if the graph is not connected, our results apply for any connected component).

10.3 Straight-line Drawings

We start studying straight-line compatible drawings of pairs 〈G,S〉: Section 10.3
concentrates on the case in which S is a spanning tree, while Section 10.3 investigates
the case in which S is a spanning triconnected graph.

Spanning Trees

The simplest case is when S is a given Hamiltonian path of G; in this case Γ can be
easily computed by drawing all vertices of S in convex position, according to the order
they occur in the path. In the following we prove that in fact a straight-line compatible
drawing Γ of 〈G,S〉 can be always constructed in the more general case in which
S is a spanning spider (Theorem 10.1), or a spanning caterpillar (Theorem 10.2), or
a proper level spanning tree (Theorem 10.3); our construction techniques guarantee
polynomial-area drawings for spiders and caterpillars, while requiring exponential
area for proper level spanning trees. On the negative side, we show that if S is an
arbitrary spanning tree, a straight-line compatible drawing of 〈G,S〉 may not exist
(Lemmas 10.1 and 10.2).

Theorem 10.1 Let G be a graph with n vertices and m edges, and let S be a span-
ning spider of G. There exists a grid straight-line compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time and has O(n3) area.

Proof: Let u be the center of S and let π1, π2, . . . , πk be the legs of S. Also,
denote by vi the vertex of degree one of leg πi (1 ≤ i ≤ k). Order the vertices of S
distinct from u such that: (i) the vertices of each πi are ordered in the same way they
appear in the simple path of S from u to vi; (ii) the vertices of πi precede those of
πi+1 (1 ≤ i ≤ k − 1). If v is the vertex at position j (0 ≤ j ≤ n− 2) in the ordering

i
i

“thesis” — 2015/4/29 — 21:44 — page 261 — #273 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 261

u

v1

v2

v3

Figure 10.1: Illustration of the drawing construction of Theorem 10.1. The thick edges
belong to the spider. The edges of G not incident to u are drawn in the gray convex
region.

defined above, draw v at coordinates (j2, j). Finally, draw u at coordinates (0, n−2).
Refer to Fig. 10.1 for an illustration. With this strategy, all vertices of S are in convex
position, and they are all visible from u in such a way that no edge incident to u can
cross other edges of Γ. Hence, the edges of S do not cross other edges in Γ. The area
of Γ is (n− 2)2 × (n− 2) = O(n3) and Γ is constructed in linear time. 2

The following algorithm computes a straight-line compatible drawing of 〈G,S〉
when S is a spanning caterpillar. Theorem 10.2 proves its correctness, time and area
requirements. Although the drawing area is still polynomial, the layout is not a grid
drawing.

The basic idea of the algorithm is as follows. It first places the spine vertices of
the caterpillar in convex position, along a quarter of circumference. Then, it places
the leaf vertices inside the convex polygon formed by the spine vertices, in such a
way that they also suitably lie in convex position. With this strategy an edge of the
caterpillar will be outside the inner polygon formed by the leaf vertices, and hence
it will not cross any edge that connects two leaf vertices. Also, the inner polygon is
chosen sufficiently close to the outer polygon formed by the spine vertices in order to
guarantee that the edges of the caterpillar are never crossed by other edges incident to
the spine vertices (refer to Figs. 10.2 and 10.3 for an illustration). We now formally
describe the algorithm.

Algorithm STRAIGHT-LINE-CATERPILLAR. Denote by u1, u2, . . . , uk the vertices
of the spine of S. Also, for each spine vertex ui (1 ≤ i ≤ k), let vi1, . . . , vini be
its leaves in S (refer to the bottom image in Fig. 10.2(a)). The algorithm temporarily
adds to S and G some dummy vertices, which will be removed in the final drawing.
Namely, for each ui, it attaches to ui two dummy leaves, si and ti. Also, it adds a
dummy spine vertex uk+1 attached to uk and a dummy leaf sk+1 to uk+1 (see the top
image in Fig. 10.2(a)). Call G′ and S′ the new graph and the new caterpillar obtained

i
i

“thesis” — 2015/4/29 — 21:44 — page 262 — #274 i
i

i
i

i
i

262CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

u1

u2

u3

v11
v12
v13

v21

v31

u1

u2

u3

u4

v11
v12
v13

s2
v21
t2

s1

t1

s3
v31
t3

s4

(a)

u1

u2

u3

v11

v12

v13

v21

v31

s1

t1

s2

t2

s3

t3

u4 s4

o

(b)

Figure 10.2: Illustration of Algorithm STRAIGHT-LINE-CATERPILLAR: (a) a caterpil-
lar S and its augmented version S′; (b) a drawing of S′; edges of the graph connecting
leaves of S are drawn in the gray (convex) region.

by augmenting G and S with these dummy vertices.
The construction of a drawing Γ′ of G′ is illustrated in Fig. 10.2(b). Consider a

quarter of circumference C with center o and radius r. Let N be the total number of
vertices ofG′. Let {p1, p2, . . . , pN} beN equally spaced points along C in clockwise
order, where op1 and opN are a horizontal and a vertical segment, respectively. For
each 1 ≤ i ≤ k, consider the ordered list of vertices Li = {ui, si, vi1, . . . vini , ti},
and let L be the concatenation of all Li. Also, append to L the vertices uk+1 and
sk+1, in this order. Clearly the number of vertices in L equals N . For a vertex v ∈ L,
denote by j(v) the position of v in L. Vertex ui is drawn at point pj(ui) (1 ≤ i ≤ k);
also, vertices uk+1 and sk+1 are drawn at points pN−1 and pN , respectively. Each leaf
v of S′ will be suitably drawn along radius opj(v) of C; Fig. 10.3 shows a schematic
drawing of this construction which has been deliberately deformed to better illustrate
its description. More precisely, for any i ∈ {1, . . . , k}, let ai be the intersection
point between segments pj(ui)pj(si+1) and opj(si), and let bi be the intersection point
between segments pj(ui)pj(ui+1) and opj(ti). Vertices si and ti are drawn at points ai
and bi, respectively. Also, let Ai be the circular arc that is tangent to pj(ui)pj(ui+1)

at point bi, and that passes through ai; vertex vih is drawn at the intersection point

i
i

“thesis” — 2015/4/29 — 21:44 — page 263 — #275 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 263

ui

ui+1

pj(si+1)

pj(ti)

pj(si)

pj(vih)

O

pj(ui)

pj(ui+1)

C

Ai

ai

bi

pj(vi1)

pj(vini)

Figure 10.3: Illustration of Algorithm STRAIGHT-LINE-CATERPILLAR: a schematic
illustration on how leaves are drawn, the drawing has been deliberately deformed to
better visualize its construction.

between Ai and opj(vih) (1 ≤ h ≤ ni).
Once all vertices of G′ are drawn, each edge of G′ is drawn in Γ′ as a straight-

line segment between its end-vertices. Drawing Γ is obtained from Γ′ by deleting all
dummy vertices and their incident edges.

Theorem 10.2 Let G be a graph with n vertices and m edges, and let S be a span-
ning caterpillar of G. There exists a straight-line compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time in the real RAM model and has O(n2)
area.

Proof: Compute Γ by using Algorithm STRAIGHT-LINE-CATERPILLAR. In the
following we first prove that Γ is a straight-line compatible drawing of 〈G,S〉, and
then we analyze time complexity and area requirement. We adopt the same notation
used in the description of the algorithm.

CORRECTNESS. We have to prove that in Γ the edges of S are never crossed. For
a line ` denote by s(`) its slope. Our construction places all spine vertices of S′

(and hence of S) in convex position. We claim that also all the leaves of S′ are
in convex position. Indeed, this is clearly true for the subset of leaves of each ui
(1 ≤ i ≤ k), because this subset is drawn on a circular arc Ai; also, for any i ∈

i
i

“thesis” — 2015/4/29 — 21:44 — page 264 — #276 i
i

i
i

i
i

264CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

{1, . . . , k − 1} consider the poly-line connecting the leaves of two consecutive spine
vertices ui, ui+1, in the order they appear in L. This poly-line is convex if and only
if the two segments incident to si+1 form an angle λ smaller than π on the side of
the plane where the origin o lies. In particular, let `1 be the line through ti and si+1,
and let `2 be the line through si+1 and v, where v coincides with v(i+1)1 if such a
vertex exists, while v coincides with ti+1 otherwise. Angle λ < π if s(`1) > s(`2).
Denote by c the intersection point between the chord ui+1ui+2 and the radius opj(v),
and denote by `3 the line through si+1 and c, we have s(`3) ≥ s(`2) by construction;
then it suffices to show that s(`1) > s(`3). For any fixed N , s(`3) is maximized when
c is as close as possible to si+1, i.e., when ni+1 = 0; similarly s(`1) is minimized
when ti is as close as possible to si+1, i.e., when ni = 0. For ni = ni+1 = 0 it
can be verified by trigonometry that s(`1)

s(`3) > 1 (namely, this ratio tends to 1.23 when
N tends to infinity). Hence, the leaves of S′ except sk+1 form a convex polygon P ,
which proves the claim.

Now, since by construction the edges of S are all outside P in Γ, these edges
cannot be crossed by edges of G connecting two leaves of S. It is also immediate to
see that an edge of S cannot be crossed by another edge of S. It remains to prove that
an edge of S cannot be crossed by an edge ofG connecting either two non-consecutive
spine vertices or a leaf of S to a spine vertex of S.

There are two kinds of edges in S. Edges (ui, ui+1), connecting two consecutive
spine vertices, and edges (ui, vih), connecting a spine vertex to its leaves. Since by
construction Γ is totally drawn inside the closed polygon formed by the spine vertices
of S (recall that uk+1 and sk+1 are dummy vertices, and then they do not belong to Γ),
edges (ui, ui+1) cannot be crossed in Γ. Now, consider an edge (ui, vih). Obviously,
it cannot be crossed by an edge (ui, uj), because two adjacent edges cannot cross in
a straight-line drawing; yet, it cannot be crossed by an edge (uj , uz) where j < z and
j, z 6= i. Indeed, if i < j or i > z then there is a line ` through o such that (ui, vih)
completely lies in one of the two half planes determined by ` and (uj , uz) completely
lies in the other half plane; also, if j < i < z, then edge (ui, vih) completely lies in
the open region delimited by (uj , uz) and C. We finally show that (ui, vih) cannot be
crossed by any edge (uj , vdf), where j 6= i and vdf 6= vih. Indeed, if d > i and j > i,
or d < i and j < i, then (ui, vih) and (uj , vdf) are completely separated by a line
through o. Also, if d < i and j > i (or d > i and j < i), edge (ui, vih) lies completely
outside the triangle with vertices o, uj , vdf , thus it cannot cross edge (uj , vdf).

TIME AND AREA REQUIREMENT. It is immediate to see that the construction of Γ′

(and then of Γ) can be executed in linear time, in the real RAM model. It remains
to prove that the area of Γ is O(n2). Assume that o coincides with the origin of a
Cartesian coordinate system, so that p1 has coordinates (−r, 0) and pN has coordi-

i
i

“thesis” — 2015/4/29 — 21:44 — page 265 — #277 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 265

nates (0, r). We need to estimate the minimum distance dmin between any two points
of Γ. According to our construction, the vertex at position i in L is drawn on a point
qi along radius opi, and dmin corresponds to the minimum distance between any two
points qi and qi+1 (1 ≤ i ≤ N − 1). Also, denote by p′i the intersection point be-
tween radius opi and the chord p1pN , point qi is in-between pi and p′i along opi;
this implies that d′min ≤ dmin, where d′min is the minimum distance between any two
points p′i and p′i+1. Now, it is immediate to observe that d′min equals the length of
segment p′dN/2ep

′
dN/2e+1. Let p′ be the middle point of chord p1pN ; p′ has coordi-

nates (−r2 ,
r
2). Point p′ coincides with p′dN/2e if N is odd, while it is equidistant to

p′dN/2e and p′dN/2e+1 if N is even. Hence, denoted by d′ the distance between p′ and
p′dN/2e+1, we have that d′ ≤ d′min ≤ dmin. Now, let α = π

2(N−1) be the angle at
o formed by any two radii opi, opi+1, and let β be the angle at o formed by op′ and
op′dN/2e+1. Clearly β = α if N is odd, while β = α

2 if N is even. Also, since op′

forms a right angle with p′p′dN/2e+1, and since the length of op′ is r√
2

, we have that

d′ = r tan β√
2

. Hence, if we let d′ = 1 (which guarantees that dmin ≥ 1), we obtain

r =
√

2
tan β . Since tanβ > β for β ∈ (0, π2), then r <

√
2
β , which implies r = O(N),

because β = Θ(1
N) . Thus, the area of Γ is O(N2) = O(n2). 2

The following lemmas show that, unfortunately, Theorem 10.1 and Theorem 10.2
cannot be extended to every spanning tree S, that is, there exist pairs 〈G,S〉 that do
not admit straight-line compatible drawings, even if S is a ternary or a binary tree.

Lemma 10.1 Let G be the complete graph on 13 vertices and let S be a complete
rooted ternary spanning tree of G. There is no straight-line compatible drawing of
〈G,S〉.

Proof: We show by case analysis that there is no straight-line compatible drawing
of 〈G,S〉. Let r be the root of S (see Fig. 10.4(a)). Note that r is the only vertex of S
with degree 3. Let u, v, w be the three neighbors of r in S. Two are the cases, either
one of u, v, w (say u) lies inside triangle 4(r, v, w) (Case 1, see Fig. 10.5(a)), or r
lies inside triangle4(u, v, w) (Case 2, see Fig. 10.5(d)).

In Case 1, consider a child u1 of u. In any straight-line compatible drawing of
〈G,S〉, u1 is placed in such a way that u lies inside either triangle 4(u1, r, w) or
triangle 4(u1, r, v), assume the former (see Fig. 10.5(b)). Then, consider another
child u2 of u; in order for edge (u, u2) not to cross any edge, also u2 has to lie inside
4(u1, r, w), in such a way that both u and u1 lie inside triangle 4(u2, r, v). This
implies that u lies inside 4(u1, r, u2) (see Fig. 10.5(c)), together with its last child
u3. However, u3 cannot be placed in any of the three triangles in which 4(u1, r, u2)

i
i

“thesis” — 2015/4/29 — 21:44 — page 266 — #278 i
i

i
i

i
i

266CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

r

u v w

(a)

x
v

w
u
u1

u2

(b)

Figure 10.4: (a) The complete rooted ternary tree with 13 vertices in the statement
of Lemma 10.1. (b) The complete binary tree with 22 vertices in the statement of
Lemma 10.2.

is partitioned by the edges (of S) connecting u to u1, to r, and to u2, respectively,
without introducing any crossing involving edges of S. This concludes the analysis of
Case 1.

In Case 2, note that no child u1 of u can be drawn inside4(u, v, w), as otherwise
one of the edges of S incident to r would be crossed by either (u, u1) ∈ S, (u1, v) ∈ G
or (u1, w) ∈ G. We further distinguish two cases, based on whether u and r lie inside
triangle4(u1, v, w) (Case 2.1, see Fig. 10.5(e)), or r and one of v and w (say w) lies
inside triangle4(u1, u, v) (Case 2.2, see Fig. 10.5(f)). In Case 2.1, consider another
child u2 of u. Note that, u2 has to lie inside 4(u1, v, w), due to edge (u, u2) ∈ S.
However, u2 cannot be placed in any of the three regions in which 4(u1, v, w) is
partitioned by paths composed of edges of S connecting r to u1, to v, and to w,
respectively. To conclude the proof, note that, if Case 2.2 holds for the children of
vertex u, then Case 2.1 must hold for the children of vertex w, as all of them must lie
inside4(u1, u, v). 2

Lemma 10.2 Let G be the complete graph on 22 vertices and let S be a complete
unrooted binary spanning tree of G. There is no straight-line compatible drawing of
〈G,S〉.

Proof: First, we claim the following property (P1): Let x be a vertex of G such
that the neighbors u, v, w of x in S are not leaves of S. Then, in any straight-line
compatible drawing of 〈G,S〉, vertex x lies outside triangle4(u, v, w). Observe that
property P1 directly descends from Case 2 of the proof of Lemma 10.1, where x
plays the role of r. Indeed, in that proof, only two of the children of u (and of v and
w, symmetrically) were used in the argument.

i
i

“thesis” — 2015/4/29 — 21:44 — page 267 — #279 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 267

r

u

v w

(a)

r

u

v w
u1

(b)

r

u

v w
u1

u2

(c)

u

r

v w

(d)

u

r

v w

u1

(e)

u

r

v
w u1

(f)

Figure 10.5: Illustration for Lemma 10.1: (a) Case 1 in the proof; u lies inside
4(r, v, w). (b) Placement of u1. (c) Placement of u2. (d) Case 2 in the proof; r
lies inside4(u, v, w). (e) Case 2.1. (f) Case 2.2.

Now, consider the only vertex x of G such that each of the tree subtrees of S
rooted at x contains seven vertices (see Fig. 10.4(b)). By P1, vertex x lies outside the
triangle4(u, v, w) composed of its neighbors u, v, w, which implies that one of u, v,
w (say u) lies inside triangle 4(x, v, w). As in the proof of Case 1 of Lemma 10.1,
with x playing the role of r, we observe that in any straight-line compatible drawing
of 〈G,S〉 in which u lies inside 4(x, v, w), the two neighbors u1 and u2 of u are
placed in such a way that u lies inside 4(u1, x, u2). While in Lemma 10.1 we used
the presence of a fourth neighbor (a third child) of u to prove the statement, here we
can apply P1, as u1, x, u2 are not leaves of S. 2

In light of Lemmas 10.1 and 10.2, it is natural to ask whether there are specific
subfamilies of spanning trees S (other than paths, spiders, and caterpillars) such that
a straight-line compatible drawing of 〈G,S〉 always exists. The following algorithm
gives a positive answer to this question: it computes a straight-line compatible draw-
ing when S is a proper level spanning tree of G. Theorem 10.3 proves the algorithm’s
correctness, its time complexity, and its area requirement.

The idea of the algorithm is to exploit the properties of proper level spanning trees.
Namely, two consecutive levels of a proper level spanning tree induce a subgraph
that is a forest of caterpillars and there is no edge spanning more than one level.
The algorithm is based on a recursive technique that uses, in each recursive step, an

i
i

“thesis” — 2015/4/29 — 21:44 — page 268 — #280 i
i

i
i

i
i

268CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

. . .

...

u

u11 u15

. . .

...

u

u11 u15

s11 s14

t

(a)

qi

qi+1`i

Cl Cl+1

Al+1

ai

bi

(b)

Figure 10.6: Illustration of Algorithm STRAIGHT-LINE-PROPER-LEVEL-
SPANNING-TREE: (a) a proper level spanning tree S and its enhanced version
S′. (b) Schematic illustration of the inductive step, the curvature of circles Cl and
Cl+1 has been deliberately increased to better visualize the drawing construction.

argument similar to that used for caterpillars, although the geometric construction is
different. The final result is a drawing composed of a set of nested convex polygons,
one for each level of the proper level spanning tree. Edges connecting vertices of two
consecutive levels are drawn between the two corresponding polygons and are not
crossed by other edges. All the remaining edges are allowed to cross.

Algorithm STRAIGHT-LINE-PROPER-LEVEL-SPANNING-TREE. Refer to Figs. 10.6
and 10.7 for an illustration of the algorithm. Let u be the root of S (which is at level
0) and let ul1,. . . , ulkl be the vertices at level l ∈ {1, . . . , d}, where d is the depth of
S. The algorithm temporarily adds to S and G some dummy vertices, which will be
removed in the final drawing. Namely, for each uli, 1 ≤ l ≤ d − 1 and 1 ≤ i ≤ kl,
it attaches to uli one more (leftmost) child sli. Also, it attaches to root u a dummy
(rightmost) child t. Denote byG′ and S′ the new graph and the new tree, respectively.
Notice that S′ is still a proper level spanning tree of G′. The algorithm iteratively
computes a drawing Γ′ of G′. For l = 1, . . . , d, the algorithm defines a circumference

i
i

“thesis” — 2015/4/29 — 21:44 — page 269 — #281 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 269

u11

u13

u14

u15
t

o

u

u12

s11

s14

Figure 10.7: Illustration of Algorithm STRAIGHT-LINE-PROPER-LEVEL-
SPANNING-TREE: sketch of the final drawing Γ.

Cl with center o = (0, 0) and radius rl < rl−1 (C1, . . . , Cd are concentric). The
vertices of level l are drawn on the quarter of Cl going from point (−rl, 0) to point
(0, rl) clockwise. The radius rl+1 of the next concentric circumferenceCl+1 is chosen
such that Cl+1 intersects all chords between vertices on Cl.

Let {u11,. . . , u1k1 , t} be the ordered list of the children of root u and let {p11,. . . ,
p1k1 , pt} be k1 + 1 equally spaced points along C1 in clockwise order, where op11

and opt are a horizontal and a vertical segment, respectively. Vertex u1j is drawn on
p1j (1 ≤ j ≤ k1) and vertex t is drawn on pt. Also, u is drawn on point (−r1, r1).

Assume now that all vertices ul1, . . . , ulkl of level l have been drawn (1 ≤ l ≤
d− 1) in this order on the sequence of points {q1, . . . , qkl}, along Cl. The algorithm
draws the vertices of level l + 1 as follows. Let qiqi+1 be the chords of Cl, for
1 ≤ i ≤ kl − 1, and let cl be the shortest of these chords. The radius rl+1 of
Cl+1 is chosen arbitrarily in such a way that Cl+1 intersects cl in two points and
rl+1 < rl. This implies that Cl+1 also intersects every chord qiqi+1 in two points.
For 1 ≤ i ≤ kl, denote by L(uli) = {v1,. . . , vnli} the ordered list of children of uli in
G′. Also, let ai be the intersection point between qiqi+1 and Cl+1 that is closest to qi,
and let `i be the line through qi tangent toCl+1; denote by bi the tangent point between
`i and Cl+1. Let Al+1 be the arc of Cl+1 between ai and bi, and let {p0, p1, . . . , pnli}
be nli + 1 equally spaced points along Al+1 in clockwise order. For v ∈ L(uli),
denote by j(v) the position of v in L(uli). Vertex vj is drawn on pj(vj) (1 ≤ j ≤ nli)

i
i

“thesis” — 2015/4/29 — 21:44 — page 270 — #282 i
i

i
i

i
i

270CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

and vertex sli is drawn on p0.
Once all vertices of G′ are drawn each edge of G′ is drawn in Γ′ as a straight-

line segment between its end-vertices. Drawing Γ is obtained from Γ′ by deleting all
dummy vertices and their incident edges.

Theorem 10.3 Let G be a graph with n vertices and m edges, and let S be a proper
level spanning tree of G. There exists a straight-line compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time in the real RAM model.

Proof: The algorithm that constructs Γ is Algorithm STRAIGHT-LINE-PROPER-
LEVEL-SPANNING-TREE. In the following we first prove that Γ is a straight-line
compatible drawing of 〈G,S〉, and then we analyze the time complexity. We adopt
the same notation used in the description of the algorithm.

CORRECTNESS. We have to prove that in Γ the edges of S are never crossed. Observe
that, since S is a proper level spanning tree ofG, there cannot be edges spanning more
than two consecutive levels of S. Following its description, we prove the correctness
of the algorithm by induction on l.

In the base case consider the levels 0 and 1, also, consider the convex polygon P1,
whose vertices are the points {p1,. . . , pnu}. All the edges connecting two children
of root u are drawn inside P1, and do not cross the edges connecting the root to its
children, which are drawn outside P1.

Assume by induction that all the edges in S connecting two vertices of two levels
1 ≤ l′, l′+1 ≤ l are not crossed in Γ. We prove that all the edges in S connecting two
vertices of levels l, l + 1 are not crossed in Γ. Consider any vertex uli (1 ≤ i ≤ kl);
observe that all its children are drawn inside the open plane region R defined by the
arc of Cl that goes clockwise from qi to qi+1 (where uli and uli+1 are drawn) and
the chord qiqi+1. By construction, R is never intersected by an edge connecting two
vertices drawn in a step l′ ≤ l. Consider the convex polygon Pl+1, defined by the
points where the vertices of level l+1 are drawn. All the edges connecting two vertices
of level l+ 1 are drawn inside Pl+1, and do not cross the edges connecting vertices of
level l to their children, which are drawn outside Pl+1. It remains to prove that every
edge e′ /∈ S, connecting a vertex of level l to a vertex of level l + 1, does not cross
any edge e ∈ S, connecting a vertex of level l to a vertex of level l + 1. In particular,
let e = (uli, ul+1j) ∈ S (1 ≤ i ≤ kl and 1 ≤ j ≤ kl+1) and e′ = (ulz, ul+1f) /∈ S
(1 ≤ z ≤ kl and 1 ≤ f ≤ kl+1). Assume that ul+1f is not a child of uli in S. If i < z
and j < f or i > z and j > f , then there is a line ` through o such that e completely
lies in one of the two half planes determined by ` and e′ completely lies in the other
half plane. If i < z and j > f or i > z and j < f , consider the line ` containing
the straight-line segment uliulz , then e completely lies in one of the two half planes

i
i

“thesis” — 2015/4/29 — 21:44 — page 271 — #283 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 271

determined by ` (the one containing ul+1j), and e′ completely lies in the other half
plane; indeed, rl+1 has been chosen so that it intersects cl (the minimum-length chord
of Cl). Finally, suppose ul+1f is a child of uli in S; by construction, any edge that
connects ulz to a vertex of level l + 1 (which is not a child of ulz), including e′, must
cross the circumference Cl+1 exactly once (near the point where ulz is placed).

TIME REQUIREMENT. At each inductive step, the technique performs a number of
operations proportional to kl + kl+1. Indeed, cl is chosen by looking only at the
chords between consecutive points on Cl. Hence, the overall time complexity is
O(

∑d−1
l=0 (kl + kl+1) +m) = O(

∑d−1
l=0 kl) +O(

∑d−1
l=0 kl+1) +O(m) = O(n+m).

AREA REQUIREMENT. Observe that the compatible drawing computed by Algo-
rithm STRAIGHT-LINE-PROPER-LEVEL-SPANNING-TREE may require area Ω(2n).
Indeed, letL(C1) be the length ofC1; the children of the root u are drawn along an arc
A1 of C1 whose length is L(A1) < L(C1)/2. Inductively, the children of any vertex
of level l− 1 are drawn along an arc Al of Cl whose length is L(Al) < L(Al−1)/2 <
L(C1)/2l. Hence, the children of any vertex of level d− 1 are drawn along an arc of
circumference Ad whose length is L(Ad) < L(C1)/2d. It follows that the minimum
distance between any two points in Γ is dmin = o(L(C1)/2d). Consider the case
d ∈ O(n), and impose dmin = 1, it follows that L(C1) ∈ Ω(2n), which implies that
the area of Γ is Ω(2n).

As an upper bound, we prove that the area requirement of our algorithm is 2O(n).
Consider again the arc Al, where the children of any vertex of level l − 1 will be
drawn. Namely, denote by qi the point on Cl−1 where a vertex v of level l − 1 has
been placed, and by qi+1 its consecutive point on Cl−1. Recall that the circumference
Cl is chosen such that it intersects the chord sl−1 = qiqi−1 in two distinct points,
denoted by ai and a′i. We can choose Cl such that the distance between ai and qi is
the same as the distance between a′i and qi+1, and such that the length of sl = aia′i
is L(sl) = L(sl−1)

2 . To this end, recall that L(sl−1) = 2rl−1 sinβl−1, where βl−1

is half of the central angle defined by the chord sl−1. We choose a radius rl for
Cl such that rl = rl−1

2
sin βl−1

sin
βl−1

2

. The symmetry of this choice implies that L(Al) >

L(sl)
2 = L(sl−1)

4 . Denote by u the parent node of v in S′ and let ku be the number
of children of u in S′. Since the children of u (including v) are placed equispaced
along Al−1, we have that L(sl−1) = L(Al−1)

ku
. Thus, L(Al) >

1
4
L(Al−1)
ku

. Inductively,

we obtain for a tree of depth d, L(Ad) >
1
4d
L(A1)∏
∀u ku

. Since
∑
∀u ku < n′ we have∏

∀u ku < 2n
′
. Imposing the minimum distance dmin < L(Ad) equal to 1, we obtain

L(C1) = L(A1) < 4d2n
′
. If d = O(n′) and n′ = O(n), we obtain that the area of

the drawing is 2O(n). 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 272 — #284 i
i

i
i

i
i

272CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

It is worth observing that any graph G admits a proper level spanning tree rooted
at an arbitrarily chosen vertex r ofG. Indeed, it corresponds to the spanning tree com-
puted with a breadth-first-search starting from r. Thus, each graph admits a straight-
line drawing Γ such that one of its spanning trees S is never crossed in Γ.

Spanning Triconnected Subgraphs

Here we focus on the case in which S is a triconnected spanning subgraph of G.
Clearly, since every tree can be augmented with edges to become a triconnected graph,
Lemmas 10.1 and 10.2 imply that, if S is a triconnected graph, a straight-line com-
patible drawing of 〈G,S〉 may not exist. The following lemma characterizes those
instances for which such a drawing exists.

Lemma 10.3 Let G(V,E) be a graph, S(V,W) be a planar triconnected spanning
subgraph of G, and E be the unique planar (combinatorial) embedding of S (up to a
flip). A straight-line compatible drawing Γ of 〈G,S〉 exists if and only if:

(1) Each edge e ∈ E \W connects two vertices belonging to the same face of E .

(2) There exists a face f of E containing three vertices u, v, w such that, for any edge
(x, y) ∈ E \W with x, y ∈ f , vertices x and y are not separated by u, v, w, that
is, vertices u, v, w appear on the same path between x and y along the boundary
of f .

Proof: First we prove the necessity of the conditions. Suppose that 〈G,S〉 admits
a straight-line compatible drawing Γ. Condition 1 is trivially satisfied. In fact, for
each edge e ∈ E \W , the segment representing e in Γ must be drawn inside a face
of E , as otherwise a crossing between e and some edge of S would occur. Regarding
Condition 2, consider the circular sequence v1, v2, . . . , vk of vertices of V on the
convex hull of Γ (see Fig. 10.8(a)). Observe that k ≥ 3 and that any triple of such
vertices satisfies Condition 2.

Then we prove the sufficiency of the conditions. Suppose that there exist three ver-
tices v1, v2, and v3 of a face f of E satisfying Condition 2 (see Fig. 10.8(b)). Consider
the graphsG∗(V,E∪∆) and S∗(V,W ∪∆), where ∆ = {(v1, v2), (v2, v3), (v1, v3)}.
Observe that, due to Condition 2, S∗ is a triconnected planar spanning subgraph ofG∗

and that ∆ forms an empty triangular face in the unique planar embedding of S∗. Pro-
duce a strictly-convex drawing Γ∗ of S∗ with ∆ as the external face (for example,
using the algorithm in [BR06]). A straight-line compatible drawing Γ of 〈G,S〉 can
be obtained from Γ∗ by removing the edges in ∆ and by adding the edges of E \W .

i
i

“thesis” — 2015/4/29 — 21:44 — page 273 — #285 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 273

(a) (b)

Figure 10.8: (a) A straight-line compatible drawing of 〈G,S〉 used to show the neces-
sity of Condition 2. (b) A face of E , where edges ofE\W are drawn as dashed curves.
Shaded triangles identify three triplets of vertices among those satisfying Condition 2.

e

(a) (b)

Figure 10.9: Two consecutive steps of Algorithm STRAIGHT-LINE-TRICONNECTED-
DECISION. (a) The outerplane graph Gf ; the shaded face is full (the others are
empty); the dashed-dotted edge e is the next edge of Ef to be considered; edges in
Eχ are drawn as dashed lines; white squares are vertices of Vχ. (b) Graph Gf after
the update due to edge e.

Observe that by Condition 1 and by the strict convexity of the faces of Γ∗, the edges
of E \W do not intersect edges of S. 2

In the following we describe an algorithm to test in polynomial time whether the
conditions of Lemma 10.3 are satisfied by a pair 〈G,S〉 in which S is triconnected
and spanning.

Algorithm STRAIGHT-LINE-TRICONNECTED-DECISION. Let E be the unique pla-
nar embedding of S (up to a flip). The algorithm verifies that each edge of E \W

i
i

“thesis” — 2015/4/29 — 21:44 — page 274 — #286 i
i

i
i

i
i

274CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

satisfies Condition 1 of Lemma 10.3 and that there exists a face f of E containing
three vertices v1, v2, and v3, that satisfy Condition 2 of Lemma 10.3. If both condi-
tions hold, then v1, v2, and v3 can be used to find a straight-line compatible drawing
Γ of 〈G,S〉 as described in the proof of Lemma 10.3.

Condition 1 is can be tested by checking, for each edge e of W , whether the
endpoints of e have distance 2 in the vertex-face incidence graph of S by using the al-
gorithm described in [KK03] that tests the existence of constant-length paths between
vertices of a planar graph.

To test Condition 2 of Lemma 10.3 we perform the following procedure on each
face f of E , restricting our attention to the set Ef of edges in E \W whose both end-
vertices belong to f . We maintain an auxiliary outerplane graph Gf whose vertices
are the vertices Vf of f . Each internal face of Gf is either marked as full or as
empty. Faces marked full are not adjacent to each other. Intuitively, we have that
any three vertices of an empty face satisfy Condition 2, while no triple of vertices of
a full face satisfies such a condition. We initialize Gf with the cycle composed of
the vertices and the edges of f and mark its unique internal face as empty. At each
step an edge e of Ef is considered and Gf is updated accordingly. If the end-vertices
of e belong to a single empty face of Gf , then we update Gf by splitting such a face
into two empty faces. If the end-vertices of e belong to a single full face, then we
ignore e, as adding e to Gf would determine crossings between e and several edges
and faces (see Fig. 10.9(a)). Consider the set Eχ of internal edges of Gf crossed by
e. Define a set of vertices Vχ of Gf containing the end-vertices of e, the end-vertices
of edges of Eχ that are incident to two empty faces, and the vertices of the full
faces traversed by e. Remove all edges in Eχ from Gf . Mark the face f ′ obtained by
such a removal as empty. Form a new face fχ inside f ′ with all vertices in Vχ by
connecting them as they appear in the circular order of f , and mark fχ as full (see
Fig. 10.9(b)).

When all the edges of Ef have been considered, if Gf has an internal face marked
as empty, any three vertices of this face satisfy Condition 2. Otherwise, Gf has a
single internal face marked full and no triple of vertices of f satisfies Condition 2.

Theorem 10.4 Let G(V,E) be a graph and let S(V,W) be a planar triconnected
spanning subgraph ofG. There exists anO(|V |×|E\W |)-time algorithm that decides
whether 〈G,S〉 admits a straight-line compatible drawing Γ and, in the positive case,
computes it on an O(|V |2)×O(|V |2) grid.

Proof: First, apply Algorithm STRAIGHT-LINE-TRICONNECTED-DECISION to
decide whether 〈G,S〉 satisfies the two conditions of Lemma 10.3. If this is the case,

i
i

“thesis” — 2015/4/29 — 21:44 — page 275 — #287 i
i

i
i

i
i

10.3. STRAIGHT-LINE DRAWINGS 275

apply the algorithm described in the proof of Lemma 10.3 to construct a straight-line
compatible drawing Γ of 〈G,S〉.

CORRECTNESS. We prove that the STRAIGHT-LINE-TRICONNECTED-DECISION al-
gorithm correctly checks Conditions 1 and 2 of Lemma 10.3.

Condition 1 is easy to check, since the vertex-face incidence graph of a planar
graph is trivially planar and hence the algorithm described in [KK03] can be used to
correctly test whether two vertices have distance 2 in such graph.

Regarding Condition 2, suppose that the algorithm identifies a face f of E such
that a face fe marked empty can be found in the auxiliary outerplane graphGf . Since
fe is not traversed by any edge of Ef , we have that any three vertices of fe satisfy
Condition 2 of Lemma 10.3.

Conversely, suppose that the computation for every face f of E yields a single
internal face of the auxiliary outerplane graph Gf marked full. Then we prove that
Condition 2 of Lemma 10.3 is not satisfied. Our proof is based on the invariant that
during the computation of Algorithm STRAIGHT-LINE-TRICONNECTED-DECISION,
as well as at its end, any face of Gf marked full cannot contain three vertices that
satisfy Condition 2 of Lemma 10.3. In order to see this, first observe that a pair of
vertices that separates the end-vertices of some edge in the circular order of a face f
of E is also separated by such an edge. Hence, searching for three vertices of f that
do not separate the end-vertices of any edge of Ef is equivalent to searching for three
vertices that are not separated by any edge in Ef . Therefore, it suffices to prove the
following statement: any pair of vertices of a full face ffull that is non-contiguous
in the circular order of ffull is separated by an edge of Ef . In fact, since a full
face has at least four vertices, this implies that Condition 2 of Lemma 10.3 cannot be
satisfied by any three vertices of ffull.

First, we prove inductively on the size of a full face ffull that any edge that
crosses the boundary of ffull also crosses one edge of Ef . In the base case, when
ffull is created, the current edge e of Ef crosses a set of edges Eχ separating empty
faces (i.e., no previous full face involved). In this case, any vertex of Vχ is the
end-vertex of an edge in Eχ or of e, implying the statement. In the general case, when
ffull is created, the current edge e of Ef crosses both a set of edges Eχ separating
empty faces and a set of full faces of Gf . Applying an inductive argument it can
be proved that all vertices of Vχ are the end-vertices of some edge of Ef , thus proving
that e crosses at least one edge of Ef .

We are now ready to prove inductively that any pair of vertices of a full face
ffull that is non-contiguous in the circular order of ffull is separated by an edge ofEf .
As above, in the base case (when face ffull is created) the current edge e = (v1, v2)
of Ef does not cross any full face. Since edges in Eχ do not cross each other, it

i
i

“thesis” — 2015/4/29 — 21:44 — page 276 — #288 i
i

i
i

i
i

276CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

is easy to verify that any pair of vertices of Vχ that are non-contiguous in the circular
order of ffull are separated either by an edge in Eχ or by e. In the inductive case,
when face ffull is created the current edge e of Ef crosses both a set of edges Eχ
separating empty faces and a set of full faces of Gf . Consider a pair of vertices
u, v of Vχ that are non-contiguous in the circular order of ffull. Observe that, if u
and v are separated by some edge, adding edge (u, v) would introduce a crossing. If
both u and v belong to the same full face that is merged into ffull, then by applying
an inductive argument we have that they are separated by an edge of Ef . Otherwise,
either edge (u, v) would cross the boundary of at least one full face or it would
cross e. In both cases edge (u, v) would cross an edge of Ef , proving that u and v are
separated by some edge of Ef .

TIME AND AREA REQUIREMENTS. The unique planar embedding E of S (up to
a flip) can be computed in O(|V |) time. Regarding the time complexity of testing
Condition 1, the vertex-face incidence graph I of S can be constructed in time linear
in the size of S. Since I is a planar graph, deciding if two vertices have distance 2 in
such graph can be done in constant time provided that an O(|V |)-time preprocessing
is performed [KK03]. Thus, testing Condition 1 for all edges in E \W can be done
in O(|V | + |E \ W |) time. Regarding the time complexity of testing Condition 2,
observe that, for each face f of E , Ef can be computed in O(|V | + |E \W |) time
while verifying Condition 1. Since for each face f of E , the size of Gf is O(|Vf |),
adding edges in Ef has time complexity O(|Ef | × |Vf |). Overall, as

∑
f∈E |Ef | =

O(|E \W |) and
∑
f∈E |Vf | = O(|V |), the time complexity of testing Condition 2 is

O(|E \W | × |V |), which gives the time complexity of the algorithm. Regarding the
area, the algorithm in [BR06] can be used to obtain in linear time a strictly-convex
grid drawing of S∗ on an O(|V |2)×O(|V |2) grid. 2

10.4 Polyline Drawings

In this section we allow bends along the edges ofG not in S, while we still require that
the edges of S are drawn as straight-line segments. Of course, since edge bends are
negatively correlated to the readability of the drawing, our goal is to compute k-bend
compatible drawings for small values of k. However, it might happen that the number
of bends in the drawing can only be reduced at the cost of increasing the required area.
Throughout the section, we discuss possible trade-offs between these two measures of
the quality of the drawing.

We split the section into two subsections, dealing with the case in which S is a
spanning tree and with the case in which S is a biconnected spanning graph, respec-
tively.

i
i

“thesis” — 2015/4/29 — 21:44 — page 277 — #289 i
i

i
i

i
i

10.4. POLYLINE DRAWINGS 277

Figure 10.10: Illustration of Algorithm ONE-BEND TREE.

Spanning Trees

In this subsection we prove that allowing bends along the edges of G not in S permits
us to compute compatible drawings of pairs 〈G,S〉 for every spanning tree S of G;
such drawings are realized on a polynomial-area integer grid. We provide algorithms
that offer different trade-offs between number of bends and drawing area.

Let G(V,E) be a graph with n vertices and m edges, and let S(V,W) be any
spanning tree ofG. We denote by x(v) and y(v) the x- and the y-coordinate of a vertex
v, respectively. The following algorithm computes a 1-bend compatible drawing of
〈G,S〉.

Algorithm ONE-BEND TREE. The algorithm works in two steps (refer to Fig. 10.10).

STEP 1: Consider a point set of size n such that for each point pi, the x- and y-
coordinates of pi are i2 and i, respectively. Construct a straight-line drawing of S by
placing the vertices on points pi, 1 ≤ i ≤ n, according to a DFS traversal.

STEP 2: Let vi be the vertex placed on point pi. For each i ∈ {1, . . . , n}, draw each
edge (vi, vj) ∈ E \W such that j > i as a polyline connecting pi and pj , and bending
at point (i2 + 1, n+ c) where c is a progressive counter, initially set to one.

Theorem 10.5 LetG(V,E) be a graph with n vertices andm edges, and let S(V,W)
be any spanning tree of G. There exists a 1-bend compatible drawing Γ of 〈G,S〉.
Drawing Γ can be computed in O(n+m) time and has O(n2(n+m)) area.

Proof: The algorithm that constructs Γ is Algorithm ONE-BEND TREE. In the
following we first prove that Γ is a straight-line compatible drawing of 〈G,S〉, and
then we analyze the time and area complexity. We adopt the same notation used in the
description of the algorithm.

i
i

“thesis” — 2015/4/29 — 21:44 — page 278 — #290 i
i

i
i

i
i

278CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

CORRECTNESS. We have to prove that Γ satisfies the following properties: (i) the
edges of S are never crossed and (ii) there exists no overlapping between a bend-
point and an edge in E \W . To prove (i), observe that the drawing of S contained in
Γ is planar and that the edges inE\W are drawn outside the convex region containing
the drawing of S. To prove (ii), observe that, for each two edges (vi, vj) and (vp, vq)
such that i < j, p < q, and p < i, the bend-point of the polyline representing (vi, vj)
lies above the polyline representing (vp, vq).

TIME AND AREA REQUIREMENT. Concerning time complexity, STEP 1 can be per-
formed in O(n) time. STEP 2 can be performed in O(m) time, since for each edge
in E \W a constant number of operations is required. Concerning area requirements,
the width of Γ is O(n2), by construction, while the height of Γ is given by the y-
coordinate of the topmost bend-point, that is n+m.

2

Next, we describe an algorithm that constructs 3-bend compatible drawings of
pairs 〈G,S〉 with better area bounds than Algorithm ONE-BEND TREE for sparse
graphs. This algorithm also produces drawings with optimal crossing angular resolu-
tion, i.e., edges cross only at right angles. Drawings of this type, called RAC drawings,
have been widely studied in the literature [DEL11, DL12] and are motivated by cog-
nitive studies showing that drawings where the edges cross at very large angles do not
affect too much the readability of the drawing [HHE08].

Algorithm THREE-BEND TREE. The algorithm works in four steps (refer to Fig. 10.11(b)
for an illustration).

STEP 1: Let G′ be the graph obtained from G by subdividing each edge (vi, vj) ∈
E \ W with two dummy vertices di,j and dj,i. Let S′ be the spanning tree of G′,
rooted at any non-dummy vertex r, obtained by deleting all edges connecting two
dummy vertices. Clearly, every dummy vertex is a leaf of S′.

STEP 2: For each vertex of S′, order its children arbitrarily, thus inducing a left-to-
right order of the leaves of S′. Rename the leaves of S′ as u1, . . . , uk following this
order. For each i ∈ {1, . . . , k − 1}, add an edge (ui, ui+1) to S′. Also, add to S′ two
dummy vertices vL and vR, and edges (vL, r),(vR, r),(vL, u1),(uk, vR), (vL, vR).

STEP 3: Construct a straight-line grid drawing Γ′ of S′, as described in [Kan96],
in which edge (vL, vR) is drawn as a horizontal segment on the outer face, vertices
u1, . . . , uk all lie on points having the same y-coordinate Y , and the rest of S′ is
drawn above such points. Remove from Γ′ the vertices and edges added in STEP 2.

STEP 4: Compute a drawing Γ of G such that each edge in W is drawn as in Γ′, while
each edge (vi, vj) ∈ E \W is drawn as a polyline connecting vi and vj , bending at

i
i

“thesis” — 2015/4/29 — 21:44 — page 279 — #291 i
i

i
i

i
i

10.4. POLYLINE DRAWINGS 279

vL vR

r

u1 uk

(a)

r

(b)

Figure 10.11: Illustration of Algorithm THREE-BEND TREE: (a) Drawing Γ′ pro-
duced at STEP 3 in which the vertices and the edges added in STEP 2 are represented
by dashed segments and (b) drawing Γ produced at STEP 4. Edges of S are rep-
resented by curve segments to indicate that the drawing of S in Γ′ depends on the
layout produced by the algorithm in [Kan96]

di,j , at dj,i, and at a point (a, Y −b) where a =
x(di,j)+x(dj,i)

2 and b =
|x(di,j)−x(dj,i)|

2 .
Finally, scale drawing Γ by a factor of 2.

Theorem 10.6 LetG(V,E) be a graph with n vertices andm edges, and let S(V,W)
be any spanning tree of G. There exists a grid 3-bend compatible drawing Γ of G,
which is also a RAC drawing. Drawing Γ can be computed in O(n+m) time and has
O((n+m)2) area.

Proof: The algorithm that constructs Γ is Algorithm THREE-BEND TREE. In the
following we first prove that Γ is a straight-line compatible drawing of 〈G,S〉, and
then we analyze the time and area complexity. We adopt the same notation used in the
description of the algorithm.

CORRECTNESS. We have to prove that Γ satisfies the following properties: (i) the
edges of S are never crossed and (ii) there exists no overlapping between a bend-point
and an edge in E \W . To prove (i), observe that the drawing of S contained in Γ is
planar [Kan96] and lies above the horizontal line with y-coordinate Y . Also, observe
that each edge-segment that is drawn by STEP 3 and STEP 4 either lies below such
line or has the same representation as an edge of S′ in Γ′. To prove (ii), observe that,
for each edge e in E \W , the first and the last bend-points have the same position as
dummy vertices of S′ in Γ′, and the part of e between such two endpoints is composed

i
i

“thesis” — 2015/4/29 — 21:44 — page 280 — #292 i
i

i
i

i
i

280CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

of two segments whose slopes are π
4 and −π4 . Finally, it is immediate to see that each

edge of W has at most three bends, and that two edge segments can only intersect if
they have slopes equal to π

4 or to −π4 , thus Γ is a RAC compatible drawing of 〈G,S〉.
TIME AND AREA REQUIREMENT. Concerning time complexity, STEP 1 can clearly
be performed in O(m) time; STEP 2 in O(n + m) time; STEP 3 in O(n + m)
time [Kan96]; and STEP 4 in O(n + m) time, since for each edge in E a constant
number of operations is required. Concerning area requirements, by construction and
by the requirements of the algorithm in [Kan96], both the width and the height of Γ
are O(n + m). Note that, by construction, each vertex lies on a grid point in Γ; also,
scaling Γ by a factor of 2 ensures that each bend lies on a grid point, as well.

2

Biconnected Spanning Subgraphs

In this subsection we consider the case in which S(V,W) is a biconnected spanning
subgraph. We note that, in this case, an example of a negative instance 〈G,S〉 can be
directly inherited from the case in which S is a triconnected graph (Section 10.3), as
any triconnected graph is also a biconnected graph. More generally, a trivial necessary
condition for an instance to be positive is that S admits an embedding in which for
every edge e of E \W the two end-vertices of e share a face. In the following we
prove that this condition is also sufficient if the edges of E \W are allowed to bend,
hence providing a characterization of the positive instances. Note that, we are able to
produce compatible drawings of such instances with polynomial area in which each
edge bends at most once. Furthermore, we describe how to test the existence of an
embedding satisfying the characterization in linear time.

We start by showing an algorithm that, given an instance 〈G,S〉 that admits an
embedding in which for every edge e of E \W the two end-vertices of e share a face,
produces a 1-bend compatible drawing of 〈G,S〉 with polynomial area.

Algorithm 1-BEND-BICONNECTED-DRAWING. Let E be a planar embedding of S
such that each edge e ∈ E \W is incident to vertices belonging to the same face of E .

For each face f of E , add to S a dummy vertex vf inside f and connect it to
each vertex of f , hence obtaining a planar graph S′ with |S′| = O(|V |). Produce any
straight-line planar drawing Γ′ of S′ inO(|S′|×|S′|) = O(|V |×|V |) area by applying
any of the known algorithms, say the one by De Fraissex, Pach, and Pollack [dPP90].
Then, obtain a straight-line planar drawing Γ∗ of S in O(|V |× |V |) area by removing
from Γ′ all the dummy vertices and their incident edges. Observe that, Γ∗ is a star-
shaped drawing, namely each face is represented by a polygon whose kernel is not
empty; in particular, since the area of Γ∗ is O(|V | × |V |), for each face f there exists

i
i

“thesis” — 2015/4/29 — 21:44 — page 281 — #293 i
i

i
i

i
i

10.4. POLYLINE DRAWINGS 281

a disk of radius O(1
|V |) centered at a grid point completely lying inside the kernel of

the polygon representing f . This is due to the fact that (i) the grid point where vertex
vf used to be placed in Γ′ belongs to the kernel of the polygon representing f in Γ∗

and that (ii) for any three grid points p, p1, p2 of a grid of size |V | × |V |, the slopes of
segments pp1 and pp2 differ by at least 1

|V | .
Further, scale Γ∗ by a factor of |V |·|E\W |+1 along the x-axis (where the additive

factor 1 is needed to handle the degenerate case in which |E \W | = 0). This implies
that for each face f the kernel of the polygon representing f in Γ∗ contains an ellipse
centered at a grid point whose vertical radius is at least 1

|V | and whose horizontal
radius is at least |E \W |+ 1. Note that, this ellipse contains at least |E \W |+ 1 grid
points in its interior.

Finally, obtain Γ from Γ∗ as follows. For each edge e of E \W , let fe be any
face of Γ∗ containing both the end-vertices of e. Draw e as a polyline whose unique
bend-point is placed on a point inside the kernel of the polygon representing fe in Γ∗

in such a way that there exists no overlapping between a bend-point and an edge.

Lemma 10.4 Let G(V,E) be a graph and let S(V,W) be a spanning biconnected
planar subgraph of G. Then, 〈G,S〉 admits a 1-bend compatible drawing Γ with area
O((|V |2 · |E \W | + |V |) × |V |) if and only if there exists a planar (combinatorial)
embedding E of S such that each edge e ∈ E \W connects two vertices belonging to
the same face of E .

Proof: We prove the necessity. Suppose that 〈G,S〉 admits a 1-bend compatible
drawing Γ. Consider the drawing Γ′ of S contained in Γ and let E be the planar
embedding of S determined by Γ′. For each edge e ∈ E\W , the polyline representing
e in Γ must be drawn inside a face of E , as otherwise a crossing between e and some
edge of S would occur.

We prove the sufficiency. Suppose that there exists an embedding E of S in which
for every edge e of E \W the two end-vertices of e share a face. Then, apply Algo-
rithm 1-BEND-BICONNECTED-DRAWING to construct a 1-bend compatible drawing
Γ of 〈G,S〉 with area O((|V |2 · |E \W |+ |V |)×|V |) in which the embedding of S is
E . We prove that Algorithm 1-BEND-BICONNECTED-DRAWING correctly computes
such a drawing.

CORRECTNESS. We prove that Algorithm 1-BEND-BICONNECTED-DRAWING cor-
rectly constructs a 1-bend compatible drawing Γ of 〈G,S〉. Indeed, the addition of a
dummy vertex inside every face of the computed embedding of S can always be per-
formed while maintaining the property that the resulting graph is planar and simple,
which implies that a planar star-shaped drawing of S preserving E can be constructed.

i
i

“thesis” — 2015/4/29 — 21:44 — page 282 — #294 i
i

i
i

i
i

282CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

As observed above, the kernel of the polygon representing each face of E in such a
drawing contains at least |E \W |+1 grid points; hence, non-overlapping bend-points
for all the edges lying in a face can be placed inside the kernel of this face.
TIME AND AREA REQUIREMENTS. A star-shaped drawing of S can be found in
linear time by applying the algorithm in [dPP90], as only a linear number of dummy
vertices is added to S. Also, scaling the obtained drawing can be done in linear time.
Finally, each edge of E \W can be routed inside a face of E in constant time. The
area bound derives from the fact that (i) drawing Γ′ obtained by applying the algorithm
in [dPP90] has area |V | × |V |, that (ii) Γ∗ has the same area as Γ′, and that (iii) Γ is
obtained by scaling Γ∗ by a factor of |V | · |E \W |+ 1 along the x-axis. 2

In Lemma 10.4 we presented a necessary and sufficient condition for an instance
〈G,S〉 in which S is biconnected and spanning to admit a 1-bend compatible drawing
with polynomial area. In the following we describe an algorithm that tests in poly-
nomial time whether such a condition is satisfied by 〈G,S〉 and, if this is the case,
returns an embedding E of S with the properties required by Lemma 10.4.

Our algorithm exploits a reduction to instances of SUNFLOWER SEFE. Refer
to [BKR13b, Chapter 11], to Section 3.2, and to Chapter8 for discussions on this
problem. Recall that, the SUNFLOWER SEFE problem takes as input a set of k planar
graphs 〈Gi(V,Ei)〉ki=1 on the same set V of vertices such that, for each two graphs
Gi and Gj , with i 6= j, Gi ∩ Gj = G∩, where G∩ =

⋂k
l=1Gl. Namely, the in-

tersection graph is the same for each pair of input graphs. Problem SUNFLOWER

SEFE asks whether 〈Gi(V,Ei)〉ki=1 admit planar drawings 〈Γi〉ki=1, respectively, on
the same point set such that each edge e ∈ G∩ is represented by the same curve in
each of Γ1, . . . ,Γk.

Problem SUNFLOWER SEFE has been shown NP-complete for k = 3 and G∩
being a spanning tree [ADN15, ADN14]. Refer also to Section 8.2. However, in
our reduction, the produced instances of the problem will always have the property
that G∩ is biconnected and each graph Gi (1 ≤ i ≤ k) is composed only of the
edges of G∩ plus a single edge. In this setting, a polynomial-time algorithm can be
easily derived from the known algorithms [ADF+12, BKR13a, HJL13] that solve in
polynomial time the case in which k = 2 and G∩ is biconnected.

Algorithm 1-BEND-BICONNECTED-DECISION. The algorithm tests whether S ad-
mits an embedding E such that the end-vertices of each edge e ∈ E \W belong to the
same face of E in two steps, as follows.

First, instance 〈G(V,E), S(V,W)〉 is reduced to an instance 〈G1, . . . , G|E\W |〉 of
SUNFLOWER SEFE. For each edge ei with i = 1, . . . , |E \W |, the reduction simply
sets Gi = S ∪ ei. By construction, the intersection graph G∩ of the constructed

i
i

“thesis” — 2015/4/29 — 21:44 — page 283 — #295 i
i

i
i

i
i

10.4. POLYLINE DRAWINGS 283

instance coincides with S (and hence is biconnected) and each graph Gi is composed
only of the edges of G∩ plus a single edge.

Second, the existence of drawings Γ1, . . . ,Γ|E\W | of 〈G1, . . . , G|E\W |〉 is tested
by means of the algorithm by Bläsius et al. [BKR13a], which also constructs such
drawings if a SUNFLOWER SEFE exists. The embedding E of S is obtained by re-
stricting any of the drawings Γi to the edges of G∩ (and hence of S). Note that,
in order for Γ1, . . . ,Γ|E\W | to be a solution of the SUNFLOWER SEFE instance,
the embedding of G∩ resulting by restricting Γi to its edges is the same for every
i = 1, . . . , |E \W |.

Theorem 10.7 Let G(V,E) be a graph and let S(V,W) be a planar biconnected
spanning subgraph of G. There exists an O(|V | + |E \ W |)-time algorithm that
decides whether 〈G,S〉 admits a 1-bend compatible drawing Γ and, in the positive
case, computes it on an O((|V |2 · |E \W |+ |V |)× |V |) grid.

Proof: First, apply Algorithm 1-BEND-BICONNECTED-DECISION to decide
whether 〈G,S〉 satisfies the condition of Lemma 10.4. If this is the case, apply Algo-
rithm 1-BEND-BICONNECTED-DRAWING to construct a 1-bend compatible drawing
Γ of 〈G,S〉.

CORRECTNESS. The correctness of Algorithm 1-BEND-BICONNECTED-DRAWING
has been proved in Lemma 10.4. In order to prove the correctness of Algorithm 1-
BEND-BICONNECTED-DECISION, we show that an embedding E with the required
properties exists if and only if the instance of SUNFLOWER SEFE constructed in the
first step is positive. Namely, it is easy to observe that in any SUNFLOWER SEFE
of the |E \ W | constructed graphs, the embedding of S satisfies the condition of
Lemma 10.4. For the other direction, it is sufficient to observe that, since each graph
Gi contains exactly one edge ei not belonging to S, once an embedding of S with the
property of Lemma 10.4 has been computed, edge ei can be drawn inside a face of
such embedding containing both its end-vertices without intersecting any edge of Gi,
thus yielding a SUNFLOWER SEFE of 〈G1, . . . , G|E\W |〉.
TIME AND AREA REQUIREMENTS. The construction of the SUNFLOWER SEFE
instance 〈G1, . . . , G|E\W |〉 requires O(|V | + |E \W |) total time, as the description
of S does not need to be repeated in each data structure representing a graph Gi.
Also, the second step of the algorithm can be performed in O(|V | + |E \W |) total
time [ADF+12]. The running time and the area requirements of Algorithm 1-BEND-
BICONNECTED-DRAWING have been proved in Lemma 10.4. 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 284 — #296 i
i

i
i

i
i

284CHAPTER 10. GRAPH DRAWINGS WITH CROSSING-FREE SUBGRAPHS

10.5 Conclusions and Open Problems

We introduced a new graph drawing problem, i.e., computing a drawing Γ of a non-
planar graphG such that a desired subgraph S ⊆ G is crossing-free in Γ. In the setting
where edges are straight-line segments, we showed that Γ does not always exist even
if S is a spanning tree of G; also, we provided existential and algorithmic results for
meaningful subfamilies of spanning trees and we described a linear-time testing and
drawing algorithm when S is a triconnected spanning subgraph. One of the main
problems still open in this setting is the following:

Open Problem 1 Given a graphG and a spanning tree S ofG, what is the complexity
of deciding whether 〈G,S〉 admits a straight-line compatible drawing?

The problem is still open also when S is a biconnected spanning subgraph (for
which one can try to extend the characterization of Lemma 10.3) and for subgraphs S
that are not necessarily connected and spanning. Hence, the following more general
open problem can be stated:

Open Problem 2 Given a graph G and a subgraph S of G, what is the complexity of
deciding whether 〈G,S〉 admits a straight-line compatible drawing?

Schaefer proposed a variant of Open Problem 2, where the edges of S are allowed
to cross at most h times [Sch14]. In particular, for h = 1 he proved that the problem
turns out to be as hard as the existential theory of the real numbers.

Another intriguing problem, which is more specific, is to extend the results of
Lemmas 10.1 and 10.2. Namely:

Open Problem 3 Give a characterization of the pairs 〈G,S〉 that admit a compatible
drawing, when G is a complete graph and S is a spanning tree of G.

Concerning our positive results, our constructive algorithm of a straight-line com-
patible drawing for the case where S is a spanning caterpillar does not compute integer
coordinates for the vertices. Thus, it is natural to ask the following question.

Open Problem 4 Given a graph G and a spanning caterpillar S of G, does there
exist a polynomial-time algorithm that computes a straight-line compatible drawing
of 〈G,S〉 at integer coordinates and with polynomial area?

i
i

“thesis” — 2015/4/29 — 21:44 — page 285 — #297 i
i

i
i

i
i

10.5. CONCLUSIONS AND OPEN PROBLEMS 285

In the setting where the edges of G not in S are allowed to bend, we showed that
a compatible drawing of 〈G,S〉 always exists if S is a spanning tree, with different
compromises between number of bends per edge and drawing area (see Theorems 10.5
and 10.6). Also, if S is a biconnected spanning subgraph we provided efficient testing
and drawing algorithms to compute 1-bend compatible drawings with polynomial area
(see Theorem 10.7). However, also in this setting several interesting open problems
can be studied; among them we mention the following:

Open Problem 5 Given a graphG, a non-connected subgraph S ofG, and a positive
integer k, such that 〈G,S〉 admits a k-bend compatible drawing, what is the area
requirements of constructing such a drawing?

Observe that, given a pair 〈G,S〉 such that S is a spanning subgraph of G not
necessarily connected, testing whether 〈G,S〉 admits a k-bend compatible drawing
can be done in linear time [DR15].

Open Problem 6 Is it possible to improve the trade-offs between number of bends
per edge and area established by our results when S is a spanning tree of G? For
instance, is it possible to reduce the area of 1-bend compatible drawings of 〈G,S〉
given in Theorem 10.5? Also, what about other popular aesthetic criteria, like for
example vertex angular resolution?

i
i

“thesis” — 2015/4/29 — 21:44 — page 286 — #298 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 287 — #299 i
i

i
i

i
i

Chapter 11

Planarity of Streamed Graphs

In this chapter1 we introduce a notion of planarity for graphs that are presented in a
streaming fashion. A streamed graph is a stream of edges e1, e2, . . . , em on a vertex
set V . A streamed graph is ω-stream planar with respect to a positive integer window
size ω if there exists a sequence of planar topological drawings Γi of the graphs Gi =
(V, {ej | i ≤ j < i + ω}) such that the common graph Gi∩ = Gi ∩ Gi+1 is drawn
the same in Γi and in Γi+1, for 1 ≤ i < m− ω. The STREAM PLANARITY problem
with window size ω asks whether a given streamed graph is ω-stream planar. We
also consider a generalization, where there is an additional backbone graph whose
edges have to be present during each time step. These problems are related to several
well-studied planarity problems.

We show that the STREAM PLANARITY problem is NP -complete even when the
window size is a constant and that the variant with a backbone graph is NP -complete
for all ω ≥ 2. On the positive side, we provide O(n + ωm)-time algorithms for (i)
the case ω = 1 and (ii) all values of ω provided the backbone graph consists of one 2-
connected component plus isolated vertices and no stream edge connects two isolated
vertices. Our results improve on the Hanani-Tutte-style O((nm)3)-time algorithm
proposed by Schaefer in [Sch14] for ω = 1.

11.1 Introduction

In this work we consider the following problem concerning the drawing of evolving
networks. We are given a stream of edges e1, e2 . . . , em with their endpoints in a

1The contents of this chapter are a joint work with Ignaz Rutter, appeared in [DR15] and carried out
during a visit period in the Department of Applied Mathematics at Charles University of Prague.

287

i
i

“thesis” — 2015/4/29 — 21:44 — page 288 — #300 i
i

i
i

i
i

288 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

vertex set V and an integer window size ω > 0. Intuitively, edges of the stream are
assigned a fixed “lifetime” of ω time intervals. Namely, for 1 ≤ i < |V | − ω, edge ei
will appear at the i-th time instant and disappear at the (i+ω)-th time instant. We aim
at finding a sequence of drawings Γi of the graphsGi = (V, {ej | i ≤ j < i+ω}), for
1 ≤ i < |V | −ω, showing the vertex set and the subset of the edges of the stream that
are “alive” at each time instant i, with the following two properties: (i) each drawing
Γi is planar and (ii) the drawing of the common graphsGi∩ = Gi∩Gi+1 is the same in
Γi and in Γi+1. We call such a sequence of drawings an ω-streamed drawing (ω-SD).

The introduced problem, which we call STREAMED PLANARITY (SP for short),
captures the practical need of displaying evolving relationships on the same set of
entities. As large changes in consecutive drawings might negatively affect the ability
of the user to effectively cope with the evolution of the dataset to maintain his/her
mental map, in this model only one edge is allowed to enter the visualization and only
one edge is allowed to exit the visualization at each time instant, visible edges are
represented by the same curve during their lifetime, and each vertex is represented
by the same distinct point. Thus, the amount of relational information displayed at
any time stays constant. However, the magnitude of information to be simultaneously
presented to the user may significantly depend on the specific application as well as on
the nature of the input data. Hence, an interactive visualization system would benefit
from the possibility of selecting different time windows. On the other hand, it seems
generally reasonable to consider time windows whose size is fixed during the whole
animation.

To widen the application scenarios, we consider the possibility of specifying por-
tions of a streamed graph that are alive during the whole animation. These could be,
e.g., context-related substructures of the input graph, like the backbone network of
the Internet (where edges not in the backbone disappear due to faults or congestion
and are later replaced by new ones), or sets of edges directly specified by the user.
We call this variant of the problem STREAMED PLANARITY WITH BACKBONE (SPB
for short) and the sought sequence of drawings an ω-streamed drawing with backbone
(ω-SDB).

Related Work. The problem is similar to on-line planarity testing [DT96b], where
one is presented a stream of edge insertions and deletions and has to answer queries
whether the current graph is planar. Brandes et al. [BDD+12] study the closely re-
lated problem of computing planar straight-line grid drawings of trees whose edges
have a fixed lifetime under the assumption that the edges are presented one at a time
and according to an Eulerian tour of the tree. The main difference, besides using topo-
logical rather than straight-line drawings, is that in our model the sequence of edges
determining the streamed graph is known in advance and no assumption is made on

i
i

“thesis” — 2015/4/29 — 21:44 — page 289 — #301 i
i

i
i

i
i

11.1. INTRODUCTION 289

the nature of the stream.
It is worth noting that the SP problem can be conveniently interpreted as a variant

of the much studied SIMULTANEOUS EMBEDDING WITH FIXED EDGES (SEFE)
problem (see [BKR13b] for a recent survey). In short, an instance of SEFE consists of
a sequence of graphs G1, . . . , Gk, sharing some vertices and edges, and the task is to
find a sequence of planar drawings Γi of Gi such that Γi and Γj coincide on Gi ∩Gj .
It is not hard to see that deciding whether a streamed graph is ω-stream planar is
equivalent to deciding whether the graphs induced by the edges of the stream that
are simultaneously present at each time instant admit a SEFE. Unfortunately, positive
results on SEFE mostly concentrate on the variant with k = 2, whose complexity
is still open, and the problem is NP-hard for k ≥ 3 [GJP+06]. However, while the
SEFE problem allows the edge sets of the input graphs to significantly differ from
each other, in our model only small changes in the subsets of the edges of the stream
displayed at consecutive time instants are permitted. In this sense, the problems we
study can be seen as an attempt to overcome the hardness of SEFE for k ≥ 3 to enable
visualization of graph sequences consisting of several steps, when any two consecutive
graphs exhibit a strong similarity.

We note that the ω-stream planarity of the stream e1, . . . , em on vertex set V
and backbone edges S is equivalent to the existence of a drawing of the (multi)graph
G∪ = (V, {e1, . . . , em}∪S) such that (i) two edges cross only if neither of them is in
S and (ii) if ei and ej cross, then |i−j| ≥ ω. As such the problem is easily seen to be a
special case of the WEAK REALIZABILITY problem, which given a graphG = (V,E)
and a symmetric relation R ⊆ E ×E asks whether there exists a topological drawing
ofG such that no pair of edges inR crosses. It follows that SP and SPB are contained
in NP [SSS03]. For ω = 1, the problem amounts to finding a drawing of G∪,
where a subset of the edges, namely the edges of S, are not crossed. This problem
has recently been studied under the name PARTIAL PLANARITY [Sch14]; see also
Chapter 10 and [ABD+13]. In Chapter 10 and in [ABD+13] the focus is mostly on
the geometric version of the STREAMED PLANARITY WITH BACKBONE problem for
ω = 1, but it is also noted that the topological variant of this problem can be solved
efficiently if the non-crossing edges form a 2-connected graph (see Section 10.4).
Recently Schaefer [Sch14] gave an O((nm)3)-time testing algorithm for the general
case of PARTIAL PLANARITY exploiting a Hanani-Tutte-style approach. He further
suggests to view the relation R of an instance of WEAK REALIZABILITY [Kra98,
KLN91] as a conflict graph on the edges of the input graph and to study the complexity
subject to structural constraints on this conflict graph.

i
i

“thesis” — 2015/4/29 — 21:44 — page 290 — #302 i
i

i
i

i
i

290 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

P

NPC

Upward

ec-planar
with free

edges

Partial
Rotation

(with flips)

Partitioned
T -coherent

3-page

Outer

ec-planar

Partially
Embedded

Partial
rotation

SEFE-3

Radial
Level

Upward
(Embedded)

?

P
Book

Standard

Partitioned
3-Page

MaxSEFE

Partitioned
2-page

Weak
realizability

Weak
realizability

[Th. 11.1]

[Th. 11.2]

[Th. 11.4 & Sch14]

SEFE

Clustered
level (cl)

Strip

〈α, β, γ〉-
drawings

Strip
(Embedded)

T -level

Proper
T -level

Clustered
level (cl)

T -level

Clustered (c)

Partitioned
T -coherent

2-page
(C-SEFE-2)

SEFE-2

Streamed
Backbone

Partial
Planarity

PStreamed
Planarity

Level

Proper
Clustered

Level

Figure 11.1: View of the schema proposed in the Introduction in which the contribu-
tions of this chapter are highlighted by using the red color.

Our Contributions. In this work, we study the complexity of the SP and SPB prob-
lems. See Fig. 0.1 in the Introduction and Fig. 11.1 in which the contributions of this
chapter are highlighted. In particular, we show the following results.

1. SPB is NP -complete for all ω ≥ 2 when the backbone graph is a spanning
tree.

2. There is a constant ω0 such that SP with window size ω0 is NP -complete.
3. We give an efficient algorithm with running timeO(n+ωm) for SPB when the

i
i

“thesis” — 2015/4/29 — 21:44 — page 291 — #303 i
i

i
i

i
i

11.2. NOTATION AND PRELIMINARIES 291

backbone graph consists of one 2-connected component plus, possibly, isolated
vertices and no stream edge connects two isolated vertices.

4. We give an efficient algorithm for SPB with running time O(n+m) for ω = 1.
It is worth pointing out that the second hardness result shows that WEAK REALIZ-
ABILITY is NP -complete even if the conflict graph describing the non-crossing pairs
of edges has bounded degree, i.e., every edge may not be crossed only by a constant
number of other edges. In particular, this rules out the existence of FPT algorithms
with respect to the maximum degree of the conflict graph unless P = NP .

For the positive results, note that the structural restrictions on the variant for arbi-
trary values of ω are necessary to overcome the two hardness results and are hence,
in a sense, best possible. Moreover, the algorithm for ω = 1 improves the previ-
ously best algorithm for PARTIAL PLANARITY by Schaefer [Sch14] (with running
time O((nm)3)-time) to linear. Again, since the problem is hard for all ω ≥ 2, this
result is tight.

11.2 Notation and Preliminaries

In this section we introduce some notations and definitions which will be useful
through the chapter.

Given a (k−1)-connected graph G with k ≥ 1, we denote by k(G) the number of
its maximal k-connected subgraphs. Recall that, the maximal 2-connected subgraphs
are called blocks. Also, a k-connected component is trivial if it consists of a single
vertex.

Contracting an edge (u, v) in a graph G to a new vertex w is the operation of first
removing vertices u and v together with their incident edges fromG, then adding toG
vertex w and making it adjacent to all the edges u and v used to be adjacent to, except
for edge (u, v), and finally removing multi-edges.

Let G be a planar graph and let E be a planar embedding of G. Further, let H be
a subgraph of G. We denote by E|H the embedding of H determined by E .

For the convenience of the reader, we recall the definition of simultaneous embed-
ding with fixed edges (SEFE) for an arbitrary set 〈Gi(V,Ei)〉ki=1 of k planar graphs
on the same set V of vertices. A SEFE of graphs 〈G(V,Ei)〉ki=1 consists of k planar
embeddings 〈Ei〉ki=1 such that Ei|Gij = Ej |Gij , with Gij = (V,Ei ∩ Ej) for i 6= j.
The SEFE problem corresponds to the problem of deciding whether the input graphs
〈Gi(V,Ei)〉ki=1 admit a SEFE. As described in Section 3.2, if all graphs share the
same set of edges (sunflower intersection), that is, the graph G∩ = (V,Ei ∩ Ej) is
the same for every i and j, with 1 ≤ i < j ≤ k, the problem is called SUNFLOWER
SEFE and graph G∩ is the common graph.

i
i

“thesis” — 2015/4/29 — 21:44 — page 292 — #304 i
i

i
i

i
i

292 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

e1

e2

e4

e5

e3

(a)

e1

e3

e4

e5
e2

(b)

Figure 11.2: Illustration of an instance 〈G(V, S), E,Ψ〉 of SPB with ω = 2, where G
is a 2-connected graph, E = {ei : 1 ≤ i ≤ 5}, and Ψ(ei) = i. Solid edges belong to
G. (a) and (b) show different embeddings of G and assignments of the edges in E to
the faces of such embeddings. (a) determines a 2-SDB of 〈G(V, S), E,Ψ〉, while (b)
does not.

In the following, we denote a streamed graph by a triple 〈G(V, S), E,Ψ〉 such that
G(V, S) is a planar graph, called backbone graph, E ⊆ V 2 \ S is the set of edges of
a stream e1, e2, . . . , em, and Ψ : E ↔ {1, . . . ,m} is a bijective function that encodes
the ordering of the edges of the stream. Given an instance I = 〈G(V, S), E,Ψ〉 of
SP, we call graph G∪ = (V, S ∪ E) the union graph of I . Observe that, if G∪ has
k connected components, then I can be efficiently decomposed into k independent
smaller instances, whose Streamed Planarity can be tested independently. Hence, in
the following we will only consider streamed graphs with connected union graph.
Also, we denote by Q the set of isolated vertices of G.

Note that, an obvious necessary condition for a streamed graph 〈G(V, S), E,Ψ〉 to
admit an ω-SDB is the existence of a planar combinatorial embedding E of the back-
bone graph G such that the endpoints of each edge of the stream lie on the boundary
of the same face of E , as otherwise a crossing between an edge of the stream and an
edge of G would occur. However, since each edge of the stream must be represented
by the same curve at each time, this condition is generally not sufficient, unless ω = 1;
see Fig. 11.2.

11.3 Complexity

In the following we study the computational complexity of testing planarity of streamed
graphs with and without a backbone graph. First, we show that SPB isNP -complete,
even when the backbone graph is a spanning tree and ω = 2. This implies that SUN-

i
i

“thesis” — 2015/4/29 — 21:44 — page 293 — #305 i
i

i
i

i
i

11.3. COMPLEXITY 293

FLOWER SEFE is NP -complete for an arbitrary number of input graphs, even if
every graph contains at most ξ = 2 exclusive edges. Second, we show that SP is
NP -complete even for a constant window size ω. This also has connections to the
fundamental WEAK REALIZABILITY problem. Namely, Theorem 11.2 implies the
NP -completeness of WEAK REALIZABILITY even for instances 〈G(V,E), R〉 such
that the maximum number of occurrences θ of each edge of E in the pairs of edges in
R is bounded by a constant, i.e., for each edge there is only a constant number θ of
other edges it may not cross.

These results imply that, unless P=NP, no FPT algorithm with respect to ω, to ξ,
or to θ exists for STREAMED PLANARITY (WITH BACKBONE), SEFE, and WEAK
REALIZABILITY problems, respectively.

Theorem 11.1 SPB is NP -complete for ω ≥ 2, even when the backbone graph is a
tree and the edges of the stream form a matching.

Proof: The membership inNP follows from [SSS03]. TheNP -hardness is proved
by means of a polynomial-time reduction from problem SUNFLOWER SEFE, which
has been proved NP -complete for k = 3 graphs, even when the common graph is a
tree T and the exclusive edges of each graph only connect leaves of the tree [ADN14].

Given an instance 〈Gi(V,Ei)〉3i=1 of SUNFLOWER SEFE, we construct a streamed
graph 〈G(V, S), E,Ψ〉 that admits an ω-SDB for ω = 2 if and only if 〈Gi(V,Ei)〉3i=1

is a positive instance of SUNFLOWER SEFE, as follows. To simplify the construction,
we first replace instance 〈Gi(V,Ei)〉3i=1 of SUNFLOWER SEFE with an equivalent
instance in which the exclusive edges in E1 ∪E2 ∪E3 form a matching, by applying
the technique described in [ADF+12]. Then, we perform the reduction starting from
such a new instance. Refer to Fig. 11.3.

First, set G = T . Then, for i = 1, 2, 3 and for each edge e = (u, v) ∈ Ei, add
to G a star graph2 S(ue) with leaves u1

e, . . . , u
q
e and a star graph S(ve) with leaves

v1
e , . . . , v

q
e with q = |Ei| − 1, and identify the center of S(ue) with u and the center

of S(ve) with v, respectively. Also, consider the vertex ρ of G corresponding to
any internal node of T , add to G vertices si, for i = 1, . . . , 6 (sentinel leaves), and
connect each of such vertices to ρ. Observe that, by construction, G is a tree and
T ⊂ G. The sentinel edges will serve as endpoints of edges of the stream, called
sentinel edges, used to split the stream in three substreams in such a way that no edge
of one substream is alive together with an edge of a different substream.

Further, set E can be constructed as follows. For i = 1, 2, 3 and for each pair
〈l,m〉 of edges in Ei, add to E an edge lm = (ual , v

a
l) between a leaf of S(ul) and

2A star graph is a tree with one internal node, called the central vertex of the star, and k leaves.

i
i

“thesis” — 2015/4/29 — 21:44 — page 294 — #306 i
i

i
i

i
i

294 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

em
el

ul um vlvm

ρ

en

(a)

lm

ml

vlvmumul

ρ

mn
nl nm

ln

un vn

s1 s6
. . .

(b)

Figure 11.3: Illustration for the proof of Theorem 11.1. (a) Instance 〈Gi(V,Ei)〉3i=1.
(b) Partial representation of instance 〈G(V, S), E,Ψ〉 containing the edges of G and
the edges of the stream constructed starting from pairs of edges ofE3. Edges of T and
G are black, edges of G1, G2, and G3 are solid red, dashed blue, and dotted green,
respectively.

a leaf of S(vl) and an edge ml = (ubm, v
b
m) between a leaf of S(um) and a leaf of

S(vm), respectively, for some a, b ∈ 1, 2, . . . , |Ei| − 1, in such a way that no two
edges in E are incident to the same leaf of G. Observe that, by construction, E is a
matching. Also, add to E edges (s1, s2), (s3, s4), and (s5, s6) (sentinel edges).

Function Ψ can be defined as follows. First, we construct an auxiliary ordering
σ = eh, . . . , eg of the edges in E, then we just set Ψ(e) = σ(e), for any edge e ∈ E,
where σ(e) denotes the position of e in σ. To obtain σ, we consider sets E1, E2,
and E3 in this order and perform the following two steps. STEP 1: for each pair
〈l,m〉 of edges in Ei, add to σ edge lm and edge ml. STEP 2: add to σ the sentinel
edge (v2(i−1)+1, u2(i−1)+2). Observe that, by construction, each common graph Gi∩
contains the edges of G plus at most two edges lm and ml of the stream with l,m ∈
Ei, for some i ∈ {1, 2, 3}.

Observe that, the reduction can be easily performed in polynomial time.
We now shot that 〈Gi(V,Ei)〉3i=1 admits a SEFE if and only if instance

〈G(V, S), E,Ψ〉 admits an ω-SDB for ω = 2.
Suppose that 〈Gi(V,Ei)〉3i=1 admits a SEFE 〈Ei〉3i=1. Let H be the embedding of

the common graph T in 〈Ei〉3i=1, that is, H = E1|T = E2|T = E3|T . We construct a
planar embedding E of G by defining the rotation scheme of each non-leaf vertex of

i
i

“thesis” — 2015/4/29 — 21:44 — page 295 — #307 i
i

i
i

i
i

11.3. COMPLEXITY 295

G, as follows.
If v is not a leaf of T , then the rotation scheme of v in E is equal to the rotation

scheme of v in H. If v = ul (v = vl) is the unique neighbor of of any leaf vertex of
G, then the rotation scheme of ul (vl) can be chosen in such a way that the ordering of
the leaves of G that are adjacent to ul (vl) is the reverse of the ordering of the leaves
of G that are adjacent to vl (ul), where the leaves of G that are adjacent to ul (vl)
and to vl (ul) are identified by the corresponding apex. We claim that the constructed
embedding E of G yields an ω-SDB of 〈G(V, S), E,Ψ〉 for ω = 2. Let O be the
circular ordering of the leaves of T determined by an Eulerian tour of T in H. Also,
let O′ be the circular ordering of the leaves of G determined by an Eulerian tour of G
in E . Suppose that there exist two edges xy and yx with |Ψ(xy) − Ψ(yx)| < ω = 2
such that the endpoints uix and vix of edge xy and the endpoints ujy and vjy of edge yx
alternate in O′. This implies that the unique neighbors ux of uix, vx of vix, uy of ujy ,
and vy of vjy in T alternate in O. This, in turn, implies a crossing between the two
edges x and y of some set Ei. Hence, contradicting the fact that 〈Ei〉3i=1 is a SEFE.

Suppose that 〈G(V, S), E,Ψ〉 admits an ω-SDB for ω = 2. Let E be the planar
embedding of G in any ω-SDB of 〈G(V, S), E,Ψ〉. Let O be the ordering of the
leaves of G in an Eulerian tour of G in E . Also, let O′ of the ordering of the leaves
of T in an Eulerian tour of T in the embedding H = E|T . We claim that H yields
a SEFE of 〈Gi(V,Ei)〉3i=1. Suppose that there exist two edges x = (ux, vx) and
y = (uy, vy) of some set Ei whose endpoints alternate in O′. Consider the two edges
xy = (upx, v

p
x) and yx = (uqy, v

q
y) of E, with 1 ≤ p ≤ |E∗i |−1 and 1 ≤ q ≤ |E∗i |−1.

Since the sets of leaves of S(ux), S(vx), S(uy), and S(vy) appear in O in the same
order as the vertices ux, vx, uy , and vy appear in O′, the endpoints of xy and yx
alternate in O′. Further, by construction, it holds that either Ψ(xy) = Ψ(yx) + 1 or
Ψ(yx) = Ψ(xy) + 1, that is, either edge xy immediately precedes edge yx in the
stream or edge yx immediately precedes edge xy in the stream. The above facts then
imply a crossing between edge xy and yx of the stream. Hence, contradicting the
hypothesis that 〈G(V, S), E,Ψ〉 admits an ω-SDB for ω = 2.

The above discussion proves the statement for ω = 2. To extend the theorem to
any value of ω ≥ 2 it suffices to augment 〈G(V, S), E,Ψ〉 with additional sentinel
leaves and sentinel edges. This concludes the proof of the theorem. 2

Theorem 11.2 There is a constant ω0 such that deciding whether a given streamed
graph is ω0-stream planar is NP -complete.

Proof: The membership in NP follows from [SSS03]. In the following we de-
scribe a reduction that, given a 3-SAT formula ϕ, produces a streamed graph that is
ω0-stream planar if and only if ϕ is satisfiable.

i
i

“thesis” — 2015/4/29 — 21:44 — page 296 — #308 i
i

i
i

i
i

296 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

To make things simple, we do not describe the stream, but rather important keyframes.
Our construction has the property that edges have a FIFO behavior, i.e., if edge e ap-
pears before edge f , then also e disappears before f . This, together with the fact that
in each key frame onlyO(1) edges are visible ensures that the construction can indeed
be encoded as a stream with window size O(1). The value ω0 we use is simply the
maximum number of visible edges in any of the key frames. We do not take steps
to further minimize ω0, but even without this, the value produced by the reduction is
certainly less than 120, as we estimate at the end of the proof. Sometimes, we wish
to wait until a certain set of edges has disappeared. In this case we insert sufficiently
many isolated edges into the stream, which does not change the ω0-planarity of the
stream.

We now sketch the construction. It consists of two main pieces. The first is a cage
providing two faces called cells, one for vertices representing satisfied literals and one
for vertices representing unsatisfied literals. We then present a clause stream for each
clause of ϕ. It contains one literal vertex for each literal occurring in the clause and it
ensures that these literal vertices are distributed to the two cells of the cage such that
at least one goes in the cell for satisfied literals. Throughout we ensure that none of
the previously distributed vertices leaves the respective cell.

Second, we present a sequence of edges that is ω0-stream planar if and only if the
previously chosen distribution of the literal vertices forms a truth assignment. This is
the case if and only if any two vertices representing the same literal are in the same
cell and any two vertices representing complementary literals of one variable are in
distinct cells.

It is clear that, if the constructions work as described, then the resulting streamed
graph is ω0-stream planar if and only if ϕ is satisfiable. The first part of the stream
ensure that from each clause one of the literals must be assigned to the cell containing
satisfied literals (i.e. the literal receives the value true). The second part ensures that
these choices are consistent over all literals, i.e., these choices actually correspond to
a truth assignment of the variables.

Our first step will be the construction of the cage containing the two cells. Since
the cage needs to persist throughout the whole sequence, it must be constructed in such
a way that it can be “kept alive” over time by presenting new edges. Note that it does
not suffice to repeatedly present edges that are parallel to existing ones, as they may
be embedded differently, and hence over time allow isolated vertices to move through
obstacles; see Fig. 11.4. We first present a construction that behaves like an edge that
can be “renewed” without changing its drawing too much. We call it persistent edge.

Let u and v be two vertices. A persistent edge between u and v consists of the
four vertices a, b, c, d, each lying on a path of length 2 from u to v. Additionally, a
is connected to b and b is connected to c. Initially, we also have insert the edge b, c

i
i

“thesis” — 2015/4/29 — 21:44 — page 297 — #309 i
i

i
i

i
i

11.3. COMPLEXITY 297

C
x

(a)

Figure 11.4: Cycle C (solid and dashed edges) contains vertex x in its interior. The
dashed edges leave the sliding window soon. Presenting a new path (dotted) parallel
to the old path does not ensure that x ends up in the interior of the resulting cycle C ′

(solid and dotted edges).

to enforce a unique planar embedding. However, once it leaves the sliding window it
does not get replaced. Figure 11.5(a) shows a persistent edge where the thickness of
the edge visualizes the time until an edge leaves the sliding window. The thicker the
edge the longer it stays. Once the edge bc has been removed, but before any of the
other edges disappear, we present in the stream the edges ub′, vb′ and bb′ as well as
uc′, vc′ and cc′, where b′ and c′ are new vertices; see Fig. 11.5(b). Note that there is
a unique way to embed them into the given drawing. After the edges ua, av leave the
sliding window, b takes over the role of a and b′ takes over the role of b. Similarly, after
the edges ud and dv leave the sliding window, c takes over the role of d and c′ takes
over the role of c; see Fig. 11.5(c). By presenting six new edges in regular intervals,
the persistent edge essentially keeps its structure. In particular, we know at any point
in time which vertices are incident to the inner and outer face. For simplicity we will
not describe in detail when to perform this book keeping. Rather, we just assume that
the sliding window is sufficiently large to allow regular book keeping. For example,
before each of the steps described later, we might first update all persistent edges, then
present the gadget performing one of the steps, then update the persistent edges gain,
and finally wait for the gadget edges to be removed from the sliding window again.

Next, we describe the cage. Conceptually, it consists of two cycles of length 4,
on vertices a, b, c, v+ and a, b, c, v−, respectively. However, the edges are actually
persistent edges; see Fig. 11.6(a). The interior faces f+ and f− of the two cycles are
the positive and negative literal faces, respectively. Note that at any point in time only
a constant number of edges are necessary for the cage.

Before we describe the clause gadget, which is the most involved part of the con-
struction, we briefly show how to perform the test for the end of sequence. Namely,

i
i

“thesis” — 2015/4/29 — 21:44 — page 298 — #310 i
i

i
i

i
i

298 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

u v

a

b

c

d
(a)

u v

a

b

c

d

b′

c′

(b)

u v

b

c

b′

c′

(c)

Figure 11.5: A persistent edge. The thickness of the edges indicates how long the
edge stays in the sliding window. The thinner the edge the earlier it leaves the window.
(a) The initial configuration; the dashed edge bc dissolves first. It is used only once to
initially enforce a unique planar embedding. (b) New vertices b′ and c′ with neighbors
u, b, v and u, c, v, respectively, are introduced. Starting from the embedding in (a) the
embedding is uniquely defined. (c) After the edges incident to a and d disappear, the
drawing has again the same structure as in (a). Repeating this cycle hence preserves
the edge. Since edges are embedded only in the interior of the gadget vertices that are
embedded outside the persistent edge cannot traverse it.

assume that we have a set V ′ ⊆ V of literal vertices, and each of them is contained
in one of the two literal faces. More formally, for each clause ci ∈ ϕ and for each
Boolean variable x, set V ′ contains a literal vertex xi, if x ∈ ci, or a literal vertex xi,
if x ∈ ci. To check whether two literal vertices xi and xj corresponding to a variable
x are in the same face, it suffices to present an edge between them in the stream, then
wait until that edge leaves the sliding window, and continue with the next pair; see
Fig 11.6(b). Of course, in the meantime we may have to refresh the persistent edges.
Similarly, if we wish to check that literal vertices xi and xj are in distinct faces, we
make use of the fact that the two cycles forming the cage share two edges, and hence
three vertices a, b and c. We present in the stream the complete bipartite graph on the
vertices {xi, xj} and {a, b, c}. Clearly, this can be drawn in a planar way if and only
if xi and xj are in distinct faces; see Fig. 11.6(c). Again, it may be necessary to wait
until these edges leave the sliding window before the next test can be performed.

Finally, we describe our clause gadget; see Fig. 11.7 for an illustration. First,
we present the clause gadget as it is shown in Fig. 11.7(a). The literal vertices are
large and solid, their corresponding indicator vertices are represented by large empty

i
i

“thesis” — 2015/4/29 — 21:44 — page 299 — #311 i
i

i
i

i
i

11.3. COMPLEXITY 299

a b c

v+

v−

f+

f−

f0

(a)

xi xj

(b)

xi

xj

(c)

Figure 11.6: (a) The cage, the thick gray edges are persistent edges and are refreshed
at regular intervals. After presenting all clause sequences, the faces f+ and f− will
contain the literal vertices corresponding to satisfied and unsatisfied literal vertices,
respectively. (b) Edges used to check whether two literal vertices xi and xj are in the
same face. (c) Edges used to check whether literal vertices xi and xj are in distinct
faces.

disks. The edges are ordered in the stream such that the three edges connecting a
literal vertex to its indicator are presented first, i.e., they also leave the sliding window
first. The remaining three edges incident to the literals are drawn last so that they
remain present longest. Observe that the embedding of the clause without the literal
and indicator vertices is unique; we call this part of the clause the frame. Each literal
vertex may choose among two possible faces of the frame where it can be embedded.
Either close to the center or close to the boundary. The faces in the center are shaded
light gray, the faces on the boundary are shaded or tiled in a darker gray in Fig. 11.7(a).

We now first wait until the edges between literal vertices and their indicators leave
the sliding window. Now the following things happen. First, the thin dotted and
dashed edges leave the sliding window. Immediately afterwards, we present in the
stream paths of length 2 that replace these edges, so the frame essentially remains
as it is shown. However, after this step, the indicator vertex of any literal that was
embedded in the face close to the center may be in any of the faces shaded in light
gray in Fig. 11.7(b). Now, first the thick dotted edges leave the sliding window and
are immediately replaced by parallel paths. Afterwards, the thick dashed edges leave
the sliding window and are immediately replaced by parallel paths. Again, the frame
remains essentially present. This allows the indicator vertices of literals that were
embedded on the outer face to traverse into the faces indicated in Fig. 11.7(c). Note

i
i

“thesis” — 2015/4/29 — 21:44 — page 300 — #312 i
i

i
i

i
i

300 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

x

y

z

(a)

x

y

z

(b)

x

y

z

(c)

x

y

z

γx
βx

αx

γy
βyαy

γz
βz
αza b

c

v+

v−

f+

f−

p

f ′+

f ′−

(d)

p
a b

c

v+

v−

f+

f−

(e)

Figure 11.7: Illustration of the clause sequence. (a) Initial embedding of the clause.
(b), (c) faces indicator vertices can reach if they are embedded in the face close to the
center and close to the boundary, respectively. (d), separating the vertices correspond-
ing to satisfied and unsatisfied literals into two distinct faces. (e) Integrating the now
separated literal vertices into the corresponding faces of the cage.

that, if all literal vertices were embedded in the face close the boundary, then there is
no face of the frame that can simultaneously contain them at this point. If however, at
least one of them was embedded in the face close to the center, then there is at least
one face of the frame that can contain all the vertices simultaneously. We now include
in the stream a triangle on the three indicator vertices. This triangle can be drawn
without crossing edges of the frame if and only if the three vertices can meet in one
face, which is the case if and only if at least one indicator vertex, and hence also its
corresponding literal vertex, was embedded close to the center. Now we wait until the
edges of the clause, except for those incident to the literal vertices and the paths that
were renewed have vanished; see Fig. 11.7(d).

i
i

“thesis” — 2015/4/29 — 21:44 — page 301 — #313 i
i

i
i

i
i

11.3. COMPLEXITY 301

Let now p be a new vertex, and denote the neighbors of the literal vertex x by
αx, βx and γx, and similarly for y and z. We now connect v to the cage by present the
edges v−v and v+v as well as edges forming a path from c to p that, starting from p,
first visits αx, βx, γx, then αy, βy, γy , and finally αz, βz, γz . Observe that the fact that
p has disjoint paths to v−, v+ and v containing the αh, βh and γh, with h ∈ {x, y, z},
ensures that, what remains of the clause gadget must be (and hence must have been all
the time) embedded in the outer face of the cage. We assume without loss of generality
that the path containing the αh, βh and γh, with h ∈ {x, y, z}, is not incident to the
outer face. Again, we consider the edges incident to the literal vertices not as part of
the construction. Then the path is incident to precisely two faces, which are adjacent to
the literal faces of the cage. Denote the one incident to f+ by f ′+ and the one incident
to f− by f ′−; see Fig. 11.7(d). Due to the traversal, we have that a literal vertex v
is contained in f ′+ if and only if it was embedded in the face close to the center in
the clause, which means that the corresponding literal was satisfied. Otherwise, it is
embedded in f ′−. It now remains to enclose the literal vertices into the corresponding
face of the cage without letting escape any of the literal vertices already embedded
there.

First, we wait until all edges incident to the literal vertices have left the sliding
window, i.e., they become isolated. Then, we present two new persistent edges parallel
to the existing persistent edges v+c and v−c, respectively; see Fig. 11.7(e), where the
new persistent edges are shaded dark gray. To ensure that the embedded is indeed
as shown in Fig. 11.7(e), we one boundary vertex of each new persistent edge to a
vertex on the outer boundary of the persistent edge it is parallel to (dashed lines in
Fig. 11.7(e)). The new parallel edges replace the old persistent edges of the cage, and
we wait until they have dissolved. Clearly, no vertex from an internal face of the cage
can escape as the new persistent edges are embedded in the outer face of the cage. To
ensure that the literal vertices must indeed be embedded in the literal faces, we present
the edges bx, by and bz. Finally, we wait until these edges vanish again. Then we are
ready for the next clause sequence or for the final checking sequence.

The above description produces for a given 3SAT formula ϕ produces, for a suf-
ficiently large (but constant!) ω0 a stream Sϕ one some vertex set Vϕ such that ϕ
is satisfiable if and only if Sϕ is ω0-stream planar. In the first part of the stream, in
any sequence of corresponding planar embedding, the literals of each clause, repre-
sented by vertices, are transferred to two interior faces of the cage such that for each
clause at least one literal vertex is transferred to the face representing satisfied literals.
This models the fact that each clause must contain at least one satisfied literal. In the
second part, a sequence of edges is presented that is ω0-planar if and only if the pre-
viously produced distribution of literals to the positive and negative faces of the cage
corresponds to a truth assignment of the underlying variables. The construction can

i
i

“thesis” — 2015/4/29 — 21:44 — page 302 — #314 i
i

i
i

i
i

302 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

clearly be performed in polynomial time.
We now briefly estimate the window size ω0. The largest number of edges that are

simultaneously important in our construction occurs when presenting a clause gadget.
A clause gadget has 48 edges, and it is simultaneously visible with four persistent
edges, each of which may use up to 16 edges immediately after they have refreshed.
Hence a window size of ω0 = 112 suffices for the construction. 2

11.4 Algorithms for ω-Stream Drawings with Backbone

In this section, we describe a polynomial-time decision algorithm for the case that the
backbone graph consists of a 2-connected component plus, possibly, isolated vertices
with no edge of the stream connecting two isolated vertices. We call instances satis-
fying these properties star instances, as the isolated vertices are the centers of edge
disjoint star subgraphs of the union graph (see Section 11.4). Observe that, the re-
quirement of the absence of edges of the stream between the isolated vertices of a star
instance seems to be quite a natural restriction. In fact, as proved in Theorem 11.2,
dropping this restriction makes the STREAMED PLANARITY problem computation-
ally tough. This algorithm will also serve as a subprocedure to solve the SPB problem
for ω = 1 with no restrictions on the backbone graph (see Section 11.4).

Star Instances

In this section we describe an efficient algorithm to test the existence of an ω-SDB for
star instances (see Fig. 11.8(a)). The problem is equivalent to finding an embedding
E of the unique non-trivial 2-connected component β of G and an assignment of the
edges of the stream and of the isolated vertices of G to the faces of E that yield a
ω-SDB.

Lemma 11.1 Let 〈G(V, S), E,Ψ〉 be a star instance of SPB and let ω be a positive
integer window size. There exists an equivalent instance 〈Gi(V,Ei)〉m+1

i=1 of SUN-
FLOWER SEFE such that the common graph G∩ consists of disjoint 2-connected
components. Further, instance 〈Gi(V,Ei)〉m+1

i=1 can be constructed in O(n + ωm)
time.

Proof: Given a star instance 〈G(V, S), E,Ψ〉 of SPB we construct an instance
〈Gi(V,Ei)〉m+1

i=1 of SUNFLOWER SEFE that admits a SEFE if and only if instance
〈G(V, S), E,Ψ〉 admits an ω-SDB, as follows. Refer to Figs 11.8(a) and 11.8(b) for
an example of the construction.

i
i

“thesis” — 2015/4/29 — 21:44 — page 303 — #315 i
i

i
i

i
i

11.4. ALGORITHMS FOR ω-STREAM DRAWINGS WITH BACKBONE 303

e4

e1

e2

e3

(a)

v2(e2)

v3(e2)

v4(e2)

(b)

Figure 11.8: (a) A star instance with stream edges E = {ei : 1 ≤ i ≤ 4}, Ψ(ei) = i,
and ω = 3. (b) A SEFE of the instance of SUNFLOWER SEFE obtained as described
in Lemma 11.1 where G∪ is drawn with thick solid black edges, exclusive edges of
Gi are drawn with the same style as edge ei and exclusive edges of Gm+1 = G5 are
drawn as yellow solid curves. Vertices in D(e2) = {v2(e2), v3(e2), v4(e2)} are also
shown.

Initialize graph G∩ to the backbone graph G. Also, for every edge e ∈ E, add to
G∩ a set of vertices D(e) = {vi(e) | Ψ(e) ≤ i < min(Ψ(e) + ω,m + 1)}. Observe
that, since 〈G(V, S), E,Ψ〉 is a star instance, graph G∩ contains a single non-trivial
2-connected component β, plus a set of trivial 2-connected components consisting of
the isolated vertices in Q∪⋃

e∈E D(e).
For i = 1, . . . ,m, graphGi contains all the edges and the vertices ofG∩ plus a set

of edges defines as follows. For each edge e = (u, v) ∈ E such that 0 ≤ i−Ψ(e) < ω,
add to E(Gi) edges (u, vi(e)) and (vi(e), v). From a high-level view, graphs Gi,
with i = 1, . . . ,m, are defined in such a way to enforce the same constraints on the
possible embeddings of the common graph as the constraints enforced by the edges of
the stream on the possible embeddings of the backbone graph.

Finally, graph Gm+1 contains all the edges and the vertices of G∩ plus a set of
edges defined as follows. For each edge e ∈ E, add to Em+1 edges (vΨ(e)(e), vk(e)),
with Ψ(e) < k < min(Ψ(e) + ω,m+ 1). Observe that, in any planar drawing Γm+1

of Gm+1, vertices vk(e) lie inside the same face of Γm+1, for any edge e ∈ E. The
aim of graph Gm+1 is to combine the constrains imposed on the embedding of the
backbone graph by each graph Gi, with i = 1, . . . ,m, in such a way that, for each
edge e ∈ E, the edges of set D(e) are embedded in the same face of the backbone
graph.

Hereinafter, given a positive instance 〈Gi(V,Ei)〉m+1
i=1 of SEFE with the above

properties, we denote the corresponding SEFE 〈Γi〉m+1
i=1 by 〈Ei, Ai〉m+1

i=1 , where Ei

i
i

“thesis” — 2015/4/29 — 21:44 — page 304 — #316 i
i

i
i

i
i

304 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

represents the embedding of β in Γi and AEi represents the assignment of the isolated
vertices and of the exclusive edges of graph Gi in Γi to the faces of Ei, for i =
1, . . . ,m + 1. Similarly, given a positive star instance 〈G(V, S), E,Ψ〉 of SPB we
denote the corresponding ω-SDB Γ by 〈E , AE〉, where E represents the embedding
of the unique non-trivial 2-connected component β of G in Γ and AE represents the
assignment of the isolated vertices of G and of the edges of the stream to the faces
of E in Γ. More formally, AE : E ∪ Q → F (E), where F (E) denotes the set of facial
cycles of E .

Suppose that 〈Gi(V,Ei)〉m+1
i=1 is a positive instance of SEFE, that is, 〈Gi(V,Ei)〉m+1

i=1

admits a SEFE 〈Ei, Ai〉m+1
i=1 . We show how to construct a solution 〈E , AE〉 of instance

〈G(V, S), E,Ψ〉.
Since 〈Ei, Ai〉m+1

i=1 is a SEFE and β ∈ G∩, we have that Ei = Ej , with 1 ≤ i <
j ≤ m+ 1. We set the embedding E of β to E1.

Further, for every edge e ∈ E, we set AE(e) to the face of E1 vertex vΨ(e)(e)
is placed inside in Γ1, that is, AE(e) = AE1(vΨ(e)(e)). Similarly, for every isolated
vertex v ∈ Q, we set AE(v) to the face of E1 vertex v is placed inside in Γ1, that is,
AE(v) = AE1(v).

We need to prove that E is a planar embedding of β and that no crossing occurs
neither between an edge in E and an edge in β nor between two edges ei ∈ E and
ej ∈ E, with i < j and Ψ(ej) − Ψ(ei) < ω. Observe that, since 〈Ei, Ai〉m+1

i=1 is a
SEFE, the embedding Ei of β in Γi is planar. As E coincides with E1, it follows that E
is also planar. Assume that there exists a crossing between an edge e ∈ E and an edge
of β. This implies that there exists in ΓΨ(e) a path p∗ = (u, vΨ(e)(e), v) connecting
two vertices of u and v of β that are incident to different faces of EΨ(e). Further,
assume that there exists a crossing between an edge ei ∈ E and an edge ej ∈ E with
Ψ(ei) < Ψ(ej) such that Ψ(ej)−Ψ(ei) < ω inside the same face f of E . This implies
that there exists in GΨ(ei) a crossing between a path p′ = (a, . . . , vΨ(ei)(ei), . . . , b)
and p′′ = (c, . . . , vΨ(ei)(ej), . . . , d) only containing exclusive edges of GΨ(ei) such
that a, c, b, and d appear in this order in the face of EΨ(ei) corresponding to f . Thus,
both assumptions contradict the fact that 〈G(V, S), E,Ψ〉 admits an ω-SDB.

Suppose that 〈G(V, S), E,Ψ〉 admits an ω-SDB, that is, there exist a planar em-
bedding E of β and an assignment functionAE : E∪Q → F (E) such that, for any two
paths p′ = (a, . . . , b) and p′′ = (c, . . . , d) with {a, b, c, d} ∈ β and Ψ(ej)−Ψ(ei) <
ω, for every edge ei ∈ p′ and ej ∈ p′′ with i < j, it holds that AE(ei) 6= AE(ej). We
show how to construct a SEFE 〈Ei, Ai〉m+1

i=1 of 〈Gi(V,Ei)〉m+1
i=1 .

For i = 1, . . . ,m + 1, we set the embedding Ei of β to E . For i = 1, . . . ,m + 1
and for each edge e ∈ E, we assign each vertex vk(e) ∈ D(e) to the face of Ei
that corresponds to the face of E edge e is assigned to, that is, AEi(vk(e)) = AE(e).

i
i

“thesis” — 2015/4/29 — 21:44 — page 305 — #317 i
i

i
i

i
i

11.4. ALGORITHMS FOR ω-STREAM DRAWINGS WITH BACKBONE 305

Also, for each edge e = (u, v) ∈ E, we assign edges (u, vk(e)) and (vk(e), v) to
face AEk(vk(e)), with Ψ(e) ≤ k < min(Ψ(e) + ω,m + 1). Further, for each edge
e = (u, v) ∈ E, we assign edges (vΨ(e), vk(e)) to face AEm+1

(vk(e)), with Ψ(e) <
k < min(Ψ(e) +ω,m+ 1). Finally, for i = 1, . . . ,m+ 1 and for each vertex v ∈ Q,
we set AEi(v) = AE(v).

In order to prove that 〈Ei, Ai〉m+1
i=1 is a SEFE of 〈Gi(V,Ei)〉m+1

i=1 we show that (i)
Ei is a planar embedding of β ∈ Gi (ii) all embeddings Ei coincide, (ii) there exists
no crossing in Γi involving the exclusive edges of any graph Gi, and (iv) each iso-
lated vertex v of G∩ is such that AEi(v) = AEj (v), with i 6= j. Since E is planar
by hypothesis and since Ei = E , condition (i) is trivially verified. Further, by con-
struction, conditions (ii) and (iv), are also satisfied. Assume that condition (iii) does
not hold. In this case, either an exclusive edge (vi(e), w) of Gi crosses an edge of
β or there exists a crossing between two exclusive edges (vi(e1), p) and (vi(e2), q)
of Gi inside the same face of Ei. In the former case, there must exists in Gi a path
p0 = (a, vi(e), b) composed of exclusive edges ofGi connecting two vertices a, b ∈ β
(not necessarily different from w) that lie on the boundary of different faces of Ei.
However, this would imply that G∪ contains a path p∗0 = (a, . . . , b) containing edge
e and only consisting of edges ek with 0 ≤ i − Ψ(ek) < ω, whose endpoints a and
b lie on different faces of E . In the latter case, there must exist two vertex-disjoint
paths p1 = (a, . . . , vi(e1), . . . , b) and p2 = (c, . . . , vi(e2), . . . , d) of exclusive edges
of Gi contained in a face f of Ei connecting vertices a, b ∈ f and c, d ∈ f , respec-
tively, such that a, c, b, and d appear in this order along f . However, this would imply
that G∪ contains two paths p∗1 = (a, . . . , b) and p∗2 = (c, . . . , d) with endpoints in
β containing edges e1 and e2, respectively, and only containing edges ek in E with
0 ≤ i − Ψ(ek) < ω that lie inside the face f∗ of E corresponding to face f of Ei
and whose endpoints alternate along the boundary of f∗. Thus, both assumptions
contradict the fact that 〈G(V, S), E,Ψ〉 admits an ω-SDB.

It is easy to see that instance 〈Gi(V,Ei)〉m+1
i=1 can be constructed in time O(n +

ωm). In fact, the construction of the common graph G∩ takes O(n)-time, since the
backbone graph G is planar. Also, each graph Gi can be encoded as the union of a
pointer to the encoding of G∩ and of the encoding of its exclusive edges. Further,
each graph Gi, with i = 1, . . . ,m, has at most ω exclusive edges, and graph Gm+1

has at most ωm exclusive edges. This concludes the proof of the lemma. 2

Lemma 11.1 provides a straight-forward technique to decide whether a star in-
stance 〈G(V, S), E,Ψ〉 of SPB admits a ω-SDB. First, transform instance
〈G(V, S), E,Ψ〉 into an equivalent instance 〈Gi(V,Ei)〉m+1

i=1 of SEFE ofm+1 graphs
with sunflower intersection and such that the common graph consists of disjoint 2-
connected components, by applying the reduction described in the proof of Lemma 11.1.

i
i

“thesis” — 2015/4/29 — 21:44 — page 306 — #318 i
i

i
i

i
i

306 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

Then, apply to instance 〈Gi(V,Ei)〉m+1
i=1 the algorithm by Bläsius et al. [BKR13a] that

tests instances of SEFE with the above properties in linear time. Thus, we obtain the
following theorem.

Theorem 11.3 Let 〈G(V, S), E,Ψ〉 be an star instance of SPB. There exists anO(n+
ωm)-time algorithm to decide whether 〈G(V, S), E,Ψ〉 admits an ω-SDB.

Unit window size

In this section we describe a polynomial-time algorithm to test whether an instance
〈G(V, S), E,Ψ〉 of SPB admits an ω-SDB for ω = 1. Observe that, in the case
in which ω = 1, the SPB problem equals to the problem of deciding whether an
embedding of the backbone graph exists such that the endpoints of each edge of the
stream lie on the boundary of the same face of such an embedding.

Let G1, . . . ,G1(G) be the connected components of the backbone graph G. Given
an embedding E of G, we define the set F (E) of facial cycles of E as the union of
the facial cycles of the embeddings Ei = E|Gi of each connected component Gi of
G in E . We first prove an auxiliary lemma which allows us to focus our attention
only on instances whose backbone graph contains at most one non-trivial connected
component.

Lemma 11.2 Let 〈G(V, S), E,Ψ〉 be an instance of SPB. There exists a set of in-
stances 〈G(Vi, Si), Ei,Ψi〉 whose backbone graph G(Vi, Si) contains at most one
non-trivial connected component Gi such that 〈G(V, S), E,Ψ〉 admits a ω-SDB with
ω = 1 if and only if all instances 〈G(Vi, Si), Ei,Ψi〉 admit a ω-SDB with ω = 1.
Further, such instances can be constructed in O(n+m) time.

Proof: We construct instances 〈G(Vi, Si), Ei,Ψi〉 starting from G∪ in two steps.
To ease the description, we assume that each vertex v ∈ V is initially associated with
an index l(v) corresponding to the connected component of G vertex v belongs to,
that is, l(v) = i if v ∈ V (Gi). First, we recursively contract each edge (u, v) of G∪
with {u, v} ⊆ V (Gi) to a single vertex w and set l(w) = i, for i = 1, . . . , 1(G).
Thus, obtaining an auxiliary graph H on 1(G) vertices. Then, we obtain instances
〈G(Vi, Si), Ei,Ψi〉 fromH by recursively uncontracting each vertexw with l(w) = i,
for i = 1, . . . , 1(G). Note that, by construction, Gi ⊆ G(Vi, Si).

Observe that, the construction of H requires O(n + m) time. Further, the con-
struction of each instance 〈G(Vi, Si), Ei,Ψi〉 can be performed in O(ni + mi) time,
where ni = |V (Gi)| and mi is the number of edges in E that are incident to a vertex
of Gi, which sums up to O(n+m) time in total for all 1 ≤ i ≤ 1(G). Thus, proving
the O(n+m) running time of the construction.

i
i

“thesis” — 2015/4/29 — 21:44 — page 307 — #319 i
i

i
i

i
i

11.4. ALGORITHMS FOR ω-STREAM DRAWINGS WITH BACKBONE 307

The necessity is trivial. In order to prove the sufficiency, assume that all instances
〈G(Vi, Si), Ei,Ψi〉 admit a ω-SDB for ω = 1. Intuitively, a 1-SDB Γ of the original
instance can be obtained, starting from a 1-SDB Γi of any 〈G(Vi, Si), Ei,Ψi〉, by
recursively replacing the drawing of each isolated vertex vj ∈ Qi with the 1-SDB Γj
of 〈G(Vj , Sj), Ej ,Ψj〉 (after, possibly, promoting a different face to be the outer face
of Γj) . For a complete example, see Fig. 11.9.

The fact that Γ is a 1-SDB of 〈G(V, S), E,Ψ〉 derives from the fact that each Γi is
a 1-SDB of 〈G(Vi, Si), Ei,Ψi〉, that in a 1-SDB crossings among edges in E do not
matter, and that, by the connectivity of the union graph, the assignment of the isolated
vertices in Qi to the faces of the embedding Ei of Gi in Γi must be such that any two
isolated vertices connected by a path of edges of the streamEi lie inside the same face
of Ei. In the following, we prove this direction more formally.

We denote by (Ei, CEi) the solution of instance 〈G(Vi, Si), Ei,Ψi〉, where Ei is
a planar embedding of Gi and CEi : F (Ei) → 2Qi is an assignment of the set of
isolated vertices Qi of G(Vi, Si) to the set of faces of Ei, denoted by F (Ei). We
now show how to extend the solutions (Ei, CEi) of instances 〈G(Vi, Si), Ei,Ψi〉, with
i = 1, . . . , 1(G), to a solution 〈E , CE〉 of instance 〈G(V, S), E,Ψ〉, where E is a
planar embedding of G defining the set of facial cycles and CE : F (E)→ 2{1,...,1(G)}

is an assignment of the connected components of G to the faces of E .
To obtain E , we set the rotation scheme of each vertex v of G in E to the rotation

scheme of v in the embedding Ei of the component Gi of the backbone graph G con-
taining v. Clearly, the set of facial cycles F (E) of E is equal to the union of the set of
facial cycles of each Ei, that is, for each face f ∈ E , we have that f belongs to Ei for
some 1 ≤ i ≤ 1(G).

The assignment function CE can be defined as follows. Initialize CE(f) = ∅,
for each facial cycle f in F (E). Then, consider each pair of connected components
Gi and Gj of the backbone graph and, for each facial cycle f in F (E) ∩ F (Ej), set
CE(f) = CE(f) ∪ i if i ∈ CEj (f).

We now prove that (E , CE) is a solution for 〈G(V, S), E,Ψ〉. Since each Ei is
a planar embedding, then E is also planar. We just need to prove that for every
two faces f ′ and f ′′ of E either (i) CE(f ′) ⊆ CE(f ′′), or (ii) CE(f ′′) ⊆ CE(f ′),
or (iii) CE(f ′) ∩ CE(f ′′) = ∅. Clearly, if f ′, f ′′ ∈ Ei for some i, exactly one
of (i), (ii), and (iii) must hold, as otherwise (Ei, CEi) would not be a solution of
〈G(Vi, Si), Ei,Ψi〉. We prove that there exist no f ′ ∈ Ei and f ′′ ∈ Ej with i 6= j such
that neither (i), (ii), or (iii) holds. We distinguish three cases according to whether
j ∈ CEi(f

′), or i ∈ CEj (f
′′), or j /∈ CEi(f

′) ∧ i /∈ CEj (f
′′). By the connectivity

of the union graphs of each instance and by the fact that (Ei, CEi) and (Ej , CEj) are
ω-SDB of 〈G(Vi, Si), Ei,Ψi〉 and 〈G(Vj , Sj), Ej ,Ψj〉, respectively, we have that:
(i) must hold, if i ∈ CEj (f

′′); (ii) must hold, if j ∈ CEi(f
′); and (iii) must hold,

i
i

“thesis” — 2015/4/29 — 21:44 — page 308 — #320 i
i

i
i

i
i

308 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

G1

G2 G3

G4

I

(a)

I1
G1

G2 G3

G4

(b)

Γ1

G2

G1
G4

G3

(c)

I2

G3

G1

G2

G4

(d)

Γ2

G2

G1

G3

G4

(e)

I3

G2

G1

G3G4

(f)

Γ3

G4 G3

G1

G2

(g)

I4 G1

G2

G4

G3

(h)

Γ4

G4

G1

G3

G2

(i)

Γ12 G2

G4G1

G3

(j)

Γ123

G3

G2

G4

G1

(k)

Γ1234 G2

G1 G4
G3

(l)

Figure 11.9: (a) Instance I = 〈G(V, S), E,Ψ〉 of SPB with ω = 1, where G consists
of 4 connected components G1, G2, G3, and G4. Edges of the backbone graph are black
thick curves. Edges of the stream are green thin curves. Instances I1 (b), I2 (d), I3 (f),
and I4 (h) obtained by applying the procedure described in the proof of Lemma 11.2
to instance I . 1-SDB Γ1 (c), Γ2 (e), I3 (g), and I4 (i) of instances I1, I2, I3, and I4,
respectively. (j) 1-SDB Γ12 obtained by replacing the drawing of G2 in Γ1 with Γ2.
(k) 1-SDB Γ123 obtained by replacing the drawing of G3 in Γ12 with Γ3. (l) 1-SDB
Γ1234 obtained by replacing the drawing of G4 in Γ123 with Γ4.

if j /∈ CEi(f ′) ∧ i /∈ CEj (f ′′). This concludes the proof of the lemma. 2

i
i

“thesis” — 2015/4/29 — 21:44 — page 309 — #321 i
i

i
i

i
i

11.4. ALGORITHMS FOR ω-STREAM DRAWINGS WITH BACKBONE 309

By Lemma 11.2, in the following we only consider the case in which the back-
bone graph consists of a single non-trivial connected component plus, possibly, iso-
lated vertices. We now present a simple recursive algorithm to test instances with this
property.

Algorithm ALGOCON.

◦ INPUT: an instance I = 〈G(V, S), E,Ψ〉 of the SPB problem with ω = 1 with
union graph G∪ such that G contains at most one non-trivial connected compo-
nent.

◦ OUTPUT: YES, if 〈G(V, S), E,Ψ〉 is positive, or NO, otherwise.

BASE CASE 1: instance I is such that 2(G) = 0, that is, every connected com-
ponent of G is an isolated vertex. Return YES, as instances of this kind are trivially
positive.

BASE CASE 2: instance I is such that (i) 2(G) = 1, that is, the backbone graph
G consists of a single 2-connected component plus, possibly, isolated vertices and
(ii) no edge of the stream connects any two isolated vertices. In this case, apply the
algorithm of Theorem 11.3 to decide I and return YES, if the test succeeds, or NO,
otherwise.

RECURSIVE STEP: instance I is such that either (CASE R1) 2(G) = 1 and
there exists edges of the stream between pairs of isolated vertices or (CASE R2)
2(G) > 1. First, replace instance I with two smaller instances I� = 〈G(V�, S�), E�,Ψ�〉
and I◦ = 〈G(V◦, S◦), E◦,Ψ◦〉, as described below. Then, return YES, if it holds that
ALGOCON(I�) = ALGOCON(I◦) = YES, or NO, otherwise.

CASE R1. Instance I� is obtained from I by recursively contracting every edge (u, v)
of G∪ with {u, v} * V (G). Instance I◦ is obtained from I by recursively
contracting every edge (u, v) of G∪ with {u, v} ⊆ V (G).

CASE R2. Let G be the unique non-trivial connected component of G, let T be the
block-cutvertex tree of G rooted at any block, and let β be any leaf block in T .
Also, let v be the parent cutvertex of β in T . We first construct an auxiliary
equivalent instance I∗ = 〈G(V∗, S∗), E∗,Ψ∗〉 starting from I and then obtain
instances I� and I◦ from I∗, as follows. See Fig. 11.10 for an illustration of the
construction of instance I∗. Initialize I∗ to I . Replace vertex v in V∗ with two
vertices v′ and v′′ and make (i) v′ adjacent to all the vertices of β vertex v used
to be adjacent to and (ii) v′′ adjacent to all the vertices in V (G) \ V (β) vertex v
used to be adjacent to. Then, replace each edge (v, x) ofE∗ with edge (v′, x), if

i
i

“thesis” — 2015/4/29 — 21:44 — page 310 — #322 i
i

i
i

i
i

310 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

v

β′

(a)

v′
v′′

β′

(b)

Figure 11.10: (a) Instance I and (b) instance I∗ obtained in CASE R2 of Algorithm
ALGOCON. Edges of the backbone graph are black thick curves; edge of the stream
are green thin curves; and edges of the stream incident to v′ and v′′ in I∗ are blue
dashed curves.

x ∈ V (β) or if x ∈ Q∗ and there exists a path composed of edges of the stream
connecting x to a vertex y 6= v ∈ V (β), and edge (v′′, x), if x ∈ V (G) \ V (β)
or if x ∈ Q∗ and there exists a path composed of edges of the stream connecting
x to a vertex y 6= v ∈ V (G) \ V (β). Finally, add edge (v′, v′′) to E∗. It is easy
to see that instances I and I∗ are equivalent.

Instance I� is obtained from I∗ by recursively contracting every edge (u, v)
of G∗∪ with u, v * V (β), where G∗∪ is the union graph of I∗. Instance I◦

is obtained from I∗ by recursively contracting every edge (u, v) of G∗∪ with
{u, v} ⊆ V (β).

Theorem 11.4 Let 〈G(V, S), E,Ψ〉 be an instance of SPB. There exists anO(n+m)-
time algorithm to decide whether 〈G(V, S), E,Ψ〉 admits an ω-SDB for ω = 1.

Proof: The algorithm runs in two steps, as follows.

• STEP 1 applies the reduction illustrated in the proof of Lemma 11.2 to instance
〈G(V, S), E,Ψ〉 to construct 1(G) instances 〈G(Vi, Si), Ei,Ψi〉 such that the
backbone graphs G(Vi, Si) contain at most one non-trivial connected compo-
nent.

• STEP 2 applies Algorithm ALGOCON to every instance 〈G(Vi, Si), Ei,Ψi〉
and return YES, if all such instances are positive, or NO, otherwise.

i
i

“thesis” — 2015/4/29 — 21:44 — page 311 — #323 i
i

i
i

i
i

11.5. CONCLUSIONS 311

Observe that, the correctness of the presented algorithm follows from the correct-
ness of Lemma 11.2, of Theorem 11.3, and of Algorithm ALGOCON. We now prove
the correctness for Algorithm ALGOCON. Obviously, the fact that instances I� and
I◦ constructed in CASE R1 and CASE R2 are both positive is a necessary and suf-
ficient condition for instance I to be positive. We prove termination by induction on
the number 2(G) of blocks of the backbone graph G of instance I , primarily, and on
the number of edges of the stream connecting isolated vertices of the backbone graph,
secondarily. (i) If 2(G) = 0, then BASE CASE 1 applies and the algorithm stops;
(ii) if 2(G) = 1 and no two isolated vertices of the backbone graph are connected by
an edge of the stream, then BASE CASE 2 applies and the algorithm stops; (iii) if
2(G) = 1 and there exist edges of the stream between any two isolated vertices of the
backbone graph G, then, by CASE R1, instance I is split into (a) an instance I� with
2(G(V�, E�)) = 1 and no edges of the stream connecting any two isolated vertices
of the backbone graph G(V�, E�), and (b) an instance I◦ with 2(G(V◦, E◦)) = 0;
(iv) finally, if 2(G) > 1, then, by CASE R2, instance I is split into (a) an instance I◦

with 2(G(V�, E�)) = 1 and (b) an instance I◦ with 2(G(V◦, E◦)) = 2(G)− 1.
The running time easily derives from the fact that all instances 〈G(Vi, Si), Ei,Ψi〉

can be constructed inO(n+m)-time and that the algorithm for star instances described
in the proof of Theorem 11.3 runs in O(n+ ωm)-time. This concludes the proof. 2

11.5 Conclusions

In this chapter we introduce the notion of streamed graphs and of ω-stream planarity
for such graphs. We studied the STREAMED PLANARITY problem of testing whether
a streamed graph is ω-stream planar with respect to a given positive integer window
size ω in the two settings with and without backbone graph, settling the question
regarding the computational complexity of this problem in both such settings.

On the negative side, we show that there exists a constant ω0 such that STREAMED
PLANARITY with window size ω0 isNP -complete and that STREAMED PLANARITY
WITH BACKBONE is NP -complete for all ω ≥ 2 even when the backbone graph
is a spanning tree. On the positive side, we provide O(n + ωm)-time algorithms
for (i) the case ω = 1 and (ii) all values of ω, if the considered instances are star
instances. We remark that, the algorithm for ω = 1 improves to linear time the pre-
viously best algorithm for PARTIAL PLANARITY by Schaefer [Sch14] whose running
time is O((nm)3). Moreover, the structural restrictions on the variant for arbitrary
values of ω are necessary to overcome the two hardness results and are hence, with
this respect, best possible.

i
i

“thesis” — 2015/4/29 — 21:44 — page 312 — #324 i
i

i
i

i
i

312 CHAPTER 11. PLANARITY OF STREAMED GRAPHS

Finally, our NP -completeness results rule out, unless P=NP, the existence of FPT
algorithms with respect to the window size ω, to the number ξ of exclusive edges, or
to the maximum degree θ of the conflict graph for STREAMED PLANARITY (WITH
BACKBONE), SEFE, and WEAK REALIZABILITY problems, respectively.

i
i

“thesis” — 2015/4/29 — 21:44 — page 313 — #325 i
i

i
i

i
i

Appendices

313

i
i

“thesis” — 2015/4/29 — 21:44 — page 314 — #326 i
i

i
i

i
i

i
i

“thesis” — 2015/4/29 — 21:44 — page 315 — #327 i
i

i
i

i
i

Appendix A: Other Research
Activities

Simultaneously with the research for the development of this thesis, other topics in
the area of Graph Drawing and Network Visualization have been dealt with:

• Morphing Planar Graph Drawings Optimally
A morph is a continuous transformation between two topologically equivalent
geometric objects. The study of morphs is relevant for several areas of com-
puter science, including computer graphics, animation, and modeling. Many
of the geometric shapes that are of interest in these contexts can be effectively
described by two-dimensional planar graph drawings. Hence, designing algo-
rithms and establishing bounds for morphing planar graph drawings is an im-
portant research challenge. We refer the reader to [GS01, SG01, FE02, EKP03,
SG03] for extensive descriptions of the applications of graph drawing morphs.

It has long been known that there always exists a planar morph (that is, a morph
that preserves planarity at any time instant) transforming any planar straight-line
drawing Γs of a plane graph G into any other planar straight-line drawing Γt of
G. The first proof of such a result, published by Cairns in 1944 [Cai44], was
“existential”, i.e., no guarantee was provided on the complexity of the trajecto-
ries of the vertices during the morph. Almost 40 years later, Thomassen proved
in [Tho83] that a morph between Γs and Γt always exists in which vertices
follow trajectories of exponential complexity (in the number of vertices of G).
In other words, adopting a setting defined by Grünbaum and Shepard [GS81]
which is also the one we consider in this research, Thomassen proved that a
sequence Γs = Γ1,Γ2, . . . ,Γk = Γt of planar straight-line drawings of G ex-
ists such that, for 1 ≤ i ≤ k − 1, the linear morph transforming Γi into Γi+1

is planar, where a linear morph moves each vertex at constant speed along a
straight-line trajectory.

315

i
i

“thesis” — 2015/4/29 — 21:44 — page 316 — #328 i
i

i
i

i
i

316 APPENDIX A: OTHER RESEARCH ACTIVITIES

A breakthrough was recently obtained by Alamdari et al. by proving that a pla-
nar morph between any two planar straight-line drawings of the same n-vertex
connected plane graph exists in which each vertex follows a trajectory of poly-
nomial complexity [AAC+13]. That is, Alamdari et al. showed an algorithm
to perform the morph in O(n4) morphing steps, where a morphing step is a
linear morph. The O(n4) bound was shortly afterwards improved to O(n2) by
Angelini et al. [AFPR13].

In this research, we provide an algorithm to compute a planar morph with O(n)
morphing steps between any two planar straight-line drawings Γs and Γt of
any n-vertex connected plane graph G. Further, we prove that our algorithm is
optimal. That is, for every n, there exist two drawings Γs and Γt of the same
n-vertex plane graph (in fact a path) such that any planar morph between Γs
and Γt consists of Ω(n) morphing steps. To the best of our knowledge, no
super-constant lower bound was previously known.

The schema of our algorithm is the same as in [AAC+13, AFPR13]. Namely,
we morph Γs and Γt into two drawings Γxs and Γxt in which a certain vertex v
can be contracted onto a neighbor x. Such contractions generate two straight-
line planar drawings Γ′s and Γ′t of a smaller plane graph G′. A morph between
Γ′s and Γ′t is recursively computed and suitably modified to produce a morph
between Γs and Γt. The main ingredient for our new bound is a drastically
improved algorithm to morph Γs and Γt into Γxs and Γxt . In fact, while the task
of making v contractible onto x is accomplished with O(n) morphing steps
in [AAC+13, AFPR13], we devise and use properties of monotone drawings,
level planar drawings, and hierarchical graphs to perform it withO(1) morphing
steps. The algorithm can be extended to work for disconnected graphs at the
expense of an increase in the number of steps to O(n1.5) [ABC+15].

The idea behind the lower bound is that linear morphs can poorly simulate ro-
tations, that is, a morphing step rotates an edge of an angle whose size is O(1).
We then consider two drawings Γs and Γt of an n-vertex path P , where Γs lies
on a straight-line, whereas Γt has a spiral-like shape, and we prove that in any
planar morph between Γs and Γt there is one edge of P whose total rotation
describes an angle whose size is Ω(n).

This research is a joint work with Patrizio Angelini, Giuseppe Di Battista, Fab-
rizio Frati, Maurizio Patrignani, and Vincenzo Roselli, appeared in [ALD+14a].

i
i

“thesis” — 2015/4/29 — 21:44 — page 317 — #329 i
i

i
i

i
i

317

• Optimal Morphs of Convex Drawings
Convex drawings of plane graphs are a classical topic of investigation in geo-
metric graph theory. A characterization [Tho84] of the plane graphs that admit
convex drawings and a linear-time algorithm [CYN84] to test whether a graph
admits a convex drawing are known. Convex drawings in small area [KLTT97,
BR06, BFM07], orthogonal convex drawings [RNN98, RNG04, Tho84], and
convex drawings satisfying a variety of further geometric constraints [HN10a,
HN10b] have also been studied. It is intuitive, but far from trivial to prove, that
the space of the convex drawings of any n-vertex plane graph G is connected;
i.e., the points in R2n, each corresponding to the two-dimensional coordinates
of a convex drawing of G, form a connected set. Expressed in yet another way,
there exists a convex morph between any two convex drawings Γs and Γt of the
same plane graph G, that is, a continuous deformation from Γs to Γt so that
the intermediate drawing of G is convex at any instant of the deformation. The
main result of this research is the existence of a convex morph between any two
convex drawings of the same plane graph such that each vertex moves along a
piecewise linear curve with linear complexity during the deformation.

The existence of a convex morph between any two convex drawings was first
proved by Thomassen [Tho83] more than 30 years ago. Thomassen’s result
confirmed a conjecture of Grünbaum and Shepard [GS81] and improved upon a
previous result of Cairns [Cai44], stating that a continuous deformation, called
morph, between any two straight-line planar drawings of the same plane graph
G exists such that any intermediate straight-line drawing of G is planar. More
recently, motivated by applications in computer graphics, animation, and mod-
eling, a number of algorithms for morphing graph drawings have been de-
signed [EKP03, FE02, GS01, SG01, SG03]. These algorithms aim to construct
morphs that preserve the topology of the given drawings at any time, while
guaranteeing that the trajectories of the vertices are “nice” curves.

In this research we give an algorithm to construct a convex morph between
any two convex drawings of the same n-vertex plane graph with O(n) morph-
ing steps. Our algorithm preserves the convexity of the drawing at any time
instant and in fact preserves strict convexity, if the given drawings are strictly-
convex. The linear bound is tight in the worst case, as can be shown by adapting
the lower bound construction of Angelini et al. [ALD+14a]. We remark that
Thomassen’s algorithm [Tho83] constructs convex morphs with an exponential
number of steps. To the best of our knowledge, no other algorithm is known to
construct a convex morph between any two convex drawings of the same plane
graph.

i
i

“thesis” — 2015/4/29 — 21:44 — page 318 — #330 i
i

i
i

i
i

318 APPENDIX A: OTHER RESEARCH ACTIVITIES

The outline of our algorithm is simple. Let Γs and Γt be two convex drawings
of the same convex graphG, that is, a plane graph that admits a convex drawing.
Determine a connected subgraph G′ of G such that removing G′ from G results
in a smaller convex graph G′′. Then G′ lies inside one face f of G′′. Morph
Γs into a drawing Γ′s of G and morph Γt into a drawing Γ′t of G such that the
cycle of G corresponding to f is delimited by a convex polygon in Γ′s and in
Γ′t. These morphs consist of one morphing step each. Remove G′ from Γ′s
and Γ′t to obtain two convex drawings Γ′′s and Γ′′t of G′′. Finally, recursively
compute a morph between Γ′′s and Γ′′t . Since f remains convex throughout the
whole morph from Γ′′s to Γ′′t , a morph of G from Γ′s to Γ′t can be obtained
from the morph of G′′ from Γ′′s to Γ′′t by suitably drawing G′ inside f at each
intermediate step of such a morph. The final morph from Γs to Γt consists of
the morph from Γs to Γ′s followed by the morph from Γ′s to Γ′t, and then the
reverse of the morph from Γt to Γ′t. Our algorithm has two main ingredients.

The first ingredient is a structural decomposition of convex graphs that gener-
alizes a well-known structural decomposition of triconnected planar graphs due
to Grünbaum and Shepard [GS81]. The latter states that any subdivision of a
triconnected planar graph contains a path whose removal results in a subdivi-
sion of a smaller triconnected planar graph. For convex graphs we can prove a
similar theorem which states, roughly speaking, that any convex graph contains
a path, or three paths incident to the same vertex, whose removal results in a
smaller convex graph. Our approach is thus based on removing a subgraph from
the input graph. This differs from the recent papers on morphing graph draw-
ings [AAC+13, ALD+14a], where the basic operation is to contract a vertex to
a neighbor (i.e. move it arbitrarily close to a neighbor). One of the difficulties of
the previous approach was to determine a trajectory for a contracted vertex in-
side the moving polygon of its neighbors. By removing a subgraph and forcing
the newly formed face to be convex, we avoid this difficulty.

The second ingredient is a relationship between unidirectional morphs and level
planar drawings of hierarchical graphs, which allows us to compute the above
mentioned morphs between Γs and Γ′s and between Γt and Γ′t with one mor-
phing step. This relationship was first observed by Angelini et al. [ALD+14a].
However, in order to use it in our setting, we need to prove that every strictly-
convex graph admits a strictly-convex level planar drawing; this strengthens a
result of Hong and Nagamochi [HN10a] and might be of independent interest.

We leave open the question whether any two convex drawings of the same plane
graphG can be morphed so that every intermediate drawing has polynomial size
(e.g., the ratio between the length of any two edges is polynomial in the size of

i
i

“thesis” — 2015/4/29 — 21:44 — page 319 — #331 i
i

i
i

i
i

319

G during the entire morph). For the purpose of solving this problem positively,
our approach seems to be better than previous ones; intuitively, subgraph re-
movals are more suitable than vertex contractions for a morphing algorithm
that doesn’t blow up the size of the intermediate drawings. Nevertheless, we
haven’t yet been able to prove that polynomial-size morphs always exist.

This research is a joint work with Patrizio Angelini, Fabrizio Frati, Anna Lubiw,
Maurizio Patrignani, and Vincenzo Roselli, appeared in [ADF+15].

• Anchored Drawings of Planar Graphs
Several applications require to draw graphs whose vertices are constrained to be
not too much distant from specific points [LMR98, AAnS05]. As an example,
consider a graph whose vertices are cities and whose edges are relationships
between cities. It is conceivable that the user wants to draw the graph on a
geographic map where vertices have the coordinates of the corresponding cities.
Unfortunately, depending on the local density of the cities, the drawing may be
cluttered or may contain crossings between edges that might disappear if the
vertices could move from their locations. Hence, the user may be interested to
trade precision for quality of the drawing, accepting that the vertices move of a
certain distance from the location of the cities, provided that the readability of
the drawing increases. Problems in which the input consists of a set of imprecise
points have also been studied in Computational Geometry [DM03, LvK10].

In this work we consider the following problem, that we call ANCHORED GRAPH
DRAWING (AGD)3. Given a graph G = (V,E), an initial placement for its ver-
tices, and a distance δ, we ask whether there exists a planar drawing of G,
according to a certain drawing convention, such that each vertex v ∈ V can
move at distance at most δ from its initial placement. Note that the problem can
have different formulations depending on how the concepts of “readability” and
“distance” are defined.

We consider both straight-line planar drawings and rectilinear planar drawings.
Further, in addition to the traditional L2 Euclidean distance, we consider the
L1 Manhattan distance and the L∞ ‘uniform’ distance. Note that, adopting L2

distance is equivalent to allowing vertices to be placed into circular regions
centered at their original positions, and adopting L1 or L∞ distances is equiv-
alent to allowing vertices to be placed into diamond-shaped or square-shaped
areas, respectively.

3We remark that the term ‘anchored graph’ was used within a different setting in [CM13].

i
i

“thesis” — 2015/4/29 — 21:44 — page 320 — #332 i
i

i
i

i
i

320 APPENDIX A: OTHER RESEARCH ACTIVITIES

Metric Distance Region Shape Straight-line Rectilinear
L1 Manhattan 3 NP-hard NP-hard
L2 Euclidean # NP-hard NP-hard
L∞ Uniform � NP-hard Polynomial

Table A.1: The complexity of the ANCHORED GRAPH DRAWING problem depending
on the metric and drawing style adopted when the areas of the vertices do not overlap.

Observe that, if the regions of two vertices overlap, the positions of the two
vertices can be swapped with respect to their initial placement, which may be
confusing to a user of the drawing. Moreover, overlapping between vertex re-
gions would make problem AGD as difficult as known Clustered Planarity vari-
ants, such as the Strip Planarity problem [ADDF13a] (see also Chapter 6) in the
straight-line setting, whose complexity is a non-trivial open problem. Hence,
we restrict to instances such that the regions of the vertices do not overlap.

We remark that the version of the problem where each circle may have a dif-
ferent size was shown to be NP-hard in [God95] by reducing Planar-(3, 4)-SAT
with variable repetitions (where repeated occurrences of one variable in one
clause are counted repeatedly). The proof in [God95] uses disks with radius
zero and disks with large radii. Also, the reduction relies on overlapping disks.

Furthermore, we observe that the NP-hardness of the problem with different
distances and overlapping areas trivially follows from the NP-hardness of ex-
tending a planar straight-line drawing [Pat06] by setting δ(v) = 0 for each
fixed vertex v and allowing suitably large distances for vertices that have to be
planarly added to the drawing.

In this work we show that the ANCHORED GRAPH DRAWING problem is NP-
hard for any combination of metrics and drawing standards that we considered,
with the exception of rectilinear drawings and uniform distance metric (square-
shaped regions). These results, summarized in Table A.1, were somehow unex-
pected, as computing a planar rectilinear drawing of a graph, without any fur-
ther constraint, is NP-hard [GT01b]. We leave open the following questions:
1. Does problem AGD belong to class NP? 2. The instances in our NP-hardness
proofs can be augmented to equivalent instances whose graphs are biconnected
(we omit details for space reasons). In these instances, different truth values
correspond to different embeddings. What is the complexity of AGD when the
input graph is triconnected or has at least a fixed embedding? 3. What if we

i
i

“thesis” — 2015/4/29 — 21:44 — page 321 — #333 i
i

i
i

i
i

321

allow the vertex regions to (at least partially) overlap?

This research is a joint work with Patrizio Angelini, Marco Di Bartolomeo,
Giuseppe Di Battista, Seok-Hee Hong, Maurizio Patrignani, and Vincenzo Roselli,
appeared in [ADD+14].

• Drawing Georeferenced Graphs: Combining Graph Drawing and Geo-
graphic Data

In this research, we address the problem of exploring a georeferenced graph,
i.e., a graph with some geographic information associated with its nodes. Namely,
we consider the task of visually exploring relationships (such as established
connections, similarity, reachability, etc) among a set of georeferenced enti-
ties, i.e., entities that have geographic data associated with them. A novel 2.5D
paradigm, briefly described in the following, is proposed that provides a robust
and practical solution based on separating and then integrating back again the
networked and geographical dimensions of the input dataset. This allows us to
easily cope with partial or incomplete geographic annotations, to reduce clut-
tering of close entities, and to address focus-plus-context visualization issues.
Typical application domains include, for example, coordinating search and res-
cue teams or medical evacuation squads, monitoring ad-hoc networks, explor-
ing location-based social networks and, more in general, visualizing relational
datasets including geographic annotations.

The purpose of the interface is to represent in the most intuitive and unambigu-
ous way both the relationships among the entities and their positions, convey-
ing at the same time the degree of uncertainty associated with the geographic
information. We propose an innovative 2.5D paradigm to visually explore data
with both a relational and a geolocalized nature. Our strategy is to separate
and simultaneously visualize the networked and the geographic information of
the input dataset. Namely, the geographic information is represented on the
geographic layer, which is in the bottom part of the interface, while the net-
worked information is represented on the logical layer, which is parallel to the
geographic layer and placed in the upper part of the interface. Leaders among
the two layers relate nodes with their geographic locations, if any. The inter-
face is shown in Fig. A.1. In order to avoid overlaps between the two layers,
which would give occlusion among the two types of information, we restrict
their size to two equally-sized rectangles and suitably place the point of view
on the longest side of the rectangles.

i
i

“thesis” — 2015/4/29 — 21:44 — page 322 — #334 i
i

i
i

i
i

322 APPENDIX A: OTHER RESEARCH ACTIVITIES

Figure A.1: A snapshot of the proposed 2.5D interface taken from a JavaScript demon-
strative prototype, implemented using the WebGL graphics library [The13], that runs
within any compatible web browser. The logical layer, above, shows the networked
data, while the geographic layer, below, displays actual locations of the entities con-
tained in the logical layer, whenever available.

Nodes are placed on the logical layer with the purpose of conveying as effec-
tively as possible the structure of the graph, reducing cluttering and crossings
among edges. To this purpose, we devised a specialized force-directed algo-
rithm, called Algorithm retina, that computes the network layout directly on
the logical layer. The obtained layout tries to achieve both evenly-spaced distri-
bution of nodes and few crossings among edges, while seeking to minimize the
distance of each node from the corresponding position on the geographic layer.

The purpose of the geographic layer, instead, is that of displaying the current
position of each node shown on the logical layer. Such a position is represented
by means of a marker on the map with a straight-line leader connecting it to
the corresponding node on the logical layer. When the position of the node is
affected by uncertainty the marker on the map is a geometric shape, usually
a circle, enclosing the area where the corresponding object is supposed to be,
and the leader consists of a cone with its apex on the node. Nodes with no
geographic information associated have no marker on the map.

Therefore, in our approach, we have two types of links: (i) the edges on the
logical layer and (ii) the leaders connecting the two layers. We privilege the
readability of the graph induced by the first type of links, by trying to reduce
crossings on the logical layer, which severely jeopardize the comprehension of
the graph structure [PCJ97, Pur00]. Crossings among leaders have lower impact

i
i

“thesis” — 2015/4/29 — 21:44 — page 323 — #335 i
i

i
i

i
i

323

on readability, since the structure of the graph induced by them is of limited
interest to the user. In fact, each leader establishes a connection between an
entity and a geographic location, and paths of leaders are never considered by
the user. Also, when the mouse hovers a vertex on the logical layer, the interface
highlights its incident leader to help the user identify the leader endpoint on the
geographic layer.

This research is a joint work with Marco Di Bartolomeo, Maurizio Patrig-
nani, Giuseppe Di Battista, Davide Cannone, and Sergio Tortora, appeared
in [DDP+15].

• Drawing Graphs on a Smartphone
Millions of people in the world have in their pocket a smartphone and such a
number is rapidly increasing [Gar10]. Such a widely used device is exploited
to quickly access, from almost everywhere, different types of data on different
subjects and a large amount of such data is relational information. For exam-
ple, smartphones are used to access social networks like Facebook or Twitter,
ontologies like the Wikipedia network of concepts, or technical information re-
lated to the job of the smartphone’s owner like the connections of a computer
network or the delivery routes of a product distribution system.

Graph Drawing can play an important role in supporting information visualiza-
tion on the smartphones, provided that the methodologies and the tools that are
typical of this research area are recast to meet the needs of such a challenging
device. Indeed, different information contexts have already changed their visu-
alization methods in this direction. For instance, on-line newspapers have spe-
cial visualization formats that are designed for the smartphone. However, as far
as we know, the only previous attempt to draw graphs on smartphones [Pix08]
uses traditional Graph Drawing techniques.

Dealing with smartphones, the main challenge that visualization applications
have to face is, of course, the small screen size. On the other hand, such a
strong limitation comes together with new technological opportunities that can
be exploited to support the interaction. They are the multi-touch screen that is
able to capture commonly used gestures like pinch, flick, and slide, sensors like
the accelerometer and the compass, and sounds and vibrations.

Since any graph is too large for the little screen of the smartphones, a pivotal
reference point for designing interfaces and algorithms for drawing graphs on
such a device is the literature on drawing very large graphs. One, for example,

i
i

“thesis” — 2015/4/29 — 21:44 — page 324 — #336 i
i

i
i

i
i

324 APPENDIX A: OTHER RESEARCH ACTIVITIES

could use the fish-eye approach [SB92] where the details of the drawing de-
crease according to the distance that separates them from a point chosen by the
user. However, using Shneiderman’s information visualization mantra [Shn96]
(overview first, zoom and filter, then details-on-demand) in this context seems
to be unfeasible. In fact, it is unclear how to provide, on such a small screen, a
suitable overview of the information.

In this work we present a system for the visualization and navigation of rela-
tional information on the smartphones. We devised a visualization and inter-
action paradigm that (i) is based on showing to the user only a small subgraph
defined by a focus vertex and its neighborhood and (ii) exploits smartphone-
specific interaction primitives to explore the graph. The paradigm is inspired
by the navigation approach of [ECH97]. Even such a simple visualization
paradigm can originate interesting algorithmic issues and requires non-trivial
Graph Drawing algorithms to be implemented. We conducted an extensive ex-
perimentation that put in evidence the effectiveness of the designed algorithms
and exploit our system to visualize data coming from challenging domains.
Namely, we show several customizations of the system aimed at exploring and
at visualizing popular Web contents like social networks and Wikipedia. Cur-
rent implementations include the iPhone and the Google Android platforms.
Several problems related to our paradigm are left open: 1. How to apply vari-
ations of our paradigm for graph visualization on handheld devices, like the
iPad, whose screen has a size larger that a smartphone but smaller than a usual
computer screen? Variations of the paradigms could include: the visualization
of more than one focus vertex, the placement of lobe vertices on several con-
centric layers, or the usage of all the sides of the screen. 2. A typical way to
visualize large graphs it to use clustering techniques. Is it possible to combine
our paradigm with existing techniques for the visualization of clustered graphs?
3. Can the heuristics that we have presented for selecting a lobe be improved
both from the point of view of the performance and from the point of view of
the effectiveness?

This research is a joint work with Giuseppe Di Battista and Francesco Ingrassia
appeared in [DDI10] and published in a journal [DDI12].

i
i

“thesis” — 2015/4/29 — 21:44 — page 325 — #337 i
i

i
i

i
i

Appendix B: List of Publications

Journal Publications

1. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Vincenzo Roselli. The Importance of Being Proper (In Clustered-Level Pla-
narity and T-Level Planarity). Theoretical Computer Science. 571:1-9. 2015.

2. Patrizio Angelini, Giordano Da Lozzo, Daniel Neuwirth. Advancements on
SEFE and Partitioned Book Embedding Problems. Theoretical Computer Sci-
ence. 575:71-89. 2015.

3. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, Vincenzo Roselli. Relaxing the Constraints of Clustered
Planarity. Computational Geometry: Theory and Applications. 48(2):42-75.
2015.

4. Giordano Da Lozzo, Giuseppe Di Battista, Claudio Squarcella. Visual Dis-
covery of the Correlation between BGP Routing and Round-Trip Delay Active
Measurements. Computing. 96(1): 67-77. 2014.

5. Giordano Da Lozzo, Giuseppe Di Battista, Francesco Ingrassia. Drawing
Graphs on a Smartphone. Journal of Graph Algorithms and Applications, Spe-
cial Issue of Selected Papers from GD ’10. 16(1):109-126. 2012.

Conference Publications

1. Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio
Patrignani, Vincenzo Roselli. Optimal Morphs of Convex Drawings. In Proc.
31st Symposium on Computational Geometry (SoCG ’15), 2015. To appear.

325

i
i

“thesis” — 2015/4/29 — 21:44 — page 326 — #338 i
i

i
i

i
i

326 APPENDIX B: LIST OF PUBLICATIONS

2. Giordano Da Lozzo, Ignaz Rutter. Planarity of Streamed Graphs. In Proc. 9th
International Conference on Algorithms and Complexity (CIAC ’15), 2015. To
appear.

3. Giordano Da Lozzo, Marco Di Bartolomeo, Maurizio Patrignani, Giuseppe Di
Battista, Davide Cannone, Sergio Tortora. Drawing Georeferenced Graphs -
Combining Graph Drawing and Geographic Data. In Proc. 6th International
Conference on Information Visualization Theory and Applications (IVAPP ’15),
pages 109-116, 2015.

4. Giordano Da Lozzo, Vìt Jelìnek, Jan Kratochvì, Ignaz Rutter. Planar Embed-
dings with Small and Uniform Faces. In Proc. 25th International Symposium
on Algorithms and Computation (ISAAC ’14), volume 8889, pages 633-645,
2014.

5. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Vincenzo Roselli. The Importance of Being Proper (In Clustered-Level Pla-
narity and T-Level Planarity). In Proc. 22nd International Symposium on
Graph Drawing (GD ’14), volume 8871, pages 246-258, 2014.

6. Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Giuseppe Di
Battista, Seok-Hee Hong, Maurizio Patrignani, Vincenzo Roselli. Anchored
Drawings of Planar Graphs. In Proc. 22nd International Symposium on Graph
Drawing (GD ’14), volume 8871, pages 404-415, 2014.

7. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, Vincenzo Roselli. Morphing Planar Graph Drawings Op-
timally. In Proc. 41st International Colloquium on Automata, Languages and
Programming (ICALP ’14), volume 8572, pages 126-137, 2014.

8. Patrizio Angelini, Giordano Da Lozzo, Daniel Neuwirth. On some NP-complete
SEFE Problems. In Proc. Workshop on Algorithms and Computation (WAL-
COM ’14), volume 8344, pages 193-205, 2014.

9. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati.
Strip Planarity Testing. In Proc. 21st International Symposium on Graph
Drawing (GD ’13), volume 8242, pages 37-48, 2013.

10. Patrizio Angelini, Carla Binucci, Giordano Da Lozzo, Walter Didimo, Luca
Grilli, Fabrizio Montecchiani, Maurizio Patrignani, Ioannis Tollis. Drawing
Non-planar Graphs with Crossing-free Subgraphs. In Proc. 21st International
Symposium on Graph Drawing (GD ’13), volume 8242, pages 295-307, 2013.

i
i

“thesis” — 2015/4/29 — 21:44 — page 327 — #339 i
i

i
i

i
i

327

11. Giordano Da Lozzo, Giuseppe Di Battista, Francesco Ingrassia. Drawing
Graphs on a Smartphone. In Proc. 18th International Symposium on Graph
Drawing (GD ’10), volume 6502, pages 153-164, 2010.

Technical Reports

1. Giordano Da Lozzo, Ignaz Rutter. Planarity of Streamed Graphs. Tech. Rep.
arXiv:1501.07106, Cornell University, 2014.

2. Giordano Da Lozzo, Vìt Jelìnek, Jan Kratochvì, Ignaz Rutter. Planar Embed-
dings with Small and Uniform Faces. Tech. Rep. arXiv:1409.4299, Cornell
University, 2014.

3. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Vincenzo Roselli. On the Complexity of Clustered-Level Planarity and T-Level
Planarity. Tech. Rep. arXiv:1406.6533, Cornell University, 2014.

4. Patrizio Angelini, Giordano Da Lozzo. Deepening the Relationship between
SEFE and C-Planarity. Tech. Rep. arXiv:1404.6175, Cornell University, 2014.

5. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, Vincenzo Roselli. Morphing Planar Graph Drawings Op-
timally. Tech. Rep. arXiv:1402.4364, Cornell University, 2014.

6. Patrizio Angelini, Giordano Da Lozzo, Daniel Neuwirth. Advancements on
SEFE and Partitioned Book Embedding Problems. Tech. Rep. arXiv:1311.3607,
Cornell University, 2014.

7. Patrizio Angelini, Carla Binucci, Giordano Da Lozzo, Walter Didimo, Luca
Grilli, Fabrizio Montecchiani and Maurizio Patrignani, Ioannis Tollis. Algo-
rithms and Bounds for Drawing Non-planar Graphs with Crossing-free Sub-
graphs. Tech. Rep. arXiv:1308.6706, Cornell University, 2013.

8. Patrizio Angelini, Giordano Da Lozzo and Giuseppe Di Battista, Fabrizio Frati.
Strip Planarity Testing of Embedded Planar Graphs. Tech. Rep. arXiv:1309.0683,
Cornell University, 2013.

9. Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, Vincenzo Roselli. Relaxing the Constraints of Clustered
Planarity. Tech. Rep. arXiv:1207.3934, Cornell University, 2012.

i
i

“thesis” — 2015/4/29 — 21:44 — page 328 — #340 i
i

i
i

i
i

328 APPENDIX B: LIST OF PUBLICATIONS

Others

1. Patrizio Angelini, Giordano Da Lozzo. SEFE = C-Planarity?. In Booklet 9th
International Colloquium on Graph Theory and Combinatorics (ICGT ’14),
2014.

2. Giordano Da Lozzo, Giuseppe Di Battista, Claudio Squarcella. Visual Dis-
covery of the Correlation between BGP Routing and Round-Trip Delay Active
Measurements. In 1st IMC Workshop on Internet Visualization (WIV ’12), 2012.

i
i

“thesis” — 2015/4/29 — 21:44 — page 329 — #341 i
i

i
i

i
i

Bibliography

[AAC+13] Soroush Alamdari, Patrizio Angelini, Timothy M. Chan, Giuseppe Di
Battista, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, Vincenzo
Roselli, Sahil Singla, and Bryan T. Wilkinson. Morphing planar graph
drawings with a polynomial number of steps. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1656–1667, 2013.

[AAnS05] Manuel Abellanas, Andrés Aiello, Gregorio Hernández Pe nalver, and
Rodrigo I. Silveira. Network drawing with geographical constraints on
vertices. In Actas XI Encuentros de Geom. Comput., pages 111–118,
2005.

[ABC+15] Greg Aloupis, Luis Barba, Paz Carmi, Vida Dujmovic, Fabrizio Frati,
and Pat Morin. Compatible connectivity-augmentation of planar discon-
nected graphs. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1602–1615, 2015.

[ABD+13] Patrizio Angelini, Carla Binucci, Giordano Da Lozzo, Walter Didimo,
Luca Grilli, Fabrizio Montecchiani, Maurizio Patrignani, and Ioannis G.
Tollis. Drawing non-planar graphs with crossing-free subgraphs. In
Stephen K. Wismath and Alexander Wolff, editors, Graph Drawing -
21st International Symposium, GD 2013, Bordeaux, France, September
23-25, 2013, Revised Selected Papers, LNCS, pages 292–303, 2013.

[ACDP13] Patrizio Angelini, Pier Francesco Cortese, Giuseppe Di Battista, and
Maurizio Patrignani. Topological morphing of planar graphs. Theor.
Comput. Sci., 514:2–20, 2013.

329

i
i

“thesis” — 2015/4/29 — 21:44 — page 330 — #342 i
i

i
i

i
i

330 BIBLIOGRAPHY

[Ack09] Eyal Ackerman. On the maximum number of edges in topological
graphs with no four pairwise crossing edges. Discrete & Computational
Geometry, 41(3):365–375, 2009.

[AD14] Patrizio Angelini and Giordano Da Lozzo. SEFE = C-Planarity?, 2014.

[ADD12] Patrizio Angelini, Marco Di Bartolomeo, and Giuseppe Di Battista. Im-
plementing a partitioned 2-page book embedding testing algorithm. In
Graph Drawing, pages 79–89, 2012.

[ADD+14] Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Giuseppe
Di Battista, Seok-Hee Hong, Maurizio Patrignani, and Vincenzo Roselli.
Anchored drawings of planar graphs. In Christian A. Duncan and An-
tonios Symvonis, editors, Graph Drawing - 22nd International Sympo-
sium, GD 2014, Würzburg, Germany, September 24-26, 2014, Revised
Selected Papers, volume 8871 of LNCS, pages 404–415. Springer, 2014.

[ADD+15] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio
Frati, Maurizio Patrignani, and Vincenzo Roselli. Relaxing the con-
straints of clustered planarity. Computational Geometry: Theory and
Applications, 48(2):42–75, 2015.

[ADDF13a] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fab-
rizio Frati. Strip planarity testing. In Graph Drawing - 21st International
Symposium, GD 2013, Bordeaux, France, September 23-25, 2013, Re-
vised Selected Papers, pages 37–48, 2013.

[ADDF13b] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fab-
rizio Frati. Strip planarity testing of embedded planar graphs. Tech.
Report arXiv:1309.0683, Cornell University, 2013.

[ADF+10] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan
Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing planarity
of partially embedded graphs. In Moses Charikar, editor, Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
202–221, 2010.

[ADF+12] Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Testing the simultaneous embeddability of two
graphs whose intersection is a biconnected or a connected graph. J. Dis-
crete Algorithms, 14:150–172, 2012.

i
i

“thesis” — 2015/4/29 — 21:44 — page 331 — #343 i
i

i
i

i
i

BIBLIOGRAPHY 331

[ADF13] Patrizio Angelini, Giuseppe Di Battista, and Fabrizio Frati. Simultane-
ous embedding of embedded planar graphs. Int. J. Comput. Geometry
Appl., 23(2):93–126, 2013.

[ADF+15] Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw,
Maurizio Patrignani, and Vincenzo Roselli. Optimal morphs of con-
vex drawings. In Symposium on Computational Geometry 2015, SoCG
’15, Eindhoven, the Netherlands, June 22-25, 2015, 2015. To appear.

[ADN14] Patrizio Angelini, Giordano Da Lozzo, and Daniel Neuwirth. On some
NP-complete SEFE problems. In Sudebkumar Prasant Pal and Kunihiko
Sadakane, editors, WALCOM, volume 8344 of LNCS, pages 200–212.
Springer, 2014.

[ADN15] Patrizio Angelini, Giordano Da Lozzo, and Daniel Neuwirth. Advance-
ments on SEFE and partitioned book embedding problems. Theoretical
Computer Science, 575:71–89, 2015.

[ADP11] Patrizio Angelini, Giuseppe Di Battista, and Maurizio Patrignani. Find-
ing a minimum-depth embedding of a planar graph in O(n4) time. Al-
gorithmica, 60:890–937, 2011.

[AFG10] Patrizio Angelini, Fabrizio Frati, and Luca Grilli. An algorithm to con-
struct greedy drawings of triangulations. J. Graph Algorithms Appl.,
14(1):19–51, 2010.

[AFK11] Patrizio Angelini, Fabrizio Frati, and Michael Kaufmann. Straight-line
rectangular drawings of clustered graphs. Discrete & Computational
Geometry, 45(1):88–140, 2011.

[AFP09] Patrizio Angelini, Fabrizio Frati, and Maurizio Patrignani. Splitting
clusters to get c-planarity. In David Eppstein and Emden R. Gansner,
editors, Graph Drawing, 17th International Symposium, GD 2009,
Chicago, IL, USA, September 22-25, 2009. Revised Papers, pages 57–
68, 2009.

[AFPR13] Patrizio Angelini, Fabrizio Frati, Maurizio Patrignani, and Vincenzo
Roselli. Morphing planar graph drawings efficiently. In Stephen K.
Wismath and Alexander Wolff, editors, Graph Drawing - 21st Interna-
tional Symposium, GD 2013, Bordeaux, France, September 23-25, 2013,
Revised Selected Papers, pages 49–60, 2013.

i
i

“thesis” — 2015/4/29 — 21:44 — page 332 — #344 i
i

i
i

i
i

332 BIBLIOGRAPHY

[AHR10] Sarmad Abbasi, Patrick Healy, and Aimal Rextin. Improving the run-
ning time of embedded upward planarity testing. Inf. Process. Lett.,
110(7):274–278, 2010.

[AHU83] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures
and Algorithms. Addison-Wesley, 1983.

[ALD+14a] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio
Frati, Maurizio Patrignani, and Vincenzo Roselli. Morphing planar
graph drawings optimally. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572
of LNCS, pages 126–137. Springer, 2014.

[ALD+14b] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio
Frati, and Vincenzo Roselli. The importance of being proper - (in
clustered-level planarity and t-level planarity). In Christian A. Duncan
and Antonios Symvonis, editors, Graph Drawing - 22nd International
Symposium, GD 2014, Würzburg, Germany, September 24-26, 2014, Re-
vised Selected Papers, pages 246–258, 2014.

[ALD+15] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fab-
rizio Frati, and Vincenzo Roselli. The importance of being proper (in
clustered-level planarity and t-level planarity). Theor. Comput. Sci.,
571:1–9, 2015.

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for
NP-hard problems restricted to partial k-trees. Discrete Applied Mathe-
matics, 23(1):11–24, 1989.

[AT07] Eyal Ackerman and Gábor Tardos. On the maximum number of edges
in quasi-planar graphs. J. Comb. Theory, Ser. A, 114(3):563–571, 2007.

[BBF05] Christian Bachmaier, Franz-Josef Brandenburg, and Michael Forster.
Radial level planarity testing and embedding in linear time. J. Graph
Algorithms Appl., 9(1):53–97, 2005.

[BCD+07] Peter Braß, Eowyn Cenek, Christian A. Duncan, Alon Efrat, Cesim
Erten, Dan Ismailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph
S. B. Mitchell. On simultaneous planar graph embeddings. Comput.
Geom., 36(2):117–130, 2007.

i
i

“thesis” — 2015/4/29 — 21:44 — page 333 — #345 i
i

i
i

i
i

BIBLIOGRAPHY 333

[BCG+13] Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael
Jünger, and Petra Mutzel. Crossings and planarization. In Roberto
Tamassia, editor, Handbook of Graph Drawing and Visualization. CRC
Press, 2013.

[BDD00] Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Computing
orthogonal drawings with the minimum number of bends. IEEE Trans.
Computers, 49(8):826–840, 2000.

[BDD+12] Carla Binucci Ulrik Brandes, Giuseppe Di Battista, Walter Didimo,
Marco Gaertler, Pietro Palladino, Maurizio Patrignani, Antonios Symvo-
nis, and Katharina Anna Zweig. Drawing trees in a streaming model. Inf.
Process. Lett., 112(11):418–422, 2012.

[BDLM94] Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo
Mannino. Upward drawings of triconnected digraphs. Algorithmica,
12(6):476–497, 1994.

[BEG+12] Franz-Josef Brandenburg, David Eppstein, Andreas Gleißner,
Michael T. Goodrich, Kathrin Hanauer, and Josef Reislhuber. On
the density of maximal 1-planar graphs. In GD, volume 7704 of LNCS,
pages 327–338. Springer, 2012.

[BFM07] Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex
drawings of 3-connected plane graphs. Algorithmica, 47(4):399–420,
2007.

[BKM98] Therese C. Biedl, Michael Kaufmann, and Petra Mutzel. Drawing pla-
nar partitions II: hh-drawings. In Juraj Hromkovic and Ondrej Sýkora,
editors, Graph-Theoretic Concepts in Computer Science, 24th Interna-
tional Workshop, WG ’98, Smolenice Castle, Slovak Republic, June 18-
20, 1998, Proceedings, pages 124–136, 1998.

[BKR13a] Thomas Bläsius, Annette Karrer, and Ignaz Rutter. Simultaneous em-
bedding: Edge orderings, relative positions, cutvertices. In Stephen K.
Wismath and Alexander Wolff, editors, Graph Drawing - 21st Interna-
tional Symposium, GD 2013, Bordeaux, France, September 23-25, 2013,
Revised Selected Papers, pages 220–231, 2013.

[BKR13b] Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous
embedding of planar graphs. In R. Tamassia, editor, Handbook of Graph
Drawing and Visualization. CRC Press, 2013.

i
i

“thesis” — 2015/4/29 — 21:44 — page 334 — #346 i
i

i
i

i
i

334 BIBLIOGRAPHY

[BKRW14] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner.
Orthogonal graph drawing with flexibility constraints. Algorithmica,
68:859–885, 2014.

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones
property, interval graphs, and graph planarity using pq-tree algorithms.
J. Comput. Syst. Sci., 13(3):335–379, 1976.

[BM76] John A. Bondy and Uppaluri S. R Murty. Graph theory with applica-
tions. American Elsevier Publishing Co., Inc., New York, 1976.

[BM88] Daniel Bienstock and Clyde L. Monma. On the complexity of covering
vertices by faces in a planar graph. SIAM J. Comput., 17(1):53–76, 1988.

[BM90] Daniel Bienstock and Clyde L. Monma. On the complexity of embed-
ding planar graphs to minimize certain distance measures. Algorithmica,
5(1):93–109, 1990.

[BM04] John M. Boyer and Wendy J. Myrvold. On the cutting edge: simpli-
fied O(n) planarity by edge addition. Journal of Graph Algorithms and
Applications, 8(3):241–273, 2004.

[Boo75] Kellogg S. Booth. PQ-tree algorithms. PhD thesis, University of Cali-
fornia, Berkeley, 1975.

[BR06] Imre Bárány and Günter Rote. Strictly convex drawings of planar
graphs. Documenta Math., 11:369–391, 2006.

[BR13] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with ap-
plications to constrained embedding problems. In SODA, pages 1030–
1043, 2013.

[BR14] Thomas Bläsius and Ignaz Rutter. A new perspective on clustered pla-
narity as a combinatorial embedding problem. In Christian A. Duncan
and Antonios Symvonis, editors, Graph Drawing - 22nd International
Symposium, GD 2014, Würzburg, Germany, September 24-26, 2014, Re-
vised Selected Papers, pages 440–451, 2014.

[BRW13] Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal or-
thogonal graph drawing with convex bend costs. In Fedor V. Fomin,
Rūsiņš Freivalds, Marta Kwiatkowsak, and David Peleg, editors, Au-
tomata, Languages, and Programming (ICALP’13), volume 7965 of
LNCS, pages 184–195. Springer, 2013.

i
i

“thesis” — 2015/4/29 — 21:44 — page 335 — #347 i
i

i
i

i
i

BIBLIOGRAPHY 335

[Cai44] S. S. Cairns. Deformations of plane rectilinear complexes. American
Math. Monthly, 51:247–252, 1944.

[CB05] Pier Francesco Cortese and Giuseppe Di Battista. Clustered planarity.
In Joseph S. B. Mitchell and Günter Rote, editors, Proceedings of the
21st ACM Symposium on Computational Geometry, Pisa, Italy, June 6-
8, 2005, pages 32–34, 2005.

[CDF+08] Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio
Patrignani, and Maurizio Pizzonia. C-planarity of c-connected clustered
graphs. J. Graph Algorithms Appl., 12(2):225–262, 2008.

[CDFK14] Markus Chimani, Giuseppe Di Battista, Fabrizio Frati, and Karsten
Klein. Advances on testing c-planarity of embedded flat clustered
graphs. In Christian A. Duncan and Antonios Symvonis, editors, Graph
Drawing - 22nd International Symposium, GD 2014, Würzburg, Ger-
many, September 24-26, 2014, Revised Selected Papers, pages 416–427,
2014.

[CDPP05] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and
Maurizio Pizzonia. Clustering cycles into cycles of clusters. J. Graph
Algorithms Appl., 9(3):391–413, 2005.

[CDPP09] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and
Maurizio Pizzonia. On embedding a cycle in a plane graph. Discrete
Mathematics, 309(7):1856–1869, 2009.

[CEGL12] Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten
Löffler. Drawing graphs in the plane with a prescribed outer face and
polynomial area. J. Graph Algorithms Appl., 16(2):243–259, 2012.

[CEX15] Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly sim-
ple polygons. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1655–1670. SIAM, 2015.

[Cho34] Ch. Chojnacki. Über wesentlich unplättbare kurven im dreidimension-
alen raume. Fundamenta Mathematicae, 23(1):135–142, 1934.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. MIT Press, 2009.

i
i

“thesis” — 2015/4/29 — 21:44 — page 336 — #348 i
i

i
i

i
i

336 BIBLIOGRAPHY

[CM13] Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs
makes crossing number and 1-planarity hard. SIAM J. Comput.,
42(5):1803–1829, 2013.

[CN88] Norishige Chiba and Takao Nishizeki. Planar Graphs: Theory and Al-
gorithms. Annals of Discrete Mathematics 32. North-Holland, Amster-
dam, 1988.

[CN98] Marek Chrobak and Shin-Ichi Nakano. Minimum-width grid drawings
of plane graphs. Computational Geometry, 11(1):29 – 54, 1998.

[CR05] Derek G. Corneil and Udi Rotics. On the relationship between clique-
width and treewidth. SIAM Journal on Computing, 34(4):825–847,
2005.

[CW06] Sabine Cornelsen and Dorothea Wagner. Completely connected clus-
tered graphs. J. Discrete Algorithms, 4(2):313–323, 2006.

[CYN84] Norishige Chiba, Toru Yamanouchi, and Takao Nishizeki. Linear algo-
rithms for convex drawings of planar graphs. In J. A. Bondy and U. S. R.
Murty, editors, Progress in Graph Theory, pages 153–173. Academic
Press, New York, NY, 1984.

[Dah98] Elias Dahlhaus. A linear time algorithm to recognize clustered graphs
and its parallelization. In LATIN ’98: Theoretical Informatics, Third
Latin American Symposium, Campinas, Brazil, April, 20-24, 1998, Pro-
ceedings, LNCS, pages 239–248. Springer, 1998.

[dCvO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-
Verlag TELOS, Santa Clara, CA, USA, 3rd edition, 2008.

[DDI10] Giordano Da Lozzo, Giuseppe Di Battista, and Francesco Ingrassia.
Drawing graphs on a smartphone. In Ulrik Brandes and Sabine Cor-
nelsen, editors, Graph Drawing - 18th International Symposium, GD
2010, Konstanz, Germany, September 21-24, 2010. Revised Selected Pa-
pers, LNCS, pages 153–164. Springer, 2010.

[DDI12] Giordano Da Lozzo, Giuseppe Di Battista, and Francesco Ingras-
sia. Drawing graphs on a smartphone. J. Graph Algorithms Appl.,
16(1):109–126, 2012.

i
i

“thesis” — 2015/4/29 — 21:44 — page 337 — #349 i
i

i
i

i
i

BIBLIOGRAPHY 337

[DDLM05] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer.
Computing radial drawings on the minimum number of circles. J. Graph
Algorithms Appl., 9(3):365–389, 2005.

[DDLM13] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio
Montecchiani. Area requirement of graph drawings with few crossings
per edge. Computational Geometry, 46(8):909–916, 2013.

[DDM01] Giuseppe Di Battista, Walter Didimo, and A. Marcandalli. Planariza-
tion of clustered graphs. In Petra Mutzel, Michael Jünger, and Sebas-
tian Leipert, editors, Graph Drawing, 9th International Symposium, GD
2001 Vienna, Austria, September 23-26, 2001, Revised Papers, pages
60–74, 2001.

[DDP+15] Giordano Da Lozzo, Marco Di Bartolomeo, Maurizio Patrignani,
Giuseppe Di Battista, Davide Cannone, and Sergio Tortora. Drawing
georeferenced graphs - combining graph drawing and geographic data.
In Lars Linsen, Andreas Kerren, and José Braz, editors, Proceedings of
the 6th International Conference on Information Visualization Theory
and Applications, IVAPP 2015, Berlin, Germany, 11-14 March, 2015.,
pages 109–116, 2015.

[DEL11] Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with
right angle crossings. Theoretical Computer Science, 412(39):5156–
5166, 2011.

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall, 1999.

[DF09] Giuseppe Di Battista and Fabrizio Frati. Efficient c-planarity testing for
embedded flat clustered graphs with small faces. J. Graph Algorithms
Appl., 13(3):349–378, 2009.

[dFOdM12] Hubert de Fraysseix and Patrice Ossona de Mendez. Trémaux trees and
planarity. European Journal of Combinatorics, 33(3):279–293, April
2012.

[DGK03] Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov.
Planarity-preserving clustering and embedding for large planar graphs.
Comput. Geom., 24(2):95–114, 2003.

i
i

“thesis” — 2015/4/29 — 21:44 — page 338 — #350 i
i

i
i

i
i

338 BIBLIOGRAPHY

[Did13] Walter Didimo. Density of straight-line 1-planar graph drawings. Infor-
mation Processing Leters, 113(7):236–240, 2013.

[Die05] Reinhard Diestel. Graph theory. Graduate texts in mathematics.
Springer, Berlin, 2005.

[DL12] Walter Didimo and Giuseppe Liotta. The crossing angle resolution in
graph drawing. In János Pach, editor, Thirty Essays on Geometric Graph
Theory. Springer, 2012.

[DLV98] Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spiral-
ity and optimal orthogonal drawings. SIAM Journal on Computing,
27(6):1764–1811, 1998.

[DM03] Adrian Dumitrescu and Joseph S. B. Mitchell. Approximation al-
gorithms for TSP with neighborhoods in the plane. J. Algorithms,
48(1):135–159, 2003.

[dPP88] Hubert de Fraysseix, Janos Pach, and Richard Pollack. Small Sets Sup-
porting Fáry Embeddings of Planar Graphs. In Janos Simon, editor,
Symposium on Theory of Computing (STOC ’88), pages 426–433, 1988.

[dPP90] Hubert de Fraysseix, Janos Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41–51, 1990.

[dR82] Hubert de Fraysseix and Pierre Rosenstiehl. A depth-first-search char-
acterization of planarity. Annals of Discrete Mathematics, 13:75–80,
1982.

[DR15] Giordano Da Lozzo and Ignaz Rutter. Planarity of streamed graphs.
In Proc. 9th International Conference on Algorithms and Complexity
(CIAC ’15), LNCS, 2015. To appear.

[DT88] Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane repre-
sentations of acyclic digraphs. Theor. Comput. Sci., 61:175–198, 1988.

[DT90] Giuseppe Di Battista and Roberto Tamassia. On-line graph algorithms
with SPQR-trees. In Mike Paterson, editor, Automata, Languages and
Programming, 17th International Colloquium, ICALP90, Warwick Uni-
versity, England, July 16-20, 1990, Proceedings, LNCS, pages 598–611.
Springer, 1990.

i
i

“thesis” — 2015/4/29 — 21:44 — page 339 — #351 i
i

i
i

i
i

BIBLIOGRAPHY 339

[DT96a] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of
triconnected components with spqr-trees. Algorithmica, 15(4):302–318,
1996.

[DT96b] Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing.
SIAM J. Comput., 25(5):956–997, 1996.

[ECH97] Peter Eades, Robert F. Cohen, and Mao Lin Huang. Online animated
graph drawing for web navigation. In G. Di Battista, editor, Proc. 5th
Int. Symp. Graph Drawing, GD, number 1353 in LNCS, pages 330–335.
Springer-Verlag, 1997.

[Ede87] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry, vol-
ume 10 of EATCS Monographs on Theoretical Computer Science.
Springer, 1987.

[EFK09] Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G.
Kobourov. On the characterization of level planar trees by minimal
patterns. In David Eppstein and Emden R. Gansner, editors, Graph
Drawing, 17th International Symposium, GD 2009, Chicago, IL, USA,
September 22-25, 2009. Revised Papers, pages 69–80, 2009.

[EFLN06] Peter Eades, Qing-Wen Feng, Xuemin Lin, and Hiroshi Nagamochi.
Straight-line drawing algorithms for hierarchical graphs and clustered
graphs. Algorithmica, 44(1):1–32, 2006.

[EHK+12] Peter Eades, Seok-Hee Hong, Naoki Katoh, Giuseppe Liotta, Pascal
Schweitzer, and Yusuke Suzuki. Testing maximal 1-planarity of graphs
with a rotation system in linear time - (extended abstract). In GD, vol-
ume 7704 of LNCS, pages 339–345. Springer, 2012.

[EK05] Cesim Erten and Stephen G. Kobourov. Simultaneous embedding of
planar graphs with few bends. J. Graph Algorithms Appl., 9(3):347–
364, 2005.

[EKLN05] Cesim Erten, Stephen G. Kobourov, Vu Le, and Armand Navabi. Simul-
taneous graph drawing: Layout algorithms and visualization schemes. J.
Graph Algorithms Appl., 9(1):165–182, 2005.

[EKP03] Cesim Erten, Stephen G. Kobourov, and Chandan Pitta. Intersection-free
morphing of planar graphs. In Giuseppe Liotta, editor, Graph Drawing,
11th International Symposium, GD 2003, Perugia, Italy, September 21-
24, 2003, Revised Papers, pages 320–331, 2003.

i
i

“thesis” — 2015/4/29 — 21:44 — page 340 — #352 i
i

i
i

i
i

340 BIBLIOGRAPHY

[ET76] Shimon Even and Robert E. Tarjan. Computing an st-numbering. Theo-
retical Computer Science, 2:339–344, 1976.

[Eve79] Shimon Even. Graph Algorithms. W. H. Freeman & Co, New York,
USA, 1979.

[Fár48] István Fáry. On straight line representation of planar graphs. Acta Uni-
versitaria Szegediensis, Sectio Scientiarum Mathematicarum, 11:229–
233, 1948.

[FB04] Michael Forster and Christian Bachmaier. Clustered level planarity. In
Peter van Emde Boas, Jaroslav Pokorný, Mária Bieliková, and Julius
Stuller, editors, SOFSEM, volume 2932 of LNCS, pages 218–228, 2004.

[FCE95a] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to draw a pla-
nar clustered graph. In Ding-Zhu Du and Ming Li, editors, Computing
and Combinatorics, First Annual International Conference, COCOON
’95, Xi’an, China, August 24-26, 1995, Proceedings, pages 21–30, 1995.

[FCE95b] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clus-
tered graphs. In Paul G. Spirakis, editor, Algorithms - ESA ’95, Third
Annual European Symposium, Corfu, Greece, September 25-27, 1995,
Proceedings, pages 213–226, 1995.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. J. Graph
Algorithms Appl., 6(3):353–370, 2002.

[Fen97] Qing-Wen Feng. Algorithms for Drawing Clustered Graphs. PhD thesis,
Department of Computer Science and Software engineering, University
of Newclastle, April 1997.

[FGJ+08] J. Joseph Fowler, Carsten Gutwenger, Michael Jünger, Petra Mutzel, and
Michael Schulz. An SPQR-tree approach to decide special cases of si-
multaneous embedding with fixed edges. In Ioannis G. Tollis and Maur-
izio Patrignani, editors, Graph Drawing, 16th International Symposium,
GD 2008, Heraklion, Crete, Greece, September 21-24, 2008. Revised
Papers, volume 5417 of LNCS, pages 157–168. Springer, 2008.

[FK07] J. Joseph Fowler and Stephen G. Kobourov. Minimum level nonplanar
patterns for trees. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan,
editors, Graph Drawing, 15th International Symposium, GD 2007, Syd-
ney, Australia, September 24-26, 2007. Revised Papers, pages 69–75,
2007.

i
i

“thesis” — 2015/4/29 — 21:44 — page 341 — #353 i
i

i
i

i
i

BIBLIOGRAPHY 341

[FKMP95] Michael R. Fellows, Jan Kratochvíl, Martin Middendorf, and Frank
Pfeiffer. The complexity of induced minors and related problems. Algo-
rithmica, 13:266–282, 1995.

[For05] Michael Forster. Crossings in clustered level graphs. PhD thesis, Uni-
versity of Passau, 2005.

[FP08] Fabrizio Frati and Maurizio Patrignani. A note on minimum area
straight-line drawings of planar graphs. In Seok-Hee Hong, Takao
Nishizeki, and Wu Quan, editors, Graph Drawing, volume 4875 of
LNCS, pages 339–344. Springer Berlin Heidelberg, 2008.

[FPS13] Jacob Fox, János Pach, and Andrew Suk. The number of edges
in k-quasi-planar graphs. SIAM Journal on Discrete Mathematics,
27(1):550–561, 2013.

[Ful14] Radoslav Fulek. Towards the hanani-tutte theorem for clustered graphs.
In Dieter Kratsch and Ioan Todinca, editors, Graph-Theoretic Concepts
in Computer Science - 40th International Workshop, WG 2014, Nouan-
le-Fuzelier, France, June 25-27, 2014. Revised Selected Papers, pages
176–188, 2014.

[Gab83] Harold N. Gabow. An efficient reduction technique for degree-
constrained subgraph and bidirected network flow problems. In Theory
of Computing (STOC’83), pages 448–456. ACM, 1983.

[Gar10] Gartner. Press releases. http://www.gartner.com/, 2010.

[GDLM12] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio
Montecchiani. h-quasi planar drawings of bounded treewidth graphs in
linear area. In Martin Charles Golumbic, Michal Stern, Avivit Levy, and
Gila Morgenstern, editors, Graph-Theoretic Concepts in Computer Sci-
ence - 38th International Workshop, WG 2012, Jerusalem, Israel, June
26-28, 2012, Revised Selcted Papers, pages 91–102, 2012.

[GJ77] M. R. Garey and David S. Johnson. The rectilinear steiner tree problem
in NP-complete. SIAM Journal of Applied Mathematics, 32:826–834,
1977.

[GJ83] M. R. Garey and D. S. Johnson. Crossing Number is NP-Complete.
SIAM Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983.

i
i

“thesis” — 2015/4/29 — 21:44 — page 342 — #354 i
i

i
i

i
i

342 BIBLIOGRAPHY

[GJL+02] Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel,
Merijam Percan, and René Weiskircher. Advances in c-planarity test-
ing of clustered graphs. In Stephen G. Kobourov and Michael T.
Goodrich, editors, Graph Drawing, 10th International Symposium, GD
2002, Irvine, CA, USA, August 26-28, 2002, Revised Papers, pages 220–
235, 2002.

[GJL+03] Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel,
Merijam Percan, and René Weiskircher. Subgraph induced planar con-
nectivity augmentation: (extended abstract). In Graph-Theoretic Con-
cepts in Computer Science, 29th International Workshop, WG 2003, El-
speet, The Netherlands, June 19-21, 2003, Revised Papers, volume 2880
of LNCS, pages 261–272. Springer, 2003.

[GJP+06] Elisabeth Gassner, Michael Jünger, Merijam Percan, Marcus Schaefer,
and Michael Schulz. Simultaneous graph embeddings with fixed edges.
In Fedor V. Fomin, editor, Graph-Theoretic Concepts in Computer Sci-
ence, 32nd International Workshop, WG 2006, Bergen, Norway, June
22-24, 2006, Revised Papers, pages 325–335, 2006.

[GKM08] Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing
and optimal edge insertion with embedding constraints. J. Graph Algo-
rithms Appl., 12(1):73–95, 2008.

[GLS05] Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. C-
planarity of extrovert clustered graphs. In Patrick Healy and Nikola S.
Nikolov, editors, Graph Drawing, 13th International Symposium, GD
2005, Limerick, Ireland, September 12-14, 2005, Revised Papers, pages
211–222, 2005.

[GM00] Carsten Gutwenger and Petra Mutzel. A linear time implementation
of spqr-trees. In Joe Marks, editor, Graph Drawing, 8th International
Symposium, GD 2000, Colonial Williamsburg, VA, USA, September 20-
23, 2000, Proceedings, pages 77–90, 2000.

[GM04] Carsten Gutwenger and Petra Mutzel. Graph embedding with minimum
depth and maximum external face (extended abstract). In Giuseppe Li-
otta, editor, Graph Drawing (GD’03), volume 2912 of LNCS, pages
259–272. Springer, 2004.

[GMW05] Carsten Gutwenger, Petra Mutzel, and René Weiskircher. Inserting an
edge into a planar graph. Algorithmica, 41(4):289–308, 2005.

i
i

“thesis” — 2015/4/29 — 21:44 — page 343 — #355 i
i

i
i

i
i

BIBLIOGRAPHY 343

[God95] Michael Godau. On the difficulty of embedding planar graphs with inac-
curacies. In Roberto Tamassia and Ioannis Tollis, editors, Graph Draw-
ing (GD ’94), volume 894 of LNCS, pages 254–261. Springer, 1995.

[GS81] B. Grunbaum and G.C. Shephard. The geometry of planar graphs. Cam-
bridge University Press, 1981.

[GS01] Craig Gotsman and Vitaly Surazhsky. Guaranteed intersection-free poly-
gon morphing. Computers & Graphics, 25(1):67–75, 2001.

[GT01a] Ashim Garg and Roberto Tamassia. On the computational complexity of
upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601–
625, 2001.

[GT01b] Ashim Garg and Roberto Tamassia. On the computational complexity of
upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601–
625, 2001.

[GT09] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foun-
dations, Analysis and Internet Examples. John Wiley & Sons, Inc., New
York, NY, USA, 2nd edition, 2009.

[Har69] Frank Harary. Graph theory. Addison-Wesley, 1969.

[HELP12] Seok-Hee Hong, Peter Eades, Giuseppe Liotta, and Sheung-Hung Poon.
Fáry’s theorem for 1-planar graphs. In COCOON, volume 7434 of
LNCS, pages 335–346. Springer, 2012.

[HHE08] Weidong Huang, Seok-Hee Hong, and Peter Eades. Effects of crossing
angles. In PacificVis, pages 41–46. IEEE, 2008.

[HJL13] Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw. Test-
ing simultaneous planarity when the common graph is 2-connected. J.
Graph Algorithms Appl., 17(3):147–171, 2013.

[HKL04] Patrick Healy, Ago Kuusik, and Sebastian Leipert. A characterization of
level planar graphs. Discrete Mathematics, 280(1-3):51–63, 2004.

[HL96] Michael D. Hutton and Anna Lubiw. Upward planning of single-source
acyclic digraphs. SIAM J. Comput., 25(2):291–311, 1996.

[HN09] Seok-Hee Hong and Hiroshi Nagamochi. Two-page book embedding
and clustered graph planarity. Technical report, Dept. of Applied Math-
ematics and Physics, University of Kyoto, Japan, 2009.

i
i

“thesis” — 2015/4/29 — 21:44 — page 344 — #356 i
i

i
i

i
i

344 BIBLIOGRAPHY

[HN10a] Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of hierarchi-
cal planar graphs and clustered planar graphs. J. Discrete Algorithms,
8(3):282–295, 2010.

[HN10b] Seok-Hee Hong and Hiroshi Nagamochi. A linear-time algorithm for
symmetric convex drawings of internally triconnected plane graphs. Al-
gorithmica, 58(2):433–460, 2010.

[HN14] Seok-Hee Hong and Hiroshi Nagamochi. Simpler algorithms for testing
two-page book embedding of partitioned graphs. In Zhipeng Cai, Alex
Zelikovsky, and Anu G. Bourgeois, editors, COCOON ’14, volume 8591
of LNCS, pages 477–488. Springer, 2014.

[Hos12] Daniel Hoske. Book embedding with fixed page assignments. Bachelor
thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2012.

[HP66] Frank Harary and Geert Prins. The block-cutpoint-tree of a graph. Pub-
licationes Mathematicae Debrecen, 13:103–107, 1966.

[HT73] John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for
graph manipulation [H] (algorithm 447). Commun. ACM, 16(6):372–
378, 1973.

[HT74] John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. J.
ACM, 21(4):549–568, 1974.

[HT08] Bernhard Haeupler and Robert E. Tarjan. Planarity algorithms via PQ-
trees (extended abstract). Electronic Notes in Discrete Mathematics,
31:143–149, 2008.

[JJKL08] Vít Jelínek, Eva Jelínková, Jan Kratochvíl, and Bernard Lidický. Clus-
tered planarity: Embedded clustered graphs with two-component clus-
ters. In Ioannis G. Tollis and Maurizio Patrignani, editors, Graph Draw-
ing, 16th International Symposium, GD 2008, Heraklion, Crete, Greece,
September 21-24, 2008. Revised Papers, pages 121–132, 2008.

[JKK+07] Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondrej Suchý,
and Tomás Vyskocil. Clustered planarity: Small clusters in eulerian
graphs. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan, editors,
Graph Drawing, 15th International Symposium, GD 2007, Sydney, Aus-
tralia, September 24-26, 2007. Revised Papers, pages 303–314, 2007.

i
i

“thesis” — 2015/4/29 — 21:44 — page 345 — #357 i
i

i
i

i
i

BIBLIOGRAPHY 345

[JKK+09] Eva Jelínková, Jan Kára, Jan Kratochvíl, Martin Pergel, Ondrej Suchý,
and Tomás Vyskocil. Clustered planarity: Small clusters in cycles and
eulerian graphs. J. Graph Algorithms Appl., 13(3):379–422, 2009.

[JKR13] Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-type the-
orem for planarity of partially embedded graphs. Comput. Geom.,
46(4):466–492, 2013.

[JL02] Michael Jünger and Sebastian Leipert. Level planar embedding in linear
time. J. Graph Algorithms Appl., 6(1):67–113, 2002.

[JLM98] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level planarity
testing in linear time. In Sue Whitesides, editor, Graph Drawing, 6th In-
ternational Symposium, GD’98, Montréal, Canada, August 1998, Pro-
ceedings, pages 224–237, 1998.

[JS09] Michael Jünger and Michael Schulz. Intersection graphs in simultaneous
embedding with fixed edges. J. of Graph Algorithms and Applications,
13(2):205–218, 2009.

[JSTV08] Vít Jelínek, Ondrej Suchý, Marek Tesar, and Tomás Vyskocil. Clustered
planarity: Clusters with few outgoing edges. In Ioannis G. Tollis and
Maurizio Patrignani, editors, Graph Drawing, 16th International Sym-
posium, GD 2008, Heraklion, Crete, Greece, September 21-24, 2008.
Revised Papers, pages 102–113, 2008.

[JW93] Klaus Jansen and Gerhard J. Woeginger. The complexity of detecting
crossingfree configurations in the plane. BIT Numerical Mathematics,
33(4):580–595, 1993.

[Kam06] Frank Kammer. Simultaneous embedding with two bends per edge in
polynomial area. In Lars Arge and Rusins Freivalds, editors, Algorithm
Theory - SWAT 2006, 10th ScandinavianWorkshop on Algorithm Theory,
Riga, Latvia, July 6-8, 2006, Proceedings, pages 255–267, 2006.

[Kan96] Goos Kant. Drawing planar graphs using the canonical ordering. Algo-
rithmica, 16(1):4–32, 1996.

[Kir88] David G. Kirkpatrick. Establishing order in planar subdivisions. Dis-
crete & Computational Geometry, 3:267–280, 1988.

i
i

“thesis” — 2015/4/29 — 21:44 — page 346 — #358 i
i

i
i

i
i

346 BIBLIOGRAPHY

[KK03] Lukasz Kowalik and Maciej Kurowski. Short path queries in planar
graphs in constant time. In Lawrence L. Larmore and Michel X. Goe-
mans, editors, Proceedings of the 35th Annual ACM Symposium on The-
ory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 143–
148, 2003.

[KLN91] Jan Kratochvíl, Anna Lubiw, and Jaroslav Nesetril. Noncrossing sub-
graphs in topological layouts. SIAM J. on Discrete Mathematics,
4(2):223–244, 1991.

[KLTT97] Goos Kant, Giuseppe Liotta, Roberto Tamassia, and Ioannis G. Tol-
lis. Area requirement of visibility representations of trees. Inf. Process.
Lett., 62(2):81–88, 1997.

[KM13] Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-
immersions and hardness of 1-planarity testing. Journal of Graph The-
ory, 72(1):30–71, 2013.

[Kra98] Jan Kratochvíl. Crossing number of abstract topological graphs. In
Sue Whitesides, editor, GD, volume 1547 of LNCS, pages 238–245.
Springer, 1998.

[KSSW07] Christian Knauer, Étienne Schramm, Andreas Spillner, and Alexander
Wolff. Configurations with few crossings in topological graphs. Com-
putational Geometry, 37(2):104–114, 2007.

[Kur30] Kazimierz Kuratowski. Sur le problème des courbes gauches en topolo-
gie. Fundamenta Mathematicae, 15:271–283, 1930.

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs:
methods and models. LNCS. Springer, Berlin, New York, 2001.

[Len89] Thomas Lengauer. Hierarchical planarity testing algorithms. J. ACM,
36(3):474–509, 1989.

[LJKR14] Giordano Da Lozzo, Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. Pla-
nar embeddings with small and uniform faces. In Algorithms and Com-
putation - 25th International Symposium, ISAAC 2014, Jeonju, Korea,
December 15-17, 2014, Proceedings, volume 8889 of LNCS, pages 633–
645. Springer, 2014.

i
i

“thesis” — 2015/4/29 — 21:44 — page 347 — #359 i
i

i
i

i
i

BIBLIOGRAPHY 347

[LMR98] Kelly A. Lyons, Henk Meijer, and David Rappaport. Algorithms for
cluster busting in anchored graph drawing. J. Graph Algorithms Appl.,
2(1), 1998.

[LPW05] Gad M. Landau, Laxmi Parida, and Oren Weimann. Gene proximity
analysis across whole genomes via PQ trees1. Journal of Computational
Biology, 12(10):1289–1306, 2005.

[LvK10] Maarten Löffler and Marc J. van Kreveld. Largest and smallest convex
hulls for imprecise points. Algorithmica, 56(2):235–269, 2010.

[MM11] Cristopher Moore and Stephan Mertens. The Nature of Computation.
Oxford University Press, 2011.

[MR01] Christopher Moore and John M. Robson. Hard tiling problems with
simple tiles. Discrete Comput. Geom., 26(4):573–590, 2001.

[MW99] Petra Mutzel and René Weiskircher. Optimizing over all combinato-
rial embeddings of a planar graph (extended abstract). In Gérard Cor-
nuéjols, Rainer E. Burkard, and Gerhard J. Woeginger, editors, Inte-
ger Programming and Combinatorial Optimization (IPCO’99), volume
1610 of LNCS, pages 361–376. Springer, 1999.

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, vol-
ume 12 of Lecture Notes Series on Computing. World Scientific, Singa-
pore, 2004.

[Opa79] Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–
114, 1979.

[Pat06] Maurizio Patrignani. On extending a partial straight-line drawing.
International Journal of Foundations of Computer Science (IJFCS),
17(5):1061–1069, 2006.

[PCA02] Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical
evaluation of aesthetics-based graph layout. Empirical Software Engi-
neering, 7(3):233–255, 2002.

[PCJ97] Helen C. Purchase, Robert F. Cohen, and Murray I. James. An experi-
mental study of the basis for graph drawing algorithms. ACM Journal of
Experimental Algorithmics, 2:4, 1997.

[Pix08] Pixelglow. Instaviz. http://instaviz.com/, 2008.

i
i

“thesis” — 2015/4/29 — 21:44 — page 348 — #360 i
i

i
i

i
i

348 BIBLIOGRAPHY

[PS85] Franco P. Preparata and Michael I. Shamos. Computational Geometry:
An Introduction. Springer, 1985.

[PSS96] János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the
crossing number. Algorithmica, 16(1):111–117, 1996.

[PT97] János Pach and Géza Tóth. Graphs drawn with few crossings per edge.
Combinatorica, 17(3):427–439, 1997.

[PT00a] János Pach and Géza Tóth. Which crossing number is it anyway? J.
Comb. Theory, Ser. B, 80(2):225–246, 2000.

[PT00b] Maurizio Pizzonia and Roberto Tamassia. Minimum depth graph em-
bedding. In Mike Paterson, editor, Algorithms - ESA 2000, 8th Annual
European Symposium, Saarbrücken, Germany, September 5-8, 2000,
Proceedings, LNCS, pages 356–367. Springer, 2000.

[Pur00] Helen C. Purchase. Effective information visualisation: a study of
graph drawing aesthetics and algorithms. Interacting with Computers,
13(2):147–162, 2000.

[PW01] János Pach and Rephael Wenger. Embedding planar graphs at fixed ver-
tex locations. Graphs and Combinatorics, 17(4):717–728, 2001.

[RCUG13] Eduardo Rivera-Campo and Virginia Urrutia-Galicia. A sufficient con-
dition for the existence of plane spanning trees on geometric graphs.
Computational Geometry, 46(1):1–6, 2013.

[RNG04] Md. Saidur Rahman, Takao Nishizeki, and Shubhashis Ghosh. Rectan-
gular drawings of planar graphs. J. Algorithms, 50(1):62–78, 2004.

[RNN98] Md. Saidur Rahman, Shin-Ichi Nakano, and Takao Nishizeki. Rectan-
gular grid drawings of plane graphs. Comput. Geom., 10(3):203–220,
1998.

[SB92] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs.
In Proceedings of the Conference on Human Factors in Computing Sys-
tems CHI’92, 1992.

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In SODA, pages
138–148. SIAM, 1990.

i
i

“thesis” — 2015/4/29 — 21:44 — page 349 — #361 i
i

i
i

i
i

BIBLIOGRAPHY 349

[Sch13] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and pla-
narity variants. J. of Graph Algorithms and Applications, 17(4):367–
440, 2013.

[Sch14] Marcus Schaefer. Picking planar edges; or, drawing a graph with a pla-
nar subgraph. In Christian A. Duncan and Antonios Symvonis, editors,
Graph Drawing - 22nd International Symposium, GD 2014, Würzburg,
Germany, September 24-26, 2014, Revised Selected Papers, pages 13–
24, 2014.

[SG01] Vitaly Surazhsky and Craig Gotsman. Controllable morphing of com-
patible planar triangulations. ACM Trans. Graph., 20(4):203–231, 2001.

[SG03] Vitaly Surazhsky and Craig Gotsman. Intrinsic morphing of compatible
triangulations. International Journal of Shape Modeling, 9(2):191–202,
2003.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proc. of the IEEE Symp. on Visual Lang.,
pages 336–343, 1996.

[SSS03] Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Recognizing
string graphs in NP. J. Comput. Syst. Sci., 67(2):365–380, 2003.

[Ste51] Sherman K. Stein. Convex maps. Proceedings of the American Mathe-
matical Society, 2:464–466, 1951.

[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[The13] The Khronos Group. WebGL, Web Graphic Library – OpenGL ES
2.0 for the Web, 2013. http://www.khronos.org/webgl/ (acc.
2014).

[Tho83] Carsten Thomassen. Deformations of plane graphs. J. Comb. Theory,
Ser. B, 34(3):244–257, 1983.

[Tho84] Carsten Thomassen. Plane representations of graphs. In J. A. Bondy
and U. S. R. Murty, editors, Progress in Graph Theory, pages 43–69.
Academic Press, New York, NY, 1984.

[Tut70] William T. Tutte. Toward a theory of crossing numbers. Journal of
Combinatorial Theory, 8(1):45 – 53, 1970.

i
i

“thesis” — 2015/4/29 — 21:44 — page 350 — #362 i
i

i
i

i
i

350 BIBLIOGRAPHY

[TV85] Robert Endre Tarjan and Uzi Vishkin. An efficient parallel biconnectiv-
ity algorithm. SIAM J. Comput., 14(4):862–874, 1985.

[Val81] Leslie G. Valiant. Universality considerations in VLSI circuits. IEEE
Transaction on Computers, 30(2):135–140, 1981.

[Val98] Pavel Valtr. On geometric graphs with no k pairwise parallel edges.
Discrete & Computational Geometry, 19(3):461–469, 1998.

[Wag36] Klaus Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 2:26–32, 1936.

[Wag37] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathema-
tische Annalen, 114(1):570–590, 1937.

[Whi33] Hassler Whitney. 2-isomorphic graphs. Amer. J. Math., 55:245–254,
1933.

[Woe02] Gerhard J. Woeginger. Embeddings of planar graphs that minimize the
number of long-face cycles. Oper. Res. Lett., pages 167–168, 2002.

[WPCM02] Colin Ware, Helen C. Purchase, Linda Colpoys, and Matthew McGill.
Cognitive measurements of graph aesthetics. Information Visualization,
1(2):103–110, 2002.

[WSP12] Andreas Wotzlaw, Ewald Speckenmeyer, and Stefan Porschen. General-
ized k-ary tanglegrams on level graphs: A satisfiability-based approach
and its evaluation. Discrete Applied Mathematics, 160(16-17):2349–
2363, 2012.

[ZH03] Huaming Zhang and Xin He. Compact visibility representation and
straight-line grid embedding of plane graphs. In Algorithms and Data
Structures, 8th International Workshop, WADS 2003, Ottawa, Ontario,
Canada, July 30 - August 1, 2003, Proceedings, volume 2748 of LNCS,
pages 493–504. Springer, 2003.

	Contents
	Introduction
	Preliminaries & Background
	Background & Basics
	Graph Preliminaries and Definitions
	Basic Definitions
	Planar Graphs
	Graph Drawing

	Data Structures
	Connectivity
	BC-trees
	SPQR-trees
	PQ-trees

	Planarity of Simultaneous and Clustered Graphs
	Clustered Graphs
	Simultaneous Graphs

	Clustered Planarity
	Relaxing the Constraints of Clustered Planarity
	Introduction
	Preliminaries
	Drawings of Clustered Graphs with Crossings
	Lower bounds
	Relationships between , and
	Complexity
	Open Problems

	Planar Embeddings with Small and Uniform Faces
	Introduction
	Preliminaries
	Minimizing the Maximum Face
	Perfectly Uniform Face Sizes
	Open Problems.

	Clusters and Levels
	Strip Planarity Testing
	Introduction
	Preliminaries
	How To Test Strip Planarity
	Reduction
	Conclusions

	C-Level Planarity and T-Level Planarity Testing
	Introduction and Overview
	NP-Hardness
	Polynomial-Time Algorithms
	Open Problems

	Simultaneous Embedding with Fixed Edges
	Advancements on SEFE and Partitioned Book Embedding Problems
	Introduction
	Sunflower SEFE
	Partitioned T-Coherent k-Page Book Embedding
	Max SEFE
	Conclusions

	Deepening the Relationship between SEFE and C-Planarity
	Introduction
	Preliminaries
	Reduction
	The Expressive Power of C-Planarity
	Conclusions and Open Problems

	Drawings with Crossings
	Algorithms and Bounds for Drawing Graphs with Crossing-free Subgraphs
	Introduction
	Preliminaries and Definitions
	Straight-line Drawings
	Polyline Drawings
	Conclusions and Open Problems

	Planarity of Streamed Graphs
	Introduction
	Notation and Preliminaries
	Complexity
	Algorithms for -Stream Drawings with Backbone
	Conclusions

	Appendices
	Appendix A: Other Research Activities
	Appendix B: List of Publications
	Bibliography

