Logical Data Expiration
A Tutorial

David Toman

david@uwaterloo.ca

School of Computer Science, University of Waterloo, Canada

nnnnnnnnnnn

Data Evolution and Histories

Changes of data are captured (conceptuallyiistories

11 11
Sol| S1| 5o SN

T 117 -

to t1 to Ctn—1ty

» SstatesS; describesystem state

= transitionsS; — S;.; represent system evolution
= append only histories (new states at the end)

€y Logical Data Expiration — p. 2/56

Data Is accessed usiiogieries

simple value look-ups vs. complex query languages

current state only vs. accessgast states
analysis of data warehouse evolution
enforcement of temporal integrity constraints
monitoring applications

Logical Data Expiration — p. 3/56

ation

on: What data do we need to keep?

nnnnnnnnnnn

Question: What data do we need to keep?

1. Policy-driven expiration
2. Querydriven (logical) expiration

Logical Data Expiration — p. 4/56

Question: What data do we need to keep?

1. Policy-driven expiration
2. Querydriven (logical) expiration

Data to be expired is determined by

the (class of) queriesve are allowed to
ask w.r.t.all possible extension®f a history

Logical Data Expiration — p. 4/56

Record keeping/business rules:
— tax forms must be kept 5 years back

Enforcingdynamic integrity constraints:
= don’t hire anyone you've fired in the past

Caching policy management:
— what data should be moved to backup storage?

Moving window queries, eftc. ..

Logical Data Expiration — p. 5/56

Temporal Database Primer

Expiration Operators
how good Is an expiration operator?

Administrative Approaches to Expiration
— materialized views and gueries
Query-driven Expiration

— Temporal Logic and Materialized Views
— First-order Queries and Partial Evaluation
space limits for expiration operators

Infinite Extensions of Histories
= Certain/Potential Answers

Logical Data Expiration — p. 6/56

TDB Primer

nnnnnnnnnnn

Temporal Databases and Histories

System states: Relational structures (fixed schema)
Time: discrete (integer-like)o, ..., N,...}
1. Snapshot Temporal Database:

= time-indexed sequence of relational structures
= appendonly: H; Dy

2. Timestamp Temporal Database:
= time-indexed tuples (usingtamporal attribute

Choices 1 and 2 equivalent [Chomicki and Toman, 1998]

- Logical Data Expiration — p. 8/56

Information about TA and courses by semester:

Snapshot Timestamp
0 {(John, CS448)} { (0, John, CS448),
1 {(John, CS448), (1, John, CS448),
(Sue, CS234)} (1, Sue, CS234),
((2,
((3,

2 {(John, CS448)} 2, John, CS448),
3 {(Sue, CS234)} 3,Sue, CS234) }

Logical Data Expiration — p. 9/56

Queries: first-order formulas (over a fixed schema)

1. Temporal logic (FOTL)

= modal (temporal) connectives
= Implicit references to time

2. Temporal Relational Calculus (2-FOL):

— temporal variables/attributes/quantifiers
= explicit access to time and ordering of time

Proposition 1 FOTL cannot express all 2-FOL queries.
[Abiteboul et al., 1996, Toman and Niwinski, 1996,
Toman, 2003b]

%’3 Logical Data Expiration — p. 10/56

Examples

Students who TA'ed at least one class twice:
= In (past) FOTL.:
{z: o(Fy. TA(z,y) N eeTA(x,y))}
= in 2-FOL.:
{a . Jtq,to.t1 < to Ay TA(t1, x,y) A TA(t2, 2, y)}

€y Logical Data Expiration — p. 11/56

Examples

Students who TA'ed at least one class twice:
= In (past) FOTL.:
{z: o(Fy. TA(z,y) N eeTA(x,y))}
= in 2-FOL.:
{a . Jtq,to.t1 < to Ay TA(t1, x,y) A TA(t2, 2, y)}

dtq,t0.t1 < to AVa,y. TA(t1,2,y) < TA(ty, z,y)
cannot be expressed in FOTL

€y Logical Data Expiration — p. 11/56

Finité vs. Infinite Histories

Semantics of queries defined w.r.t:

= current (finite) history

— guery evaluation on a finite temporal database
= a completion of current history

= hypothetical reasoning

€y Logical Data Expiration — p. 12/56

Data Expiration

nnnnnnnnnnn

An expiration operatoiis a triple(0°, A%, Q%) s.t.:
1. it provides annductive definition

E(()) = 0° (initial state)
E(H;D) = A*(E(H),D) (extension maintenance)

2. It maintains the following invariant:

Q(H) =Q*(E(H)) (answer preservation)

© Logical Data Expiration — p. 14/56

Examples

= theidentity operator:

0% = ()

Eia __
A% =) HNS.H: S @ =d

= the currentoperator:

06 = ()

Enow _
Abnow = XHNS.(S) (=0

the queriepreserved

aredifferent . .

Logical Data Expiration — p. 15/56

Another Example

» (losslessrompressiorbased operators:

(€compress = compress({))
A&compress — A [T \S.compress(decompress(H); S)
QCcomvress = \H.QQ(decompress(H))

= compress anddecompress arelossless
...no reduction; H| ~ |Eompress(H)|

= special casenterval timestamps

€y Logical Data Expiration — p. 16/56

Given anexpiration operator

for what class of queries it preserves answers?
= can these be characterized syntactically?

Given asetof temporal queries:

IS there an expiration operator that
= maintains answers to these queries?
=- can be found algorithmically?

for whatquery languages

Logical Data Expiration — p. 17/56

What is the space needed byH) in terms of
size of the original history,H

length of H (number of statesdomy|),

the size of theactive data domaiwnf 4 (hnumber of
constants that have appeareddn|domp|),

size of the answea(H),
size of the queries.

Logical Data Expiration — p. 18/56

How Good is It ?

What is the space needed byH) in terms of
= size of the original history,H

= length of H (number of statesdomr|),

= the size of thective data domaif A (number of
constants that have appeareddn|domp|),

= Size of the answe)(H),
= size of the queries.

General Goal: make | £(H)| independent of
length of H. = bounded expiration operator

Logical Data Expiration — p. 18/56

Proposition 2 &, IS bounded.

Proposition 3 &.ompress CANNOL be bounded for lossless
compression schemes.

&g for a temporal query) in a languagec?
... depends on (expressive power)of

-~ Logical Data Expiration — p. 19/56

Administrative
Expiration Policies

nnnnnnnnnnn

Administrative Approaches

Query-independent expiration policies
» characterize gqueries whose answers are not affected

€y Logical Data Expiration — p. 21/56

Administrative Approaches

Query-independent expiration policies
» characterize gqueries whose answers are not affected

expiration operator = a view of the history
= the view must beself-maintainable

guery reformulation = query over the view
= answering queries over vievpsoblem

€y Logical Data Expiration — p. 21/56

Administrative Approaches

Query-independent expiration policies
» characterize gqueries whose answers are not affected

expiration operator = a view of the history
= the view must beself-maintainable

guery reformulation = query over the view
= answering queries over vievpsoblem

= detect attempts to access thessing data
= at run-time

€y Logical Data Expiration — p. 21/56

Common approac
1. policies basec

mistory truncationor cutoff point
on fixeabsolute cutoff pointor

2. policies basec

onow-relative cutoff point

= generalization of th€'d and the£™°" operators

Logical Data Expiration — p. 22/56

Common ap
1. policies
2. policies

0roac
DaSeC

mistory truncationor cutoff point
on fixeabsolute cutoff pointor

DaSel

onow-relative cutoff point

= generalization of th€'d and the£™°" operators

Example: Vacuuming [Jensen, 1995].
p(R) : e (aremovespecification), and
k(R) : e (akeepspecification).
R I1s a temporal relatiore a selection condition
absolutetowrelative specifications

Logical Data Expiration — p. 22/56

A Query-driven Expiration:.

Finite Histories

nnnnnnnnnnn

Query Driven Expiration

EXxpiration for queries in a temporal query language

— Past FOTL (and variants)
= Future FOTL
= 2-FOL (temporal relational calculus)

€y Logical Data Expiration — p. 24/56

EXxpiration for queries in a temporal query language

— Past FOTL (and variants)
= Future FOTL
= 2-FOL (temporal relational calculus)

Finite relational structures can be completely
characterized by first-order queries.
= best expiration operator for a fixed que&py

Logical Data Expiration — p. 24/56

EXxpiration for queries in a temporal query language

— Past FOTL (and variants)
= Future FOTL
= 2-FOL (temporal relational calculus)

Finite relational structures can be completely
characterized by first-order queries.
= best expiration operator for a fixed que&py

Optimal expiration operator cannot exist.
= we look for abounded expiration operator.

Logical Data Expiration — p. 24/56

1. Removal of “old” states (expiration)

— removes aubsetof existing states
= no other changes (histors history)

2. Auxiliary (non-temporal) view maintenance

= maintainsauxiliary relations
= maps a history ta single extended state

3. Specialization of queries
= specialize a query w.r.t. the known prefik

€ Logical Data Expiration — p. 25/56

Past Temporal Logic

= Syntax: First-order logic past temporal operators

Q= RXx)|F|IQNQ[-Q|3r.Q[eQ | since Q)

m Semantics:

= queries over unbounded past: : ¢ R(z)}

€y Logical Data Expiration — p. 26/56

Unfolding and Materialized Views

= Crux of the approach:

Q1 since Q2 = @1 N e(Q2 V (Q; since ()7))

= auxiliary viewsfor temporal subformulas
= only the “previous” state needed

€y Logical Data Expiration — p. 27/56

Unfolding and Materialized Views

= Crux of the approach:

Q1 since Q2 = Q1 N e(Q2V (Q; since ()7))

= auxiliary viewsfor temporal subformulas
= only the “previous” state needed

m recurrent definitions to maintain the views.

al R R"
()| false Q™!
()1 since (o | false Q7 A (3—1 V. Rg—l)

€y Logical Data Expiration — p. 27/56

Query: Students that TA'ed at least one class twice.
{z : o(Fy.TA(z,y) N eeTA(x,y))}

Temporal subgueries:
a; = ¢TA(z,y) and
ay = 0o TA(x,y) and
a3 = Jdy. TA(z,y) A eeTA(x,y).

Logical Data Expiration — p. 28/56

Example (cont.)

Inductive maintenance of views:

R, (z,y) R, (x,y)

(John, CS448))

(John, CS448),
(Sue, CS234) }

{ (John, CS448), { (John, CS448),
(Sue,CS234) } (Sue, CS234)

{ (John, CS448), { (John, CS448),
(Sue, CS234) } (Sue, CS234)

{ {
{ { (John, CS448)

;o
;o

{
}

{
}

Ros ()

John }
John }

John,
Sue }

Logical Data Expiration — p. 29/56

= o(p(x1) A ... Ap(T))
= ({a1}, {CL2} {as}, ... {an}).

Fora = e(p(x1) A ... Ap(xi)):
Rol = (n—1)"
. the same holds for every prefix éf.

Full details: [Chomicki, 1995],

= subsumes approaches based on TRA
[Yang and Widom, 1998, Yang and Widom, 2000].

€ Logical Data Expiration — p. 30/56

Syntax:

Q= RX)|F|QAQ|-Q|32.Q|8Q | uX.Q

Unfolding a fixpoint: u X.QQ = Q(uX.Q)
Inductive maintenance of auxiliary relation:

al R R"
o) false Q™!

= careful definition ofQ"!.

Full details: [Toman, 2003a]

Logical Data Expiration — p. 31/56

access toeal timetime instants

— aclk constant in each state (curreasal time)
— not part of the active data domain

additional temporal operators
Q = ... | since.. | o,

= semantics respects c distances

materialized views now contaphstancevalues
= bounded by

= bounded expiration iflk’ — clk’ ' > ¢ > 0

Logical Data Expiration — p. 32/56

Future Temporal Logic

m Syntax:

Q= R(x)| F|QAQ|-Q|32.Q|0Q | Q until Q

m Semantics)(H) =1{60 : H,0,0

= Q}

= still active domain semantics

Logical Data Expiration — p. 33/56

Future Temporal Logic

m Syntax:

Q= R(x)| F|QAQ|-Q|32.Q|0Q | Q until Q

m Semantics)(H) =1{60 : H,0,0

= Q}

= still active domain semantics
= Unfolding rule (similarly to PastTL):

Q1 until Q2 = Q1 A (0Q2 V O(Q1 until Q7))

= now we need to represent a formula whtbles
to be substituted when the history is extended.

Logical Data Expiration — p. 33/56

[Lipeck and Saake, 1987, Lipeck et al., 1994]
= restrictions to Future FOTL syntax: 3 layers
1. FO formulas (evaluated instate,

2. TL(FO) formulas: temporal outside (1),

3. Universal guantifiers on top of (2)

Automata-based approach

— designed in th@ropositionalsetting
= mix quantifiers and temporal connectives?

... bounded expiration based on an automaton
for (2) implemented byriggers

Logical Data Expiration — p. 34/56

Two-sorted First-order Language

= Temporal Relational Calculus (2-FOL)
L:= R(t,x)|z = 2'|t < t'|LAL|LN=L|LVL|3z.L|3t.L
for R(t,x) true in H iff R(x) is true inD,

A bounded expiration operator for 2-FOL?
= conjectured that it does NOT exist

€y Logical Data Expiration — p. 35/56

EXpiration Revisited

ldea: remove those states that
1. do not contribute to query answer (duen
2. contribute duplicate information (due

€y Logical Data Expiration — p. 36/56

ldea: remove those states that
1. do not contribute to query answer (duen
2. contribute duplicate information (due 0

Easy for a fixed history:

— compute answer t@Q bottom-up
— propagate “back” to remove redundant data

NOTE: 2-FOL queries withunbounded answersannot
have bounded expiration operator
— consider onlybounded queries

€ Logical Data Expiration — p. 36/56

Handling History Extensions

Atomic formulas:
4
T =a a € domp

.HEiVaEdomD.az#a a=e

a
(t=3¢ s € domry

|t > maxtimgdomy) s=e
Specialization of base relatioasd their extensions

R(t,x) = (\V tfu@[iﬁ]) v (\V R(tX)[ﬁ’;])

acRp, acdompU{e}

= depend®nly on the future extensions of history

- Logical Data Expiration — p. 37/56

Query Specialization

({trug[*X] : R(s,a) € D}

U{R(t,x)[5x] : a € (domp U {e})Ix]} Q = R(t,x)
{Q1[x] : Q1] € PEH(Qu), F K] A F} Q=Qi1AF
{Q1 A Q3lan] - Q1] € PER(Q1), Q5[)) € PER(Q2), F B]} QR=Q1 /A Q2
{By-V gy 2v1epe r(@u) @] - 30.Q7 (] € PER(Q1)} Q=3
PEL(Q) = ¢ {(Ft-V i petiepes, (@) QUIE] - 3s.QY[XE] € PER(Q1)} Q=3t.Q1

{Q1 A —Q5[3] : Q1[X] € PEu(Q1), Q5[] € PEA(Q2)}

U{Q1[Z] : Q1[Z] € PER(Q1), Q5[F] € PEH(Q2)} Q = Q1 A Q2
{Q1 Vv Q53] : Q1 € PER(Q1)[3]: Q5[] € PER(Q2)}

U{Q13] : Q1[X] € PEm(Q1), Q5[%] € PEm(Q2)}

U{Q3[3] : Q1[3] € PER(Q1), Q5[3] € PER(Q2)} Q =Q1V Q2

€y Logical Data Expiration — p. 38/56

Duplicate Information Removal

IDEA: Modify the PEy for quantification over time:

3.\ QY]

o B XL1EPE(Q1)
seTB,(t)

where Q7[X] € PEg(Q;) for some s

€y Logical Data Expiration — p. 39/56

Duplicate Information Removal

IDEA: Modify the PEy for quantification over time:

G\ Q)R]
QY XLIePEL (Q1)
seTB,(t) —

where Q7[X] € PEg(Q;) for some s

€y Logical Data Expiration — p. 39/56

Equivalence w.r.t. History Extensions

Definition 1: Let Q; .], Q2[%,] € PEx(Q) for s # s».

We definely, | ~g [xL,] iff for any extensionH’ of H

(a,51) € QUH; H') <= (a,59) € Q(H; H')

Definition 2: TB,(t) is the set of representatives of the
X1 ~6 [%,] equivalence classes [e.g., mind.

€y Logical Data Expiration — p. 40/56

Residual History Reconstruction

= Specialization-baseédxpiration:

Q(H) PE#(Q)(D)
PEr.7(Q) PE (PER(Q))

= We usePEy(Q) to constructe (H)
= temporal variableé, — a unary relation

T;(t) = |) TBa(t).

= each quantifiett;.)" in Q) is restricted tdl;(t)
= a stateD,; € H expires if; & | J. T;.

€y Logical Data Exp

iration — p. 41/56

Q(H; H') = Q(EQ(H); H')

for al
| Eq(H)

H, H' histories and) FO query
< f(‘domD‘a ’Q)’

f Is an exponential tower iIn number of nested

| Eq(H)

..and can

< |H| + |dom||Q)|

ne implemented by FO gueries/updates.

Logical Data Expiration — p. 42/56

Example: dty,t5.t1 < ts AV .R(t1,2) <= R(ts,)

Potentially we neec
contains distinct su

to keep all states for whigh
nsets dbm p

= potentially all subsets alom
= any residual history is exponential i[domp|.

sequences of statggeld more exponents.

non-elementary blowup even when translating
monadic FO to propositional TL

Logical Data Expiration — p. 43/56

General Lower Bounds

nnnnnnnnnnn

Limits of Bounded Encoding

Clearly, this cannot work for all possible queries:

Example 1: Query{t: R(t)}.
answer~ |domy H |

Example 2: Query{t: R(t) AVt R(t') -t > 1t'}.
answer~ log(|domy H|)

€y Logical Data Expiration — p. 45/56

Example: “Iis the number of states containiag
greater that the number of states contairtin§

= we need(log(|domry|)) space for counter(s)
= O(log(|domy|)) is sufficient.

Conjecture: we can use the above technique (but
remember counts of the expired values) to answer
gueries with counting

= | EQ(H)| < POLY (log(|domyr))

€ Logical Data Expiration — p. 46/56

Example (in SQL-style syntax):

(select 'I’
from R
where R.x='a’) except all (select '1’

from R
where R.xX='b")

. IS nonempty Iff

the number of states containings greater that
the number of states containihg

= Just like counting . ..

© Logical Data Expiration — p. 47/56

Example:

while 3¢.R(t,a) A 3t.R(t,b) do { while botha andb exist in R }
deleteR(¢, a)

whereVt' . R(t',a) D t' > t; { delete (chronologically) firsi }
delete R(t,0)

whereVt' . R(t',b) D t' > t; { delete (chronologically) first }
return J3t.R(¢, a) { return true ifR contains am }

= we need(log(|domy|)) space for counter(s)
= just like for counting ...

€ Logical Data Expiration — p. 48/56

No bounded operator can exist:
= [Toman, 2003a] showQ(|dom|) lower bound

p =z, y.o(Q(z, y)ApX.R(z,y)Vodz. X (z, 2)AX(z,y))

State Database instance

0 1} or {Q(a,0)}

o {} or {Q(ab))
n+1 {R(a,c1),...,R(c, ciz1),...,R(cp,b)}

Logical Data Expiration — p. 49/56

Certain and Potential
Answers

nnnnnnnnnnn

Definition 4 Let A be a finite history() a query (in an
appropriate query language), artda substitution.

0 I1s a potential answer fo€) with respect toH |if
there is an infinite completiof’ of H such that
H'. 0= Q.

0 1s a certain answer fo€) with respect taH If for
all infinite completiong?’ of H we haveH’, 0 = Q).

potential answera direct generalization of gfotential
constraint satisfactiopiChomicki, 1995].

Logical Data Expiration — p. 51/56

Proposition 5 ([Gabbay et al., 1994]) Satisfaction for
two dimensional propositional temporal logic over
natural numbers-based time domain is not decidable.

Proposition 6 ([Chomicki, 1995]) For past formulas
potential constraint satisfaction is undecidable.

Proposition 7 ([Chomicki and Niwinski, 1995])
For biquantified formulas

= no internal quantifiers: EXPTIME,
= a single internal quantifier: undecidable.

... data expiration Is a moot point

€ Logical Data Expiration — p. 52/56

garbage collection in programming languages
— navigationalguery language (ala IMS)

nased omeachability queries

data streams and streaming queries

data stream

synopse(is)
streaming query
standing query

history
residual history
temporal query
fixed query

Logical Data Expiration — p. 53/56

FutureTL
— expiration operator for full FOETL

Rich Temporal Domains (more than lineak)
— constraint DB techniques [Libkin et al., 2000]

Space Bounds For Aggregate Queries
— a weaker bound, e.d§ H| € O(log(|domypH|)?

Decidable Certain/Potential Answers

= Decidable languages (monodic TL)
= Optimal Expiration Operators?

€ Logical Data Expiration — p. 54/56

A chapter inLogics for Emerging Applications of
DatabasesJ. Chomicki, G. Saake, and R. van der
Mayden (eds.), Springer 2003.

(http://db.uwaterloo.ca/"david/book-lead.ps)
Part of this research was done whil&aBRICS
Centre for Basic Research in Computer Science
funded by the Danish National Science Foundation.

The research was supported by the National

Sciences and Engineering Research Council of
Canada (NSERC).

Logical Data Expiration — p. 55/56

Advertisment

Call For Papers

The 12th International Symposium on
TEMPORAL REPRESENTATION AND REASONING
(TIME 2005)

Burlington, Vermont, USA, June 23-25, 2005
URL: http://time2005.cse.buffalo.edu/

Papar submission: 11 pages on January 22, 2005.

€y Logical Data Expiration — p. 56/56

References

[Abiteboul et al., 1996] Abiteboul, S., Herr, L., and Van d@assche, J. (1996).
Temporal Versus First-Order Logic to Query Temporal Dasaisa INACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Datalsgstems
pages 49-57.

[Chomicki, 1995] Chomicki, J. (1995). Efficient Checkingl@mporal Integrity
Constraints Using Bounded History Encodifid®DS 20(2):149-186.

[Chomicki and Niwinski, 1995] Chomicki, J. and Niwinski, PL995). On the
Feasibility of Checking Temporal Integrity Constraind®urnal of Computer
and System Sciengésl (3):523-535.

[Chomicki and Toman, 1998] Chomicki, J. and Toman, D. (1998mporal
Logic in Information Systems. In Chomicki, J. and Saake g@itors,Logics
for Databases and Information Systerpages 31-70. Kluwer.

[Gabbay et al., 1994] Gabbay, D. M., Hodkinson, |. M., and iiegs, M.
(1994). Temporal Logic: Mathematical Foundations and Computadiofs-
pects Oxford University Press.

[Jensen, 1995] Jensen, C. S. (1995). Vacuuming. In SnaglgRasT., editor,
The TSQL2 Temporal Query Languageages 447-460.

[Libkin et al., 2000] Libkin, L., Kuper, G., and Paredaens, editors (2000).
Constraint DatabasesSpringer.

[Lipeck et al., 1994] Lipeck, U. W., Gertz, M., and Saake, ®94). Transi-
tional Monitoring of Dynamic Integrity Constraint$EEE Data Engineering
Bulletin.

[Lipeck and Saake, 1987] Lipeck, U. W. and Saake, G. (198®nikring Dy-

namic Integrity Constraints Based on Temporal Lodidormation Systems
12(3):255-269.

56-1

[Toman, 2003a] Toman, D. (2003a). Logical Data ExpirationFixpoint Ex-
tensions of Temporal Logics. International Symposium on Spatial and Tem-
poral Databasespage to appear. Springer LNCS.

[Toman, 2003b] Toman, D. (2003b). On Incompleteness of Milithensional
First-order Temporal Logics. Imternational Symposium on Temporal Rep-
resentation and Reasoningage to appear. IEEE Press.

[Toman and Niwinski, 1996] Toman, D. and Niwinski, D. (199&irst-Order
Queries over Temporal Databases Inexpressible in Tempoa€. In Ad-
vances in Database Technology, EDBT’3®lume 1057, pages 307-324.
Springer.

[Yang and Widom, 1998] Yang, J. and Widom, J. (1998). Maimteg Temporal
Views over Non-Temporal Information Sources for Data Wareding. In
Advances in Database Technology, EDBT’P&ges 389-403.

[Yang and Widom, 2000] Yang, J. and Widom, J. (2000). Temipdeaw Seli-

Maintenance. InPAdvances in Database Technology, EDBT'@@ges 395—
412.

56-2

	Data Evolution and Histories
	Data Access and Queries
	Expiration
	Expiration
	Expiration

	Examples
	Outline of the Talk
	TDB Primer
	Temporal Databases and Histories
	Example
	Temporal Queries
	Examples
	Examples

	Finite vs. Infinite Histories
	Data Expiration
	Expiration Operator
	Examples
	Another Example
	Expiration vs. Queries Revisited
	How Good is It ?
	How Good is It ?

	Example
	Administrative \[5mm] Expiration Policies
	Administrative Approaches
	Administrative Approaches
	Administrative Approaches

	Cutoff Points
	Cutoff Points

	A Query-driven Expiration:\[5mm] Finite Histories
	Query Driven Expiration
	Query Driven Expiration
	Query Driven Expiration

	Query Driven Approaches
	Past Temporal Logic
	Unfolding and Materialized Views
	Unfolding and Materialized Views

	Example
	Example (cont.)
	Space Utilization
	Adding Fixpoints
	Metric Temporal Logic
	Future Temporal Logic
	Future Temporal Logic

	Biquantified Formulas
	Two-sorted First-order Language
	Expiration Revisited
	Expiration Revisited

	Handling History Extensions
	Query Specialization
	Duplicate Information Removal
	Duplicate Information Removal

	Equivalence w.r.t.~History Extensions
	Residual History Reconstruction
	Properties
	Space: Lower Bounds
	General Lower Bounds
	Limits of Bounded Encoding
	Counting
	Duplicates
	Retroactive Updates
	Full Future$mu $TL
	Certain and Potential\[2mm] Answers
	Infinite Histories
	Infinite Histories (cont.)
	Related Problems
	Open Problems
	Acknowledgment
	Advertisment

