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Data Evolution and Histories

Changes of data are captured (conceptuallyiistories

11 11
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to t1 to Ctn—1ty

» SstatesS; describesystem state

= transitionsS; — S;.; represent system evolution
= append only histories (new states at the end)
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Data Is accessed usiiogieries

simple value look-ups vs. complex query languages

current state only vs. accessgast states
analysis of data warehouse evolution
enforcement of temporal integrity constraints
monitoring applications
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ation

on: What data do we need to keep?
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Question: What data do we need to keep?

1. Policy-driven expiration
2. Querydriven (logical) expiration
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Question: What data do we need to keep?

1. Policy-driven expiration
2. Querydriven (logical) expiration

Data to be expired is determined by

the (class of) queriesve are allowed to
ask w.r.t.all possible extension®f a history
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Record keeping/business rules:
— tax forms must be kept 5 years back

Enforcingdynamic integrity constraints:
= don’t hire anyone you've fired in the past

Caching policy management:
— what data should be moved to backup storage?

Moving window queries, eftc. ..
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Temporal Database Primer

Expiration Operators
how good Is an expiration operator?

Administrative Approaches to Expiration
— materialized views and gueries
Query-driven Expiration

— Temporal Logic and Materialized Views
— First-order Queries and Partial Evaluation
space limits for expiration operators

Infinite Extensions of Histories
= Certain/Potential Answers
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TDB Primer
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Temporal Databases and Histories

System states: Relational structures (fixed schema)
Time: discrete (integer-like)o, ..., N,...}
1. Snapshot Temporal Database:

= time-indexed sequence of relational structures
= appendonly: H; Dy

2. Timestamp Temporal Database:
= time-indexed tuples (usingtamporal attribute

Choices 1 and 2 equivalent [Chomicki and Toman, 1998]
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Information about TA and courses by semester:

Snapshot Timestamp
0 {(John, CS448)} { (0, John, CS448),
1 {(John, CS448), (1, John, CS448),
(Sue, CS234)} (1, Sue, CS234),
( (2,
( (3,

2 {(John, CS448)} 2, John, CS448),
3 {(Sue, CS234)} 3,Sue, CS234) }
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Queries: first-order formulas (over a fixed schema)

1. Temporal logic (FOTL)

= modal (temporal) connectives
= Implicit references to time

2. Temporal Relational Calculus (2-FOL):

— temporal variables/attributes/quantifiers
= explicit access to time and ordering of time

Proposition 1 FOTL cannot express all 2-FOL queries.
[Abiteboul et al., 1996, Toman and Niwinski, 1996,
Toman, 2003b]
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Examples

Students who TA'ed at least one class twice:
= In (past) FOTL.:
{z: o(Fy. TA(z,y) N eeTA(x,y))}
= in 2-FOL.:
{a . Jtq,to.t1 < to Ay TA(t1, x,y) A TA(t2, 2, y)}
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Examples

Students who TA'ed at least one class twice:
= In (past) FOTL.:
{z: o(Fy. TA(z,y) N eeTA(x,y))}
= in 2-FOL.:
{a . Jtq,to.t1 < to Ay TA(t1, x,y) A TA(t2, 2, y)}

dtq,t0.t1 < to AVa,y. TA(t1,2,y) < TA(ty, z,y)
cannot be expressed in FOTL
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Finité vs. Infinite Histories

Semantics of queries defined w.r.t:

= current (finite) history

— guery evaluation on a finite temporal database
= a completion of current history

= hypothetical reasoning
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Data Expiration
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An expiration operatoiis a triple(0°, A%, Q%) s.t.:
1. it provides annductive definition

E(()) = 0° (initial state)
E(H;D) = A*(E(H),D) (extension maintenance)

2. It maintains the following invariant:

Q(H) =Q*(E(H))  (answer preservation)
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Examples

= theidentity operator:

0% = ()

Eia __
A% =) HNS.H: S @ =d

= the currentoperator:

06 = ()

Enow _
Abnow = XHNS.(S) (=0

the queriepreserved

aredifferent . .
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Another Example

» (losslessrompressiorbased operators:

(€compress = compress({ ))
A&compress — A [T \S.compress(decompress(H ); S)
QCcomvress = \H.QQ(decompress(H ))

= compress anddecompress arelossless
...no reduction; H| ~ |Eompress(H)|

= special casenterval timestamps
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Given anexpiration operator

for what class of queries it preserves answers?
= can these be characterized syntactically?

Given asetof temporal queries:

IS there an expiration operator that
= maintains answers to these queries?
=- can be found algorithmically?

for whatquery languages
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What is the space needed byH ) in terms of
size of the original history,H

length of H (number of statesdomy|),

the size of theactive data domaiwnf 4 (hnumber of
constants that have appeareddn|domp|),

size of the answea(H ),
size of the queries.
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How Good is It ?

What is the space needed byH ) in terms of
= size of the original history,H

= length of H (number of statesdomr|),

= the size of thective data domaif A (number of
constants that have appeareddn|domp|),

= Size of the answe)(H ),
= size of the queries.

General Goal: make | £(H)| independent of
length of H. = bounded expiration operator
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Proposition 2 &, IS bounded.

Proposition 3 &.ompress CANNOL be bounded for lossless
compression schemes.

&g for a temporal query) in a languagec?
... depends on (expressive power)of
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Administrative
Expiration Policies
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Administrative Approaches

Query-independent expiration policies
» characterize gqueries whose answers are not affected
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Administrative Approaches

Query-independent expiration policies
» characterize gqueries whose answers are not affected

expiration operator = a view of the history
= the view must beself-maintainable

guery reformulation = query over the view
= answering queries over vievpsoblem
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Administrative Approaches

Query-independent expiration policies
» characterize gqueries whose answers are not affected

expiration operator = a view of the history
= the view must beself-maintainable

guery reformulation = query over the view
= answering queries over vievpsoblem

= detect attempts to access thessing data
= at run-time
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Common approac
1. policies basec

mistory truncationor cutoff point
on fixeabsolute cutoff pointor

2. policies basec

onow-relative cutoff point

= generalization of th€'d and the£™°" operators
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Common ap
1. policies
2. policies

0roac
DaSeC

mistory truncationor cutoff point
on fixeabsolute cutoff pointor

DaSel

onow-relative cutoff point

= generalization of th€'d and the£™°" operators

Example: Vacuuming [Jensen, 1995].
p(R) : e (aremovespecification), and
k(R) : e (akeepspecification).
R I1s a temporal relatiore a selection condition
absolutetowrelative specifications
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A Query-driven Expiration:.

Finite Histories
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Query Driven Expiration

EXxpiration for queries in a temporal query language

— Past FOTL (and variants)
= Future FOTL
= 2-FOL (temporal relational calculus)
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EXxpiration for queries in a temporal query language

— Past FOTL (and variants)
= Future FOTL
= 2-FOL (temporal relational calculus)

Finite relational structures can be completely
characterized by first-order queries.
= best expiration operator for a fixed que&py
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EXxpiration for queries in a temporal query language

— Past FOTL (and variants)
= Future FOTL
= 2-FOL (temporal relational calculus)

Finite relational structures can be completely
characterized by first-order queries.
= best expiration operator for a fixed que&py

Optimal expiration operator cannot exist.
= we look for abounded expiration operator.
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1. Removal of “old” states (expiration)

— removes aubsetof existing states
= no other changes (histors history)

2. Auxiliary (non-temporal) view maintenance

= maintainsauxiliary relations
= maps a history ta single extended state

3. Specialization of queries
= specialize a query w.r.t. the known prefik
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Past Temporal Logic

= Syntax: First-order logic past temporal operators

Q= RXx)|F|IQNQ[-Q|3r.Q[eQ | since Q)

m Semantics:

= queries over unbounded past: : ¢ R(z)}
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Unfolding and Materialized Views

= Crux of the approach:

Q1 since Q2 = @1 N e(Q2 V (Q; since ()7))

= auxiliary viewsfor temporal subformulas
= only the “previous” state needed

€y Logical Data Expiration — p. 27/56



Unfolding and Materialized Views

= Crux of the approach:

Q1 since Q2 = Q1 N e(Q2V (Q; since ()7))

= auxiliary viewsfor temporal subformulas
= only the “previous” state needed

m recurrent definitions to maintain the views.

al R R"
()| false Q™!
()1 since (o | false Q7 A ( 3—1 V. Rg—l)
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Query: Students that TA'ed at least one class twice.
{z : o(Fy.TA(z,y) N eeTA(x,y))}

Temporal subgueries:
a; = ¢TA(z,y) and
ay = 0o TA(x,y) and
a3 = Jdy. TA(z,y) A eeTA(x,y).
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Example (cont.)

Inductive maintenance of views:

R, (z,y) R, (x,y)

(John, CS448) )

(John, CS448),
(Sue, CS234) }

{ (John, CS448), { (John, CS448),
(Sue,CS234) } (Sue, CS234)

{ (John, CS448), { (John, CS448),
(Sue, CS234) } (Sue, CS234)

{ {
{ { (John, CS448)

;o
;o

{
}

{
}

Ros ()

John }
John }

John,
Sue }
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= o(p(x1) A ... Ap(T))
= ({a1}, {CL2} {as}, ... {an}).

Fora = e(p(x1) A ... Ap(xi)):
Rol = (n—1)"
. the same holds for every prefix éf.

Full details: [Chomicki, 1995],

= subsumes approaches based on TRA
[Yang and Widom, 1998, Yang and Widom, 2000].
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Syntax:

Q= RX)|F|QAQ|-Q|32.Q|8Q | uX.Q

Unfolding a fixpoint: u X.QQ = Q(uX.Q)
Inductive maintenance of auxiliary relation:

al R R"
o) false Q™!

= careful definition ofQ"!.

Full details: [Toman, 2003a]
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access toeal timetime instants

— aclk constant in each state (curreasal time)
— not part of the active data domain

additional temporal operators
Q = ... | since.. | o,

= semantics respects c distances

materialized views now contaphstancevalues
= bounded by

= bounded expiration iflk’ — clk’ ' > ¢ > 0
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Future Temporal Logic

m Syntax:

Q= R(x)| F|QAQ|-Q|32.Q|0Q | Q until Q

m Semantics)(H) =1{60 : H,0,0

= Q}

= still active domain semantics
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Future Temporal Logic

m Syntax:

Q= R(x)| F|QAQ|-Q|32.Q|0Q | Q until Q

m Semantics)(H) =1{60 : H,0,0

= Q}

= still active domain semantics
= Unfolding rule (similarly to PastTL):

Q1 until Q2 = Q1 A (0Q2 V O(Q1 until Q7))

= now we need to represent a formula whtbles
to be substituted when the history is extended.
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[Lipeck and Saake, 1987, Lipeck et al., 1994]
= restrictions to Future FOTL syntax: 3 layers
1. FO formulas (evaluated instate,

2. TL(FO) formulas: temporal outside (1),

3. Universal guantifiers on top of (2)

Automata-based approach

— designed in th@ropositionalsetting
= mix quantifiers and temporal connectives?

... bounded expiration based on an automaton
for (2) implemented byriggers
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Two-sorted First-order Language

= Temporal Relational Calculus (2-FOL)
L:= R(t,x)|z = 2'|t < t'|LAL|LN=L|LVL|3z.L|3t.L
for R(t,x) true in H iff R(x) is true inD,

A bounded expiration operator for 2-FOL?
= conjectured that it does NOT exist
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EXpiration Revisited

ldea: remove those states that
1. do not contribute to query answer (duen
2. contribute duplicate information (due
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ldea: remove those states that
1. do not contribute to query answer (duen
2. contribute duplicate information (due 0

Easy for a fixed history:

— compute answer t@Q bottom-up
— propagate “back” to remove redundant data

NOTE: 2-FOL queries withunbounded answersannot
have bounded expiration operator
— consider onlybounded queries
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Handling History Extensions

Atomic formulas:
4
T =a a € domp

.HEiVaEdomD.az#a a=e

a
(t=3¢ s € domry

|t > maxtimgdomy) s=e
Specialization of base relatioasd their extensions

R(t,x) = ( \V tfu@[iﬁ]) v ( \V R(tX)[ﬁ’;])

acRp, acdompU{e}

= depend®nly on the future extensions of history
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Query Specialization

( {trug[*X] : R(s,a) € D}

U{R(t,x)[5x] : a € (domp U {e})Ix]} Q = R(t,x)
{Q1[x] : Q1] € PEH(Qu), F K] A F} Q=Qi1AF
{Q1 A Q3lan] - Q1] € PER(Q1), Q5[)) € PER(Q2), F B]} QR=Q1 /A Q2
{By-V gy 2v1epe r(@u) @] - 30.Q7 (] € PER(Q1)} Q=3
PEL(Q) = ¢ {(Ft-V i petiepes, (@) QUIE] - 3s.QY[XE] € PER(Q1)} Q=3t.Q1

{Q1 A —Q5[3] : Q1[X] € PEu(Q1), Q5[] € PEA(Q2)}

U{Q1[Z] : Q1[Z] € PER(Q1), Q5[F] € PEH(Q2)} Q = Q1 A Q2
{Q1 Vv Q53] : Q1 € PER(Q1)[3]: Q5[] € PER(Q2)}

U{Q13] : Q1[X] € PEm(Q1), Q5[%] € PEm(Q2)}

U{Q3[3] : Q1[3] € PER(Q1), Q5[3] € PER(Q2)} Q =Q1V Q2
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Duplicate Information Removal

IDEA: Modify the PEy for quantification over time:

3.\ QY]

o B XL1EPE(Q1)
seTB,(t)

where Q7[X] € PEg(Q;) for some s
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Duplicate Information Removal

IDEA: Modify the PEy for quantification over time:

G\ Q)R]
QY XLIePEL (Q1)
seTB,(t) —

where Q7[X] € PEg(Q;) for some s
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Equivalence w.r.t. History Extensions

Definition 1: Let Q; . ], Q2[%,] € PEx(Q) for s # s».

We definely, | ~g [xL,] iff for any extensionH’ of H

(a,51) € QUH; H') <= (a,59) € Q(H; H')

Definition 2: TB,(t) is the set of representatives of the
X1 ~6 [%,] equivalence classes [e.g., mind.
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Residual History Reconstruction

= Specialization-baseédxpiration:

Q(H) PE#(Q)(D)
PEr.7(Q) PE (PER(Q))

= We usePEy(Q) to constructe (H)
= temporal variableé, — a unary relation

T;(t) = | ) TBa(t).

= each quantifiett;.)" in Q) is restricted tdl;(t)
= a stateD,; € H expires if; & | J. T;.
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Q(H; H') = Q(EQ(H); H')

for al
| Eq(H)

H, H' histories and) FO query
< f(‘domD‘a ’Q )’

f Is an exponential tower iIn number of nested

| Eq(H)

..and can

< |H| + |dom||Q)|

ne implemented by FO gueries/updates.
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Example: dty,t5.t1 < ts AV .R(t1,2) <= R(ts, )

Potentially we neec
contains distinct su

to keep all states for whigh
nsets dbm p

= potentially all subsets alom
= any residual history is exponential i[domp|.

sequences of statggeld more exponents.

non-elementary blowup even when translating
monadic FO to propositional TL
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General Lower Bounds
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Limits of Bounded Encoding

Clearly, this cannot work for all possible queries:

Example 1: Query{t: R(t)}.
answer~ |domy H |

Example 2: Query{t: R(t) AVt R(t') -t > 1t'}.
answer~ log(|domy H|)
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Example: “Iis the number of states containiag
greater that the number of states contairtin§

= we need(log(|domry|)) space for counter(s)
= O(log(|domy|)) is sufficient.

Conjecture: we can use the above technique (but
remember counts of the expired values) to answer
gueries with counting

= | EQ(H)| < POLY (log(|domyr))
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Example (in SQL-style syntax):

( select 'I’
from R
where R.x='a’ ) except all ( select '1’

from R
where R.xX='b" )

. IS nonempty Iff

the number of states containings greater that
the number of states containihg

= Just like counting . ..
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Example:

while 3¢.R(t,a) A 3t.R(t,b) do { while botha andb exist in R }
deleteR(¢, a)

whereVt' . R(t',a) D t' > t; { delete (chronologically) firsi }
delete R(t,0)

whereVt' . R(t',b) D t' > t; { delete (chronologically) first }
return J3t.R(¢, a) { return true ifR contains am }

= we need(log(|domy|)) space for counter(s)
= just like for counting ...
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No bounded operator can exist:
= [Toman, 2003a] showQ(|dom|) lower bound

p =z, y.o(Q(z, y)ApX.R(z,y)Vodz. X (z, 2)AX(z,y))

State  Database instance

0 1} or {Q(a,0)}

o {} or {Q(ab))
n+1 {R(a,c1),...,R(c, ciz1),...,R(cp,b)}
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Certain and Potential
Answers
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Definition 4 Let A be a finite history() a query (in an
appropriate query language), artda substitution.

0 I1s a potential answer fo€) with respect toH |if
there is an infinite completiof’ of H such that
H'. 0= Q.

0 1s a certain answer fo€) with respect taH If for
all infinite completiong?’ of H we haveH’, 0 = Q).

potential answera direct generalization of gfotential
constraint satisfactiopiChomicki, 1995].

Logical Data Expiration — p. 51/56



Proposition 5 ([Gabbay et al., 1994]) Satisfaction for
two dimensional propositional temporal logic over
natural numbers-based time domain is not decidable.

Proposition 6 ([Chomicki, 1995]) For past formulas
potential constraint satisfaction is undecidable.

Proposition 7 ([Chomicki and Niwinski, 1995])
For biquantified formulas

= no internal quantifiers: EXPTIME,
= a single internal quantifier: undecidable.

... data expiration Is a moot point
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garbage collection in programming languages
— navigationalguery language (ala IMS)

nased omeachability queries

data streams and streaming queries

data stream

synopse(is)
streaming query
standing query

history
residual history
temporal query
fixed query
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FutureTL
— expiration operator for full FOETL

Rich Temporal Domains (more than lineak)
— constraint DB techniques [Libkin et al., 2000]

Space Bounds For Aggregate Queries
— a weaker bound, e.d§ H| € O(log(|domypH|)?

Decidable Certain/Potential Answers

= Decidable languages (monodic TL)
= Optimal Expiration Operators?
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A chapter inLogics for Emerging Applications of
DatabasesJ. Chomicki, G. Saake, and R. van der
Mayden (eds.), Springer 2003.

( http://db.uwaterloo.ca/"david/book-lead.ps )
Part of this research was done whil&aBRICS
Centre for Basic Research in Computer Science
funded by the Danish National Science Foundation.

The research was supported by the National

Sciences and Engineering Research Council of
Canada (NSERC).
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