Uniform access to non-relational database
systems: the SOS platform

Paolo Atzeni, Francesca Bugiotti, and Luca Rossi

Dipartimento di informatica e automazione
Universita Roma Tre

Abstract. Non-relational databases (often termed as NoSQL) have re-
cently emerged and have generated both interest and criticism. Interest
because they address requirements that are very important in large-scale
applications, criticism because of the comparison with well known rela-
tional achievements. One of the major problems often mentioned is the
heterogeneity of the languages and the interfaces they offer to develop-
ers and users. Different platforms and languages have been proposed,
and applications developed for one system require significant effort to be
migrated to another one. Here we propose a common programming in-
terface to NoSQL systems (and also to relational ones) called SOS (Save
Our Systems). Its goal is to support application development by hiding
the specific details of the various systems. It is based on a metamodeling
approach, in the sense that the specific interfaces of the individual sys-
tems are mapped to a common one. The tool provides interoperability
as well, since a single application can interact with several systems at
the same time.

Keywords: Non-Relational databases, NoSQL, interoperability

1 Introduction

Relational database systems (RDBMSs) dominate the market by providing an
integrated set of services that refer to a variety of requirements, which mainly
include support to transaction processing but also refer to analytical processing
and decision support. From a technical perspective, all the major RDBMSs on
the market show a similar architecture (based on the evolutions of the building
blocks of the first systems developed in the Seventies) and do support SQL as a
standard language (even though with dialects that differ somehow). They do pro-
vide reasonably general-purpose solutions that balance the various requirements
in an often satisfactory way.

However, some concerns have recently emerged towards RDBMSs. First, it
has been argued that there are cases where their performances are not adequate,
while dedicated engines, tailored for specific requirements (for example decision
support or stream processing) behave much better [12] and provide scalabil-
ity [11]. Second, the structure of the relational model, while being effective for

2 Atzeni P., Bugiotti F., Rossi L.

many traditional applications, is considered to be too rigid or not useful in other
cases, with arguments that call for semistructured data (in the same way as it was
discussed since the first Web applications and the development of XML [1]). At
the same time, the full power of relational databases, with complex transactions
and complex queries, is not needed in some contexts, where “simple operations”
(reads and writes that involve small amount of data) are enough [11]. Also, in
some cases, ACID consistency, the complete form of consistency guaranteed by
RDBMSs, is not essential, and can be sacrificed for the sake of efficiency. It is
worth observing that many Internet application domains, for example, the social
networking domain, require both scalability (indeed, Web-size scalability) and
flexibility in structure, while being satisfied with simple operations and weak
forms of consistency.

With these motivations, a number of new systems, not following the RDBMS
paradigm (neither in the interface nor in the implementation), have recently
been developed. Their common features are scalability and support to simple
operations only (and so, limited support to complex ones), with some flexibility
in the structure of data. Most of them also relax consistency requirements. They
are often indicated as NoSQL systems, because they can be accessed by APIs
that offer much simpler operations than those that can be expressed in SQL.
Probably, it would be more appropriate to call them non-relational, but we will
stick to common usage and adopt the term NoSQL.

There is a variety of systems in the NoSQL arena [6, 11], more than fifty, and
each of them exposes a different interface (different model and different APT).
Indeed, as it has been recently pointed out, the lack of standard is a great concern
for organizations interested in adopting any of these systems [10]: applications
and data are not portable and skills and expertise acquired on a specific system
are not reusable with another one. Also, most of the interfaces support a lower
level than SQL, with record-at-a-time approaches, which appear to be a step
back with respect to relational systems.

The observations above have motivated us to look for methods and tools that
can alleviate the consequences of the heterogeneity of the interfaces offered by
the various NoSQL systems and also can enable interoperability between them
together with ease of development (by improving programmers’ productivity,
following one of the original goals of the relational databases [8]). As a first
step in this direction, we present here SOS (Save Our Systems), a programming
environment where non-relational databases can be uniformly defined, queried
and accessed by an application program.

The programming model is based on a high-level description of the interfaces
of non-relational systems by means of a generic and extensible meta-layer, based
on principles that are inspired by those our group has used in the MIDST and
MIDST-RT projects [2-4]. The focus in our previous work was on the structure
of models and was mainly devoted to the definition of techniques to translate
from a representation to another one. Here, the meta layer refers to the ba-
sic common structure and it is therefore concerned with the methods that can
be used to access the systems. The meta-layer represents a theoretical unifying

Uniform access to non-relational database systems: the SOS platform 3

structure, which is then instantiated (indeed, implemented) in the specific un-
derlying systems; we have experimented with various systems and, in this work,
we will discuss implementations for three of them with rather different features
within the NoSQL family: namely, Redis,! MongoDB,? and HBase.?

Indeed, the implementations are transparent to the application, so that they
can be replaced at any point in time (and so one NoSQL system can be re-
placed with another one), and this could really be important in the tumultuous
world of Internet applications. Also, our platform allows for a single application
to partition the data of interest over multiple NoSQL systems, and this can be
important if the application has contrasting requirements, satisfied in different
ways by different systems. Indeed, we will show a simple application which in-
volves different systems and can be developed in a rapid way by knowing only the
methods in our interface and not the details of the various underlying systems.

To the best of our knowledge, the programming model we present in this
paper is original, as there is no other system that provides a uniform interface
to NoSQL systems. It is also a first step towards a seamless interoperability
between systems in the family. Indeed, we are currently working at additional
components that would allow code written for a given system to access other
systems: this will be done by writing a layer to translate proprietary code to the
SOS interface; then, the tool proposed here would allow for the execution on one
system of code developed for another one.

The rest of this paper is organized as follows. In Section 2 we illustrate the
approach by defining a common interface. In Section 3 we illustrate our meta-
layer and in Section 4 we present the structure of the platform. In Section 5 we
illustrate a simple example application. Then, we briefly discuss related work
(Section 6) and draw our conclusions (Section 7).

2 The common interface

As we said, the goal of our approach is to offer a uniform interface that would
allow access to data stored in different data management systems (mainly of
the NoSQL family, but possibly also relational), without knowing in advance
the specific one, and possibly using different systems within a single application.
In this section we discuss on the desirable features of such an interface and
then present our proposal for it. In the next section we will then describe the
underlying architecture that allows for mapping it to the various systems.
NoSQL systems have been developed independently from one another, each
with specific application objectives, but all with the general goal to offer rather
simple operations, to be supported in a scalable way, with possibly massive
throughput.? Indeed, there are many proposals for them, and effort have been

! http://redis.io

2 http://www.mongodb.org

3 http://hbase.apache.org

4 Our interest here is in the features related to how data is modeled and accessed.
So, we will not further refer to the attention to scalability nor to another important

4 Atzeni P., Bugiotti F., Rossi L.

devoted to the classification of them into various categories, the most impor-
tant of which have been called key-value stores, document stores and extensible
record stores, respectively [6]. The three families share the idea of handling in-
dividual items (“objects” or “rows”) and on the need for not being rigid on the
structure of the items, while they differ on the features that allow to refer to
internal components of the objects.® Most importantly, given the general goal of
concentrating on simple operations, they are all based on simple operations for
inserting and deleting the individual items, mainly one at the time, and retriev-
ing them, one at the time or a set at the time. Therefore, a simple yet powerful
common interface can be defined on very basic and general operations:

— put to insert objects
— get to retrieve objects
— delete to remove objects

Crucial issues in this interface are (i) the nature of the objects that can be
handled, which in some systems are allowed to have a rather complex structure,
not fixed in advance, but with components and some forms of nesting, and in
others are much simpler and (ii) the expressivity of the get operation, which in
some cases can only refer to identifiers of objects and in others can be based
on conditions on values. This second issue is related to the fact that operations
can also be specified at high level with reference to a single field of a structured
object. The platform infers from the meta-layer all the involved structures and
defines coherently the sequence of operations on them.

The simple interface we have just described is the core component of the
architecture of the SOS system, which is organized in the following modules
(Figure 1):

— the common interface that offers the primitives to interact with NoSQL
stores;

— the meta-layer that stores the form of the involved data;

— the specific handlers that generate the appropriate calls to the specific database
system.

The SOS interface exposes high level operations with reference to the general
constructs defined in the meta-layer. The meta-layer stores data and provides
the interface with a uniform data model for performing operations on objects.
The specific handlers support the low level interactions with specific NoSQL
storage systems mapping meta-layer generic calls to system specific queries.

In order to show how our proposed system can support application devel-
opment, in this paper we will refer to an example regarding the definition of a
simplified version of Twitter,® the popular social network application. We will

issue, the frequent relaxation of consistency, which are both orthogonal to the aspects
we discuss. Because of this orthogonality, our approach preserves the benefits of
scalability and relaxation of consistency.

We will give some relevant details for the three families and their representative
systems in the next section, while discussing how the common interface can be
implemented in them.

S http://twitter.com/

Uniform access to non-relational database systems: the SOS platform 5

Application

put(chject)
get(idy
dale'e(id)

¥

Common Interface

S0s

Meta Layer

Redis
Handler

o o

Fig. 1. Architecture of SOS

MongoDB
Handler

HBase
Handler

E

adopt the perspective of a Web 2.0 development team that wants to benefit from
the use of different NoSQL systems. Transactions are short-lived and involve lit-
tle amount of data, so the adoption of NoSQL systems is meaningful. Also, let
us assume that quantitative application needs have led the software architect to
drive the decision towards the use of several NoSQL DBMSs, as it turned out
that the various components of the application can benefit each from a different
system.7

The data of interest for the example have a rather simple structure, shown
in Figure 2: we have users, with login and some personal information, who write
posts; every user “follows” the posts of a set of users and can, in turn, “be
followed” by another set of users. In the example, in Section 5, we will show how
this can be implemented by using three different NoSQL systems in one single
application.

7 For the sake of space here the example has to be simple, and so the choice of multiple
systems is probably not justified. However, as the various systems have different
performances and different behavior in terms of consistency, it is meaningful to have
applications that are not satisfied with just one of them.

6 Atzeni P., Bugiotti F., Rossi L.

Follower

Fig. 2. The schema for the data in the example

3 The Meta-layer

In this section we give some formal explanation of the meta-layer structure and
we contextualize it with respect to the NoSQL system our platform handles.

Our approach leverages on the genericity of the data model to allow for a
standard development practice that is not bound to a specific DBMS API, but
to a generic one.

Application programming interfaces are built over and in terms of the con-
structs of the meta-layer (without explicit reference to lower level constructs); in
this way, programs are modular and independent of the particular data model;
reuse is maximized.

According to the literature, a data model can be represented as the collec-
tion of its characterizing constructs, a set of constraints and a set of operations
acting over them [14]. A construct is an entity that has a conceptual significance
within the model. A construct can be imagined as the elementary outcome of
a structural decomposition of a data model. A construct is relevant in a data
model since it is a building block of its logical structures.

Thus, the aim of the meta-layer is to reconcile the relevant descriptive ele-
ments of mainstream NoSQL databases: key-value stores, document stores and
record stores. In the following paragraphs, we will describe concisely their data
models, and we will show how their constructs and operations can be effectively
modeled through our meta-layer.

In key-value stores, data is organized in a map fashion: each value is identified
by a unique key. Keys are used to insert, retrieve and remove single values,
whereas operations spanning multiple ones are often not trivial or not supported
at all. Values, associated with keys, can be simple elements such as Strings and
Integers, or structured objects, depending on the expressive power of the DBMS
considered. We chose Redis as a representative of key-value stores, being one of
the richest in terms of data structures and operations. Redis supports various
data types such as Set, List, Hash, String and Integer, and a collection of native
operations to manipulate them.

Document stores handle collections of objects represented in structured for-
mats such as XML or JSON. Each document is composed of a (nested) set of
fields and is associated with a unique identifier, for indexing and retrieving pur-
poses. Generally, these systems offer a richer query language than those in other

Uniform access to non-relational database systems: the SOS platform 7

NoSQL categories, being able to exploit the structuredness of the objects they
store. Among document stores, MongoDB is one of the most adopted, offer-
ing a rich programming interface for manipulating both entire documents and
individual single fields.

Extensible record stores offer a relaxation of the relational data model, allow-
ing tables to have a dynamic number of columns, grouped in families. Column
families are used for optimization and partitioning purposes. Within a table,
each row is identified by a unique key: rows are usually stored in lexicographic
order, which enables single accesses and sequential scans as well. The progenitor
of this category is Google BigTable [7] and we consider here HBase, which is
modeled after it and supports most of the features described above.

Moving from the data models described above, our meta-layer is designed for
dealing with them effectively, allowing to manage collections of objects having
an arbitrarily nested structure. It turns out that this model can be founded on
three main constructs: Struct, Set and Attribute.

Instances of each construct are given a name associated to a value. The
structure of the value depends on the type of construct itself: Attributes contain
simple values, such as Strings or Integers; Structs and Sets, instead, are complex
elements whose values may contain both Attributes and Sets or Structs as well,
as shown in Figure 3.

Each database instance is represented as a Set of collections. Each collection
is a Set itself, containing an arbitrary number of objects. Each object is identified
by a key, which is unique within the collection it belongs to.

Fig. 3. The metalayer

As it turns out, specific non-relational models can be represented as a particu-
lar instance of the meta-layer, where generic constructs are used in well-defined
combinations and, if necessary, renamed. Simple elements, such as key-values
pairs or single qualifiers can be modeled as Attributes. Groups of attributes,
as HBase column families or Redis hashes, are represented by Structs. Finally,
collections of elements, as HBase tables or MongoDB collections, are modeled by

8 Atzeni P., Bugiotti F., Rossi L.

Sets. According to the specific structures the various NoSQL systems implement,
we will define a translation process, from meta-layer constructs, to coherent
system-specific structures. In the remainder of this section it will be shown how
this translation and data memorization works, moving from the model generic
representation to the system-specific ones, with reference to the example intro-
duced in Section 2. The meta-layer representation of the example is shown in
Figure 4. A Struct Tweet represents a tweet sent by a User and a Set Tweets
contains all the tweets of a User. Finally a simple Attribute is used for every
non-structured information item of Users and Tweets (SSN, Name, Surname,

).

username
(attribute)

User
(Struct)

Users
(Set)

password
(attribute)

first_name
(attribute)

Info
(Struct)

last_name
(attribute)

Followships
(Set)

sent_tweets
(Sef)

text
(attribute)

Tweet
(Struct)

(attribute)

Fig. 4. The meta-layer representation

3.1 MongoDB

MongoDB handles Collections of structured documents represented in BSON®
and identified by a global key. In our translation, every SOS Collection is im-

8 BSON: a binary encoding of the popular JSON format

Uniform access to non-relational database systems: the SOS platform 9

plemented as a MongoDB Collection. Each object in the meta-layer is then rep-
resented as a single document within the collection itself. The structure of each
object, implemented in JSON, fits closely the BSON format, allowing seamless
translations between the two models.

3.2 HBase

In this context we model every SOS Collection as a Table. Objects within a
Collection are implemented as records in the corresponding Table: the structure
of each object establishes which HBase constructs are involved in the translation.
Top-level Attributes are stored in a reserved column family named _top within
a reserved column (qualifier) named _value; top-level Sets generate a reserved
column family (named _arrayl[]) that groups all the fields they further contain.
Finally, each top-level Struct is represented as a single column family; deeper
elements it contains are further stored in qualifiers. In order to store a nested
tree in a flat structure (i.e. the qualifiers map) each field of the tree is given a
unique qualifier key made of the whole path in the tree that goes from the root
Struct of the column family, to the field itself.

Users

_top Tweet[] Info
Username: xyz Name: Foo
Password: ¥#*¥%#x 1d:1 Surname: Foo

Content: “abc”

Id: 2
Content: “def”

Fig. 5. HBase Example

An example of translation is shown in Figure 5. The choice of storing top-
level elements into different column families is driven by some data modeling
considerations. In HBase, column families correspond to the first-class concepts
each record is made of; in fact, data partitioning and query optimization are
tuned on a per-column-family basis, considering each column family as an inde-
pendent conceptual domain. In tree documents, we assume that top-level structs
and sets correspond to the most significant concepts in the model, and therefore
we represent each of them as a single column family.

3.3 Redis

Redis, among the three DBMSs we consider, is arguably the most flexible and
rich in constructs: it is a key-value store where values can be complex elements
such as Hashes, Sets? or Lists.

9 In order to avoid ambiguity, we will use the term R-Set to refer to a Redis set.

10 Atzeni P., Bugiotti F., Rossi L.

For every object of the SOS Collections of the meta-layer, in Redis two R-
Sets are defined. The first one is used to store keys, therefore it indexes the
elements. The second one contains data: a Hash named _top with Attributes
directly related to the Struct and a different Hash for every Struct or Set it
contains. The name of those Hashes will be the concatenation of the name of
the elements and the contained Struct.

The top Hash will contain all the first level attributes as following;:

hash key: user:10001

hash values: [_top, info, twees[],]
hash key: user:10001:_top

hash values: username: foo

password: bar

hash key: user:10001:info
hash values: firstName: "abc"
lastName: "def"
hash key: user:10001:tweets[]
hash values: [0] .tweet.id = "1234",
[0] .tweet.content = "....",
[1] .tweet.id = "1235"
[1]

Assumptions we made for defining Redis translation are somehow close to
HBase ones, discussed above. In fact, in our translation, Redis Hashes roughly
correspond to HBase column families (each containing the qualifiers map). Nev-
ertheless, object data in Redis is spread throughout many keys, whereas in HBase
it is contained in a single record. As a consequence, we have to define in Redis
support structures to keep track of the keys associated with each object, such
as the R-set containing the hash names.

4 The platform

For the definition of the SOS platform, we featured a Java API that exposes the
following methods corresponding to the basic operations illustrated in Section 2:

void put (String collection, String ID, Object o)
— void delete (String collection, String ID)
Object get (String collection, String ID)
Set<Object> get (Query q)

The core class is NonRelationalManager. It supports put, delete and get
operations. Primitives are based on object identifiers, however multiple retrievals
are also possible by means of simple conjunctive queries (the second form of
get). These methods handle arbitrary Java objects and are responsible for their
serialization into the target NoSQL system. This process is based on the meta-
layer, the data model pivoting the access to the systems. In the current version

Uniform access to non-relational database systems: the SOS platform 11

of the tool, we implemented the meta-layer in JSON, as there are many off-the-
shelf libraries for Java object serialization into JSON. The implementation is
based on the following mapping between the meta-layer and JSON format:

— Sets are implemented by Arrays
— Structs by Objects
— Attributes by Values

As the final step, each request is encoded in terms of native NoSQL DBMS
operations, and the JSON object is given a suitable, structured representation,
specific for the DBMS used. The requests and the interactions are handled by
technology-specific implementations acting as adapters for the DBMS API.

We have implementations for this interface in the three systems we currently
support. The classes that directly implement the interface are the “managers” for
the various systems, which then delegate to other classes some of the technical,
more elaborate operations.

For example, the following code is the implementation of the NonRelational-
Manager interface for MongoDB. It can be noticed that put links a content to
a resource identifier, indeed creates a new resource. The adapter wraps the con-
version to a technical format (this responsibility is delegated to objectMapper)
which is finally persisted in MongoDB.

public class MongoDBNonRelationalManager
implements NonRelationalManager {

public void put(String collection, String ID, Object object) {
DBCollection coll = db.getCollection(collection);

ByteArrayOutputStream baos =
new ByteArrayOutputStream() ;
this.objectMapper.writeValue(baos, object);

this.mongoMapper.persist(coll, getId(ID),
new ByteArrayInputStream(baos.toByteArray()));

As a second implementation of NonRelationalManger, let us consider the
one for Redis. As for MongoDB, it contains the specific mapping of Java ob-
jects into Redis manageable resources. In particular, Redis needs the concept
of collection, defining a sort of hierarchy of resources, typical in resource-style
architectures. It can be seen that the hierarchy is simply inferred from the ID
coming from the uniform interface.

public class RedisNonRelationalManager
implements NonRelationalManager {

public void put(String collection, String ID, Object object) {
Jedis jedis = pool.getResource();

12 Atzeni P., Bugiotti F., Rossi L.

try {

// the object is stored in the meta-layer
ByteArrayQutputStream baos =

new ByteArrayOutputStream() ;
this.objectMapper.writeValue(baos, object);

ByteArrayInputStream bais =

new ByteArrayInputStream(baos.toByteArray());
this.databaseMapper.persist(

jedis, collection, ID, bais);

baos.close();
bais.close();

} catch(JsonParseException ex) {
ex.printStackTrace();

} finally {
pool.returnResource(jedis);

}

5 Application example

In this Section we present the actual implementation of the Twitter example
mentioned in Section 2.

The application can be implemented by means of a small number of classes,
one for users, with a method for registering new ones and for logging in, one for
tweets with methods for sending them, and finally one for the “follower-followed”
relationship, for updating it and for the support to listening. Each of the classes
is implemented by using one or more database objects, which are instantiated
according to the implementation that is desired for it (MongoDB for users, Redis
for tweets, and HBase for the followships). More precisely, the database objects
are indeed handled by a support class that offers them to all the other classes.

As an example, let us see the code for the main method, sendTweet () for
the class that handles tweets. We show the two database objects of interest,
tweetsDB and followshipsDB of the NonRelationalManager with the respec-
tive constructors, used for the storage of the tweets and of the relationships,
respectively. Then, the operations that involve the tweets are specified in a very
simple way, in terms of put and get operations on the “DB” objects.

NonRelationalManager tweetsDB =
new RedisDbNonRelationalManager();
NonRelationalManager followshipsDB =
new HBaseNonRelationalManager();

Uniform access to non-relational database systems: the SOS platform 13

public void sendTweet(Tweet tweet) {

// ADD TWEET TO THE SET OF ALL TWEETS
tweetsDB.put ("tweets", tweet.getId(), tweet);

// ADD TWEET TO THE TWEETS SENT BY THE USER
Set<Long> sentTweets =
tweetsDB.get ("sentTweets", tweet.getAuthor());
sentTweets.add(tweet.getId());
tweetsDB.put ("sentTweets", tweet.getAuthor(), sentTweets);

// NOTIFY FOLLOWERS
Set<Long> followers =
followshipsDB.get("followers", tweet.getAuthor());

for(Long followerId : followers) {
Set<Long> unreadTweets =
tweetsDB.get ("unreadTweets", followerId);
unreadTweets.add (tweet.getId());
}

tweetsDB.put ("unreadTweets", followerId, unreadTweets);

It is worth noting that the above code refers to the specific systems only in
the initialization of the objects tweetsDB and followshipsDB. Thus, it would
possible to replace an underlying system with another by simply changing the
constructor for these objects.

In a technical context, it is clear that an application such as the one described
above, can be easily implemented from scratch, given the managers for the var-
ious systems. It is important to notice that systems built on this programming
model address modularity, in the sense that the NoSQL infrastructure can be
easily replaced without affecting the client code.

6 Related work

To the best of our knowledge SOS is the first proposal that aims to provide
support to the management of heterogeneity of NoSQL databases.

The approach for SOS we describe here uses the meta-layer as the principal
means to support the heterogeneity of different data models. The idea of a pivot
model finds its basis in the MIDST and MIDST-RT tools [4,3]. In MIDST,
the core model (named “supermodel”), is the one to which every other model
converges. Whereas MIDST faces heterogeneity through explicit translations of
schemas, in SOS schemas are implied and translations are not needed. The pivot
model, the meta-layer, is used to point out a common interface. Several other
differences exist between the two approaches, as we already remarked in the
introduction.

14 Atzeni P., Bugiotti F., Rossi L.

The need for a runtime support to interoperability of heterogeneous sys-
tems based on model and schema translation was pointed out by Bernstein and
Melnik [5] and proposals in this direction, again for traditional (relational and
object-oriented) models were formulated by Terwilliger et al. [13] and by Mork
et al. [9]. With reference to NoSQL models, SOS is the first proposal in the
runtime direction: in fact, the whole algorithm takes place at runtime and direct
access to the system is granted.

From a theoretical point of view, the need for a uniform classification and
principle generalization for NoSQL databases is getting widely recognized; it was
described by by Cattell [6], reporting a detailed characterization of non-relational
systems.

Stonebraker [10] presents a radical approach tending to diminish the im-
portance of NoSQL systems in the scientific contest. Actually, Stonebraker de-
nounces the absence of a consolidated standard for NoSQL models. Also, he
uses the absence of a formal query language as a supplementary argument for
his thesis. Here we move from the assumption that non-relational systems have
a less strict data model which cannot be subsumed under a fixed set of rules as
easily as for the relational system. However, we notice that commonalities and
structural concepts among the various systems can be detected and this can be
exploited to build a common meta-layer.

7 Conclusions

In this paper we introduced a programming model that enables homogeneous
treatment of non relational schemas.

We provided a meta-layer that allows the creation and querying of NoSQL
databases defined in MongoDB, HBase and Redis using a common set of simple
atomic operation. We also described an example where the interface we provide
enables the simultaneous use of several NoSQL databases in a way that it is
transparent for the application and for the programmers.

It could be observed that such elementary operations might reduce the ex-
pressive power of the underlying databases. Actually, in this paper we do not
deal with a formal analysis of information capacity of the involved models. How-
ever, it is apparent that when lower level primitives are involved, expressive
power is not limited with reference to the whole language, but only to the single
statement. This means that a query that can be expressed as one statement in
HBase, for example, will require two or more statements in the common query
language.

However, what is noticeable is that the standardization is not achieved by a
adding a supplementary level of abstraction but by spotting common concepts
in the models which are deemed general.

To the best of our knowledge this is the first attempt to reconcile NoSQL
models and their programming tactics within a single framework. Our approach
both offers a theoretical basis for unification and provides a concrete program-
ming interface to address widespread problems.

Uniform access to non-relational database systems: the SOS platform 15

We enable a sort of federated programming where different NoSQL databases

can be used together in a single program. This might be even adopted in the
future development of data integration tools where adapters towards NoSQL
databases still lack.

The solution proposed here adds an indirection layer to the generally bare-

boned NoSQL databases. Obviously, this homogenization presents performance
tradeoffs that need to be carefully studied.

References

1.

2.

10.

11.

12.

13.

14.

S. Abiteboul, P. Buneman, and D. Suciu. Data on the web: from relations to
semistructured data and XML. Morgan Kaufmann, 2000.

P. Atzeni, L. Bellomarini, F. Bugiotti, F. Celli, and G. Gianforme. A runtime
approach to model-generic translation of schema and data. In Inf. Syst., pages
269-287, 2012.

P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme. A runtime approach
to model-independent schema and data translation. In FDBT Conference, pages
275-286. ACM, 20009.

P. Atzeni, P. Cappellari, R. Torlone, P. Bernstein, and G. Gianforme. Model-
independent schema translation. VLDB Journal, 17(6):1347-1370, 2008.

P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer map-
pings. In SIGMOD Conference, pages 1-12, 2007.

R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, pages 12-27,
2010.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst., 26(2):4:1-4:26, 2008.

E. Codd. Relational database: A practical foundation for productivity. Commun.
ACM, 25(2):109-117, 1982.

P. Mork, P. Bernstein, and S. Melnik. A schema translator that produces object-
to-relational views. Technical Report MSR-TR-2007-36, Microsoft Research, 2007.
http://research.microsoft.com.

M. Stonebraker. Stonebraker on NoSQL and enterprises. Commun. ACM, pages
10-11, 2011.

M. Stonebraker and R. Cattell. 10 rules for scalable performance in ’simple oper-
ation’ datastores. Commun. ACM, pages 72-80, 2011.

M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Hel-
land. The end of an architectural era: (it’s time for a complete rewrite). In VLDB,
pages 1150-1160, 2007.

J. F. Terwilliger, S. Melnik, and P. A. Bernstein. Language-integrated querying of
XML data in SQL server. PVLDB, pages 1396-1399, 2008.

D. Tsichritzis and F. Lochovski. Data Models. Prentice-Hall, Englewood Cliffs,
New Jersey, 1982.

